Analysis of Vegetation Behavior in a North African Semi-Arid Region, Using SPOT-VEGETATION NDVI Data
Abstract
:1. Introduction
- -
- Drought indices based on precipitation measurements (e.g., Palmer Drought Severity Index (PDSI; [4]), rainfall anomaly index (RAI; [5]), deciles [6], crop moisture index (CMI; [7]), Bhalme and Mooly drought index (BMDI; [8]), surface water supply index (SWSI; [9]), national rainfall index (NRI; [10]), standardized precipitation index (SPI; [11,12]), and reclamation drought index (RDI; [13]). The PDSI is one of the most prominent indices used for meteorological drought, and can quantify long-term changes in aridity over global land masses [14]. It incorporates prior precipitation, moisture supply, and moisture demand into a hydrological accounting system. A multi-scalar drought index based on precipitation and evapotranspiration, called the Standard Precipitation and Evapotranspiration Index, has also been proposed by Vicento Serrano et al. (SPEI) [15].
- -
- Drought indices based on soil moisture estimations (e.g., soil moisture drought index (SMDI; [16])
- -
- Drought indices based on optical satellite observations. In recent decades, optical remote sensing has demonstrated its strong potential for the monitoring of vegetation dynamics and its variations over time, mainly because it provides a wide spatial coverage and its internal data sets are consistent. In particular, the Normalized Difference Vegetation Index (NDVI) is an equation of contrasting reflectance between the red and near-infrared regions of a surface spectrum [17]. This equation is a readily usable quantity that can be related to the green vegetation cover or vegetation abundance, and is expressed by: NDVI = (RNIR − RRED)/(RNIR + RRED), where RNIR is the near-infrared (NIR) reflectance and RRED is the red reflectance. This index is sensitive to the presence of green vegetation [18]. It has been used for several regional and global applications, in studies concerning the distribution and potential photosynthetic activity of vegetation [19,20,21,22,23,24]. Due to its formulation, it robustly describes green vegetation in spite of varying atmospheric conditions in the red and NIR bands [25,26]. This index is also considered to be a reliable indicator for land cover variations [27,28,29,30], since its temporal variations are strongly related to changes in the earth’s surface conditions. The NDVI is related to the photosynthetic activity of green vegetation [17], and a high NDVI indicates a strong level of photosynthetic activity [31]. Various drought studies have been proposed, using this type of index. The Vegetation Condition Index (VCI) proposed by Kogan [32] is defined by:
2. Study Area and Data Pre-Processing
2.1. Study Area
2.2. NDVI Data
2.3. Precipitation Data
3. Methodology
3.1. Analysis of Persistent Behavior: Method
3.2. Development of a Vegetation Anomaly Index (VAI)
4. Results and Discussions
4.1. NDVI Temporal Series
4.2. Application of Persistence Analysis to Various Types of Vegetation
4.2.1. Pastoral Cover
4.2.2. Annual Agricultural Cover
4.2.3. Non Irrigated Olive Grove
4.3. Evaluation of the VAI
4.3.1. Correlation of the VAI with Precipitation
4.3.2. Comparison between the VAI and VCI Indices
Annual Agriculture | Pastures | Olives | |
---|---|---|---|
Month | Correlation Coefficient R2 | ||
September | 0.006 | 0.238 | 0.032 |
October | 0.131 | 0.678 | 0.218 |
November | 0.035 | 0.245 | 0.004 |
December | 0.349 | 0.185 | 0.084 |
January | 0.444 | 0.497 | 0.020 |
February | 0.326 | 0.119 | 0.000 |
March | 0.681 | 0.572 | 0.028 |
April | 0.573 | 0.544 | 0.115 |
May | 0.333 | 0.222 | 0.013 |
June | 0.078 | 0.054 | 0.011 |
July | 0.105 | 0.126 | 0.032 |
August | 0.115 | 0.019 | 0.004 |
4.3.3. Comparison between the VAI and DEV.NDVI Indices
4.4. VAI Applications
4.4.1. Application of the VAI to Pasture Cover
4.4.2. Application of VAI over Annual Agriculture Cover
4.4.3. Application of the VAI to Olive Tree Land Cover
4.4.4. Analysis of VAI Indices for the Driest and Wettest Years
5. Conclusions
Acknowledgments
References
- Lambin, E.F.; Ehrlich, D. The surface temperature-vegetation index space for land cover and land-cover change analysis. Int. J. Remote Sens. 1996, 17, 463–487. [Google Scholar] [CrossRef]
