Retrieval of Leaf Area Index (LAI) and Soil Water Content (WC) Using Hyperspectral Remote Sensing under Controlled Glass House Conditions for Spring Barley and Sugar Beet
Abstract
:1. Introduction
- The first group, including the normalized differential vegetation index (NDVI) as the most prominent representative, shows response to the general greenness, biomass and structure of the vegetation. The NDVI and its variants have successfully been related to properties such as the leaf area index (LAI), the fraction of absorbed photosynthetically active radiation (FPAR) or the biomass of many different ecosystems and environments [9,10].
- The second group of indices is related to the leaf pigment activity (such as xanthophyll or carotenoid) that shows sensitivity to plant physiological processes and in particular to the photosynthetic radiation use efficiency, a major component in many current eco-climatic models and analysis. Specifically, the photochemical reflectance index (PRI, the normalized difference of the 531 and 570 nm bands) has received large attention over the last years allowing relating spectral response to carbon fluxes and GPP [7,11,12,13]. As the PRI is sensitive to the plant xanthophyll cycle, active when dissipating excess energy under intensive radiation, and also dependent on water and nutrient availability, it will be a very useful indicator of the soil moisture and nutrient regime at a particular location [6,14].
- The third group of indices mainly uses water absorption bands in the near- and mid-infrared region. They are sensitive to the leaf/plant water concentration that is controlled by the soil water availability and climatic conditions. A detailed discussion about pros and cons of individual spectral bands/indices can be found in [6,15,16]. In general, the indices of this group are applied in areas such as drought assessment, irrigation practice or wild fire risk [17].
Spectral Index | Index Name | Equation | Reference |
---|---|---|---|
Greenness/Biomass/Canopy structure: | |||
| Normalized Difference Vegetation Index–variant A | NDVI_a = (R800 − R670) / (R800 + R670) | [7,9] |
| Normalized Difference Vegetation Index–variant B | NDVI_b = (R858−R648) / ( R858 + R648) | [18] |
| Renormalized Difference Vegetation Index | RDVI = (R800−R670) / sqrt (R800 + R670) | [19] |
| Red Edge Normalized Difference Vegetation Index | NDVI_705 = (R750−R705) / (R750 + R705) | [20,21] |
| Modified Red Edge Normalized Difference Vegetation Index | mNDVI_705 = (R750 − R705)/ (R750 + R705 − 2R445) | [21,22] |
| Red Normalized Difference Vegetation Index | RNDVI = (R780 − R670) / ( R780 + R670) | [10,23] |
| Green Normalized Difference Vegetation Index | GNDVI = (R780 − R550) / ( R780 + R550) | [23,24] |
| Modified Simple Ratio | MSR = ((R800/R670) − 1) / sqrt ((R800/R670) + 1) | [19,25] |
| Narrowband Simple Ratio 680–variant A | SR_680_a = R800 / R680 | [21] |
| Narrowband Simple Ratio 680–variant B | SR_680_b = R900 / R680 | [26] |
| Narrowband Simple Ratio 705 | SR_705 = R750 / R705 | [21] |
| Modified Simple Ratio 680 | mSR_680 = (R800 − R445) / ( R680 − R445) | [21,22] |
| Modified Simple Ratio 705 | mSR_705 = (R750 − R445) / ( R705 − R445) | [21] |
| Narrowband Red Green Ratio | RG = ∑(R600:R699) / ∑(R500:R599) | [21] |
Pigment activity/Light Use Efficiency: | |||
| Photochemical Reflectance Index | PRI = (R531 − R570) / ( R531 + R570) | [12,13,14] |
| Structure Intensive Pigment Index | SIPI = (R800 − R445) / ( R800 + R680) | [14] |
| Normalized Pigments Reflectance Index | NPCI = (R680 − R430) / (R680 + R430) | [14] |
| Plant Senescence Reflectance Index | PSRI = (R680 − R500) / R750 | [21,27] |
Water indices: | |||
| Normalized Difference Water Index R1241 | NDWI_1241 = (R857 − R1241) / ( R857 + R1241) | [15] |
| Normalized Difference Water Index R1640 | NDWI_1640 = (R857 − R1640) / ( R857 + R1640) | [18] |
| Normalized Difference Water Index R2130 | NDWI_2130 = (R857 − R2130) / ( R857 + R2130) | [18] |
| Water Band Index | WBI = R900 / R970 | [28,29] |
| Three-band ratio 975 | RATIO_975 = 2∑(R960:R990) / (∑(R920:R940) + ∑(R1090:R1110)) | [30] |
| Three-band ratio 1200 | RATIO_1200 = 2∑(R1180:R1220) / (∑(R1090:R1110) + ∑(R1265:R1285)) | [30] |
| Moisture Stress Index | MSI = R1599 / R819 | [16,31] |
| Normalized Difference Infrared Index | NDII = (R819 − R1649) / ( R819 + R1649) | [32,33] |
| Normalized Water Index 1 | NWI1 = (R970 − R900) / (R970 + R900) | [23] |
| Normalized Water Index 2 | NWI1 = (R970 − R850) / (R970+R850) | [23] |
2. Experimental Design
2.1. Study Site and Experimental Setup
Spring Barley | |||||||||||||||
seeding | first emergence | flowering | beginning of experiment | end of experiment | |||||||||||
March | April | May | June | July | |||||||||||
seeding | first emergence | 4–6 leaves unrolled | beginning of experiment | end of experiment | |||||||||||
Sugar Beet |
2.2. Instrumentation and Measurements
3. Results
3.1. Dynamics of Plant Spectral and Biological Properties
3.2. Dimensionality of the Spectral Data
Linear Methods:
Non-linear Methods:
Intrinsic dimensionality d of the datasets | ||
---|---|---|
Methods/Dataset | all spectral bands (N = 2,151) | spectral indices (N = 28) |
CorrDim | 1.03 | 1.58 |
NNDim | 0.18 | 0.28 |
MaxLike | 8.08 | 4.82 |
PackNum | 0.00 | 0.00 |
GMST | 5.96 | 3.69 |
PCA* | 4.00 | 3.00 |
3.3. Retrieval of LAI and Soil Moisture by Linear Regression
Univariate Linear Regression | Multivariate Linear Regression (3 variables) | ||||
R2 (rmse) | SI | R2 (rmse) | SI | ||
WC [Vol.%] | both crops | 0.43 (8.45) | MSI | 0.49 (8.01) | RG, PSRI, MSI |
only barley | 0.57 (7.14) | NWI_2 | 0.65 (6.43) | mNDVI_705, PRI, NWI_1 | |
only sugar | 0.60 (7.32) | NDVI_a | 0.65 (6.82) | RG, PSRI, MSI | |
LAI [m²m−2] | both crops | 0.20 (1.40) | mSR_705 | 0.57 (1.03) | GNDVI, PRI, NDWI_2130 |
only barley | 0.42 (1.40) | GNDVI | 0.67 (1.06) | GNDVI, PRI, NDWI_2130 | |
only sugar | 0.27 (0.55) | MSR | 0.33 (0.53) | RNDVI, PSRI, NWI_2 |
3.4. Retrieval of LAI and Soil Moisture by Non-Linear Regression Trees
Mulitple Linear Regression | CART | ||
R2 (rmse) | R2 (rmse) | ||
WC [Vol.%] | both crops | 0.48 (8.08) | 0.42 (8.59) |
only barley | 0.63 (6.59) | 0.43 (8.25) | |
only sugar | 0.64 (6.94) | 0.61 (7.17) | |
LAI [m²m−2] | both crops | 0.55 (1.05) | 0.59 (1.01) |
only barley | 0.65 (1.08) | 0.58 (1.20) | |
only sugar | 0.30 (0.54) | 0.18 (0.59) |
4. Summary and Conclusions
Note
Acknowledgements
Appendix
Non-linear methods for dimensionality estimation:
References
- Albertson, J.D.; Katul, G.G.; Wiberg, P. Relative importance of local and regional controls on coupled water, carbon, and energy fluxes. Adv. Water Resour. 2001, 24, 1103–1118. [Google Scholar] [CrossRef]
- Schmugge, T.J.; Kustas, W.P.; Ritchie, J.C.; Jackson, T.J.; Rango, A. Remote sensing in hydrology. Adv. Water Resour. 2002, 25, 1367–1385. [Google Scholar] [CrossRef]
- Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Asner, G.P.; Wessman, C.A.; Schimel, D.S.; Archer, S. Variability in leaf and litter optical properties: Implications for BRDF model inversions using AVHRR, MODIS, and MISR. Remote Sens. Environ. 1998, 63, 243–257. [Google Scholar] [CrossRef]
- Goward, S.N.; Cruickshanks, G.D.; Hope, A.S. Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape. Remote Sens. Environ. 1985, 18, 137–146. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Save, R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Gamon, J.A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 1995, 131, 291–296. [Google Scholar] [CrossRef]
- Yuan, W.P.; Liu, S.; Zhou, G.S.; Zhou, G.Y.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, A.H.; Goulden, M.L.; Hollinger, D.Y.; Hu, Y.; Law, B.E.; Stoy, P.C.; Vesala, T.; Wofsy, S.C. Other AmeriFlux Collaborators Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteorol. 2007, 143, 189–207. [Google Scholar] [CrossRef]
- Deering, D.W.; Rouse, J.W.; Haas, R.H.; Schell, J.A. Measuring “forage production” of grazing units from Landsat MSS data. In Proceeding of International Symposium on Remote Sensing of Environment, Ann Arbor, CA, USA, October 1975; pp. 1169–1178.