- Duchemin, B.; Hadria, R.; Erraki, S.; Boulet, G.; Maisongrande, P.; Chehbouni, A.; Escadafal, R.; Ezzahar, J.; Hoedjes, C.B.; Kharrou, M.H.; Khabba, S.; Mougenot, B.; Olioso, A.; Rodriguez, J.C.; Simonneaux, V. Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agr. Water Manage. 2005, 79, 1–27. [Google Scholar] [CrossRef]
- Downing, T.E.; Bakker, K. Drought discourse and vulnerability. In Drought: A Global Assessment; Wilhite, D.A., Ed.; Natural Hazards and Disasters Series; Routledge: London, UK, 2000. [Google Scholar]
- Palmer, W.C. Meteorologic Drought; US Department of Commerce, Weather Bureau, Research Paper; 1965; p. 58. [Google Scholar]
- Van Rooy, M.P. A rainfall anomaly index independent of time and space. Notos 1965, 14, 43. [Google Scholar]
- Gibbs, W.J.; Maher, J.V. Rainfall Deciles as Drought Indicators; Bureau of Meteorology Bull. 48; Commonwealth of Australia: Melbourne, Australia, 1967. [Google Scholar]
- Palmer, W.C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- Bhalme, H.N.; Mooley, D.A. Large-scale droughts/floods and monsoon circulation. Mon. Weather Rev. 1980, 108, 1197–1211. [Google Scholar] [CrossRef]
- Shafer, B.A.; Dezman, L.E. Development of a Surface Water Supply Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff Areas. In Proceedings of Western Snow Conference, Reno, NV, USA, 19–23 April 1982; pp. 164–175.
- Gommes, R.; Petrassi, F. Rainfall Variability and Drought in Sub-Saharan Africa since 1960; Agro-meteorology Series 9; Food and Agriculture Organization: Rome, Italy, 1994. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184.
- McKee, T.B.; Doesken, N.J.; Kleist, J. Drought Monitoring with Multiple Time Scales. In Proceedings of 9th Conference on Applied Climatology, Dallas, TX, USA, 15–20 January 1995.
- Weghorst, K.M. The Reclamation Drought Index: Guidelines and Practical Applications; Bureau of Reclamation: Denver, CO, USA, 1996; p. 6. [Google Scholar]
- Palmer, W.C. Meteorological Drought; Research Paper No. 45; US Weather Bureau: Washington, DC, USA, 1965; p. 58. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index—SPEI. J. Climate. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Meyer, S.J.; Hubbard, K.G. Extending the Crop-specific Drought Index to Soybean. In Proceedings of 9th Conference on Applied Climatology, Dallas, TX, USA, 15–20 January 1995; pp. 258–259.
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. In Progress Report RSC 1978-1; Remote Sensing Center, Texas A&M University: College Station, TX, USA, 1974. [Google Scholar]
- Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [Google Scholar] [CrossRef]
- Deblonde, G.; Cihlar, J. A multiyear analysis of the relationship between surface environmental variables and NDVI over the Canadian landmass. Remote Sensing Rev. 1993, 7, 151–177. [Google Scholar] [CrossRef]
- Myneni, R.B.; Los, S.O.; Asrar, G. Potential gross primary productivity of terrestrial vegetation from 1982 to 1990. Geophyis. Res. Lett. 1995, 22, 2617–2620. [Google Scholar] [CrossRef]
- Prince, S.D.; Tucker, C.J. Satellite remote sensing of rangelands in Botswana: II. NOAA AVHRR and herbaceous vegetation. Int. J. Remote Sens. 1986, 7, 1555–1570. [Google Scholar] [CrossRef]
- Salah Er-Raki, S.; Chehbouni, A.; Duchemin, B. Combining satellite remote sensing data with the FAO-56 dual approach for water use mapping in irrigated wheat fields of a semi-arid region. Remote Sens. 2010, 2, 375–387. [Google Scholar] [CrossRef]
- Laurila, H.; Karjalainen, M.; Kleemola, J.; Hyyppä, J. Cereal yield modeling in Finland using optical and radar remote sensing. Remote Sens. 2010, 2, 2185–2239. [Google Scholar] [CrossRef]
- Propastin, P.; Kappas, M. Modeling net ecosystem exchange for grassland in Central Kazakhstan by combining remote sensing and field data. Remote Sens. 2009, 1, 159–183. [Google Scholar] [CrossRef]
- Fraser, R.S.; Kaufman, Y.J. The relative importance of scattering and absorption in remote sensing. IEEE Trans. Geosci. Remote Sens. 1985, 23, 625–633. [Google Scholar] [CrossRef]
- Holben, B.N.; Kaufaman, Y.J.; Kendall, J.D. NOAA-11 AVHRR visible and near-IR inflight calibration. Int. J. Remote Sens. 1990, 11, 1511–1519. [Google Scholar] [CrossRef]
- Cuomo, V.; Lanfredi, M.; Lasaponara, R.; Macchiato, M.; Simoniello, T. Detection of interannual variation of vegetation in middle and southern Italy during 1985–99 with 1 km NOAA AVHRR NDVI data. J. Geophys. Res. 2001, 106, 17863–17876. [Google Scholar] [CrossRef]
- Huemmrich, K.E.; Black, T.A.; Jarvis, P.G.; McCaughey, J.H.; Hall, E.G. Remote sensing of carbon/water/energy parameters—High temporal resolution NDVI phenology from micrometeorological radiation sensors. J. Geophys. Res. 1999, 104, 27935–27944. [Google Scholar] [CrossRef]
- Lanfredi, M.; Simoniello, T.; Macchiato, M. Temporal persistence in vegetation cover changes observed from satellite: Development of an estimation procedure in the test site of the Mediterranean Italy. Remote Sens. Environ. 2004, 93, 565–576. [Google Scholar] [CrossRef]
- Myneni, R.B.; Los, S.O.; Tucker, C.J. Satellite-based identification of linked vegetation index and sea surface temperature anomaly areas from 1982 to 1990 for Africa, Australia and South America. Geophys. Res. Lett. 1996, 23, 729–732. [Google Scholar] [CrossRef]
- Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Seiler, R.A.; Kogan, F.; Wei, G. Monitoring weather impact and crop yield from NOAA AVHRR data in Argentina. Adv. Space Res. 2000, 26, 1177–1185. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.J.; Eastman, J.R. NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. Int. J. Remote Sens. 2001, 22, 1847–1859. [Google Scholar]
- Wang, J.; Price, K.P.; Rich, P.M. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. Int. J. Remote Sens. 2001, 22, 3827–3844. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003, 87, 85–89. [Google Scholar] [CrossRef]
- Singh, R.P.; Roy, S.; Kogan, F.N. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens. 2003, 24, 4393–4402. [Google Scholar] [CrossRef]
- Quiring, S.M.; Ganesh, S. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agric. Forest Meteorol. 2010, 150, 330–339. [Google Scholar] [CrossRef]
- Peters, J.; Waltershea, E.A.; Ji, L.; Vliia, A.; Hayes, M.; Svoboda, M.D.; Nir, R. Drought monitoring with NDVI-based Standardized Vegetation Index. Photogramm. Eng. Remote Sensing. 2002, 68, 71–75. [Google Scholar]
- Gouveia, C.; Trigo, R.M.; DaCamara, C.C.; Libonati, R.; Pereira, J.M.C. The North Atlantic oscillation and European vegetation dynamics. Int. J. Clim. 2008, 28, 1835–1847. [Google Scholar] [CrossRef]
- Gouveia, C.; Trigo, R.M.; DaCamara, C.C. Drought and vegetation stress monitoring in Portugal using satellite data. Nat. Hazards Earth Syst. Sci. 2009, 9, 185–195. [Google Scholar] [CrossRef]
- Trigo, R.M.; Gouveia, C.M.; Barriopedro, D. The intense 2007–2009 drought in the Fertile Crescent: Impacts and associated atmospheric circulation. Agric. Forest Meteorol. 2010, 150, 1245–1257. [Google Scholar] [CrossRef]
- Bhuiyan, C.; Kogan, F.N. Monsoon dynamics and vegetative drought patterns in the Luni basin under rain-shadow zone. Int. J. Remote Sens. 2010, 31, 3223–3242. [Google Scholar] [CrossRef]
- Telesca, L.; Lasaponara, R. Quantifying intra-annual persistent behaviour in SPOT-VEGETATION NDVI data for Mediterranean ecosystems of southern Italy. Remote Sens. Environ. 2005, 101, 95–103. [Google Scholar] [CrossRef]
- Martínez, B.; Gilabert, M.A. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sens. Environ. 2008, 113, 1823–1842. [Google Scholar] [CrossRef]
- Lacombe, G.; Cappelaere, B.; Leduc, C. Hydrological impact of water and soil conservation works in the Merguellil catchment of central Tunisia. J. Hydrol. 2008, 359, 210–224. [Google Scholar] [CrossRef]
- Zribi, M.; Chahbi, A.; Shabou, M.; Lili-Chabaane, Z.; Duchemin, B.; Baghdadi, N.; Amri, R.; Chehbouni, A. Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation. Hydrol. Earth Syst. Sci. 2011, 15, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N. Characteristics of maximum-values composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Rahman, H.; Dedieu, G. SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int. J. Remote Sens. 1994, 15, 123–143. [Google Scholar] [CrossRef]
- Maisongrande, P.; Duchemin, B.; Dedieu, G. VEGETATION/SPOT—An operational mission for the earth monitoring—Presentation of new standard products. Int. J. Remote Sens. 2004, 25, 9–14. [Google Scholar] [CrossRef]
- Sylvander, S.; Albert-Grousset, I.; Henry, P. VEGETATION Geometrical Image Quality. In Proceedings of the VEGETATION 2000 Conference, Belgirate, Italy, 3–6 April 2000; pp. 33–34.