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceeding of Goddard Space Flight Center 3rd ERTS-1 Symposium, Washinton, DC, USA; 1974. No. SP-351 I. pp. 309–317. [Google Scholar]
- Gamon, J.A.; Field, C.B.; Bilger, W.; Bjorkman, O.; Fredeen, A.L.; Penuelas, J. Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 1990, 85, 1–7. [Google Scholar] [CrossRef]
- Gamon, J.A.; Penuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Penuelas, J.; Llusia, J.; Pinol, J.; Filella, I. Photochemical reflectance index and leaf photosynthetic radiation-use-efficiency assessment in Mediterranean trees. Int. J. Remote Sens. 1997, 18, 2863–2868. [Google Scholar] [CrossRef]
- Penuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indexes associated with physiological changes in nitrogen-limited and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Hunt, E.R.; Rock, B.N. Detection of changes in leaf water-content using near-infrared and middle-infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar]
- Penuelas, J.; Filella, I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 1998, 3, 151–156. [Google Scholar] [CrossRef]
- Chen, D.Y.; Huang, J.F.; Jackson, T.J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens. Environ. 2005, 98, 225–236. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Datt, B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation. Crop Sci. 2006, 46, 578–588. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Rem. Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Aparicio, N.; Villegas, D.; Casadesus, J.; Araus, J.L.; Royo, C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agronom. J. 2000, 92, 83–91. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semiempirical indexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Penuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance water index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Pu, R.; Ge, S.; Kelly, N.M.; Gong, P. Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves. Int. J. Remote Sens. 2003, 24, 1799–1810. [Google Scholar] [CrossRef]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.-M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Hardisky, M.A.; Klemas, V.; Smart, R.M. The influence of soil-salinity, growth form, and leaf moisture on the spectral radiance of Spartina-Alterniflora canopies. Photogramm. Eng. Rem. Sens. 1983, 49, 77–83. [Google Scholar]
- Jackson, T.J.; Chen, D.Y.; Cosh, M.; Li, F.Q.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- Bonan, G.B. Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sens. Environ. 1993, 43, 303–314. [Google Scholar] [CrossRef]
- Bonan, G.B. Land-Atmosphere interactions for climate system Models: Coupling biophysical, biogeochemical, and ecosystem dynamical processes. Remote Sens. Environ. 1995, 51, 57–73. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Panciera, R.; Walker, J.P.; Kalma, J.D.; Kim, E.J.; Saleh, K.; Wigneron, J.-P. Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval algorithm. Remote Sens. Environ. 2009, 113, 435–444. [Google Scholar] [CrossRef]
- Saleh, K.; Kerr, Y.H.; Richaume, P.; Escorihuela, M.J.; Panciera, R.; Delwart, S.; Boulet, G.; Maisongrande, P.; Walker, J.P.; Wursteisen, P.; Wigneron, J.P. Soil moisture retrievals at L-band using a two-step inversion approach (COSMOS/NAFE’05 Experiment). Remote Sens. Environ. 2009, 113, 1304–1312. [Google Scholar] [CrossRef] [Green Version]
- Grant, J.P.; de Griend, A.A.V.; Wigneron, J.P.; Saleh, K.; Panciera, R.; Walker, J.P. Influence of forest cover fraction on L-band soil moisture retrievals from heterogeneous pixels using multi-angular observations. Remote Sens. Environ. 2010, 114, 1026–1037. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F.; Andrieu, B.; Danson, F.M.; Jaggard, K. Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sens. Environ. 1995, 52, 163–172. [Google Scholar] [CrossRef]
- Leifeld, J.; Franko, U.; Schulz, E. Thermal stability responses of soil organic matter to long-term fertilization practices. Biogeosci. 2006, 3, 371–374. [Google Scholar] [CrossRef]