- Kempeneers, P.; Lissens, G.; Fierens, F.; Van Rensbergen, J. Detection of Clouds and Cloud-Shadows for VEGETATION Images. In Proceedings of VEGETATION 2000 Symposium, Maggiore, Italy, 3–6 April 2000.
- SPOT Vegetation User’s Guide. 2008. Available online: http: //www.spot-vegetation.com/vegetationprogramme/Pages/TheVegetationSystem/userguide/userguide.html (accessed on 18 November 2011).
- Gobron, N.; Pinty, B.; Verstraete, M.M.; Widlowski, J.-L. Advanced vegetation indices optimized for up-coming sensors: Design, performance and applications. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2489–2505. [Google Scholar]
- Shepard, D. A Two Dimensional Interpolation Function for Regularly Spaced Data. In Proceedings of National Conference of the Association for Computing Machinery, Princeton, NJ, USA, 1968; pp. 517–524.
- Feder, J. Fractals; Plenum Press: New York, NY, USA, 1988. [Google Scholar]
- Mandelbrot, B.B. Les Objets Fractals; Champs: Flammarion, Paris, France, 1995. [Google Scholar]
- Menenti, M.; Azzali, S.; de Vries, A.; Fuller, D.; Prince, S. Vegetation Monitoring in Southern Africa Using Temporal Fourrier Analysis of AVHRR/NDVI Observations. In Proceedings of International Symposium on Remote Sensing in Arid and Semi-arid Regions, Lanzhou, China, August 1993; pp. 287–294.
- Havlin, S.; Amaral, L.A.N.; Ashkenazy, Y.; Golberger, A.L.; Ivanov, P.C.; Peng, C.-K.; Stanley, H.E. Application of statistical physics to heartbeat diagnosis. Physica. A 1999, 274, 99–110. [Google Scholar] [CrossRef]
- Yang, W.; Yang, L.; Merchant, J.W. An assessment of AVHRR/ NDVI-ecoclimatological relations in Nebraska, USA. Int. J. Remote Sens. 1997, 18, 2161–2180. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal response of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens. 2003, 24, 2345–3364. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Amri, R.; Zribi, M.; Lili-Chabaane, Z.; Duchemin, B.; Gruhier, C.; Chehbouni, A. Analysis of Vegetation Behavior in a North African Semi-Arid Region, Using SPOT-VEGETATION NDVI Data. Remote Sens. 2011, 3, 2568-2590. https://doi.org/10.3390/rs3122568
Amri R, Zribi M, Lili-Chabaane Z, Duchemin B, Gruhier C, Chehbouni A. Analysis of Vegetation Behavior in a North African Semi-Arid Region, Using SPOT-VEGETATION NDVI Data. Remote Sensing. 2011; 3(12):2568-2590. https://doi.org/10.3390/rs3122568
Chicago/Turabian StyleAmri, Rim, Mehrez Zribi, Zohra Lili-Chabaane, Benoit Duchemin, Claire Gruhier, and Abdelghani Chehbouni. 2011. "Analysis of Vegetation Behavior in a North African Semi-Arid Region, Using SPOT-VEGETATION NDVI Data" Remote Sensing 3, no. 12: 2568-2590. https://doi.org/10.3390/rs3122568
APA StyleAmri, R., Zribi, M., Lili-Chabaane, Z., Duchemin, B., Gruhier, C., & Chehbouni, A. (2011). Analysis of Vegetation Behavior in a North African Semi-Arid Region, Using SPOT-VEGETATION NDVI Data. Remote Sensing, 3(12), 2568-2590. https://doi.org/10.3390/rs3122568