- Schaecke, W.; Tanneberg, H.; Schilling, G. Behavior of heavy metals from sewage sludge in a Chernozem of the dry belt in Saxony-Anhalt/Germany. J. Plant Nutr. Soil Sci. 2002, 165, 609–617. [Google Scholar] [CrossRef]
- Embacher, A.; Zsolnay, A.; Gattinger, J.; Munch, J.C. The dynamics of water extractable organic matter (WEOM) in common arable topsoils: I. Quantity, quality and function over a three year period. Geoderma 2007, 139, 11–22. [Google Scholar] [CrossRef]
- Castro-Esau, K.L.; Sanchez-Azofeifa, G.A.; Rivard, B. Comparison of spectral indices obtained using multiple spectroradiometers. Remote Sens. Environ. 2006, 103, 276–288. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F.; Hanocq, J.F. Modeling spectral and bidirectional soil reflectance. Remote Sens. Environ. 1993, 41, 123–132. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Grossman, Y.L.; Ustin, S.L.; Jacquemoud, S.; Sanderson, E.W.; Schmuck, G.; Verdebout, J. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sens. Environ. 1996, 56, 182–193. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Van der Meer, B. Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens. Environ. 2004, 91, 354–376. [Google Scholar] [CrossRef]
- Tenenbaum, J.B. Mapping a manifold of perceptual observations; Massachusetts Institute of Technology: Cambrige, MA, USA, 1998. [Google Scholar]
- Tenenbaum, J.B.; de Silva, V.; Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290, 2319–2323. [Google Scholar] [CrossRef] [PubMed]
- Van der Maaten, L.J.P. An Introduction to Dimensionality Reduction Using Matlab; TiCC, Tilburg University: Tilburg, The Netherlands, 2007. [Google Scholar]
- Van der Maaten, L.J.P. Drtoolbox—Matlab Toolbox for Dimensionality Reduction, 0.7b; TiCC, Tilburg University: Tilburg, The Netherlands, 2008. [Google Scholar]
- Van der Maaten, L.J.P.; Postma, E.O.; Herik van den, H.J. Dimensionality Reduction: A Comparative Review; TiCC, Tilburg University: Tilburg, The Netherlands, 2008. [Google Scholar]
- Kriesel, D. A Brief Introduction to Neural Networks. Available online: http://www.dkriesel.com/en/science/neural_networks (accessed on 10 May 2010).
- Baldwin, J.F. Fuzzy logic and fuzzy reasoning. In Fuzzy Reasoning and Its Applications; Mamdani, E.H., Gaines, B.R., Eds.; Academic Press: London, UK, 1981. [Google Scholar]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines (and Other Kernel-Based Learning Methods); Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Drmota, M. Random Trees: An Interplay between Combinatorics and Probability; Springer Wien New York: New York, NY, USA, 2009. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth, Inc.: Monterey, CA, USA, 1984. [Google Scholar]
- Jacquemoud, S. Inversion of the Prospect+Sail canopy reflectance model from Aviris equivalent spectra theoretical study. Remote Sens. Environ. 1993, 44, 281–292. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Borzuchowski, J.; Schulz, K. Retrieval of Leaf Area Index (LAI) and Soil Water Content (WC) Using Hyperspectral Remote Sensing under Controlled Glass House Conditions for Spring Barley and Sugar Beet. Remote Sens. 2010, 2, 1702-1721. https://doi.org/10.3390/rs2071702
Borzuchowski J, Schulz K. Retrieval of Leaf Area Index (LAI) and Soil Water Content (WC) Using Hyperspectral Remote Sensing under Controlled Glass House Conditions for Spring Barley and Sugar Beet. Remote Sensing. 2010; 2(7):1702-1721. https://doi.org/10.3390/rs2071702
Chicago/Turabian StyleBorzuchowski, Jaromir, and Karsten Schulz. 2010. "Retrieval of Leaf Area Index (LAI) and Soil Water Content (WC) Using Hyperspectral Remote Sensing under Controlled Glass House Conditions for Spring Barley and Sugar Beet" Remote Sensing 2, no. 7: 1702-1721. https://doi.org/10.3390/rs2071702
APA StyleBorzuchowski, J., & Schulz, K. (2010). Retrieval of Leaf Area Index (LAI) and Soil Water Content (WC) Using Hyperspectral Remote Sensing under Controlled Glass House Conditions for Spring Barley and Sugar Beet. Remote Sensing, 2(7), 1702-1721. https://doi.org/10.3390/rs2071702