Pan-Arctic Land Surface Temperature from MODIS and AATSR: Product Development and Intercomparison
Abstract
:1. Introduction
2. Accuracy of Retrieved LST from MODIS
3. Accuracy of Retrieved LST from AATSR
4. Data and Methods
4.1. Pan-Arctic LST Products Development
4.2. Quality Assessment of the UW-L3 25-km Pan-Arctic Products
4.3. Estimating Bias Introduced by Considering only Clear-Sky Observations
4.4. Statistical Estimation of Bias
5. Results and Discussion
5.1. UW-L3 Products
5.2. Temporal Structure of the Bias
5.3. The Bias towards Clear-Sky Observations
5.4. Spatial Structure of the Bias
5.4.1. Bias between Sensors
5.4.2. Bias between Different Datasets
6. Conclusions
- The impact of the improvement in the upcoming MODIS Collection 6 LST products in relation to the identified artifact at 60 degrees North need to be quantified and compared to current products from Collection 5.
- The bias between UW-L3 LST products at 1-km and ground-based station measurements of both near-surface air temperature and radiometric LST measurements is unknown. Further studies are needed to quantify the magnitude and various sources of uncertainty of the 1-km products.
- The quality of cloud masks used in L2 MODIS and AATSR LST products is a topic that merits further investigation. The influence of polar darkness and snow cover on the quality of the operational cloud mask needs to be studied and more robust algorithms need to be developed.
- Further studies are needed to assess the performance of operational split window algorithms for both AATSR and MODIS at high latitudes during the Arctic winter.
Acknowledgments
References
- Coll, C.; Hook, S.J.; Galve, J.M. Land surface temperature from the Advanced Along-Track Scanning Radiometer: Validation over inland waters and vegetated surfaces. IEEE Trans. Geosci. Remote Sens 2009, 47, 350–360. [Google Scholar]
- Neteler, M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens 2010, 2, 333–351. [Google Scholar]
- Prata, A.J. Land Surface Temperature Measurement from Space: Global Surface Temperature Simulations for the AATSR; ESA-CSIRO Atmospheric Research: Aspendale, VIC, Australia, 2002. [Google Scholar]
- Sobrino, J.A.; Sòria, G.; Jiménez-Muñoz, J.C.; Franch, B.; Hidalgoand, V.; Noyes, E. AATSR Derived Land Surface Temperature over a Heterogeneous Region. Proceedings of ENVISAT Symposium 2007, Montreux, Switzerland, 23–27 April 2007. ESA SP-636(CD-ROM)..
- Duguay, C.; Hachem, S.; Soliman, A. The DUE Permafrost Project—Land Surface Temperature Products: Overview and Cross-Comparison between MODIS and AATSR. Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010.
- Jin, M.L.; Dickinson, R.E. New observational evidence for global warming from satellite. Geophys. Res. Lett 2002, 29, 1400. [Google Scholar]
- Comiso, J.C. Warming trends in the Arctic from clear sky satellite observations. J. Climate 2003, 16, 3498–3510. [Google Scholar]
- Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, A.; Huntington, H.P.; et al. Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Climatic Change 2005, 72, 251–298. [Google Scholar]
- IPCC Core Writing Team. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In IPCC Fourth Assessment Report: Climate Change 2007 (AR4); Pachauri, RK, Reisinger, A, Eds.; IPCC; Geneva, Switzerland, 2007. [Google Scholar]
- Wan, Z.; Dozier, J.A. Generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens 1996, 34, 892–905. [Google Scholar]
- Hachem, S.; Allard, M.; Duguay, C. Using the MODIS land surface temperature product for mapping permafrost: an application to northern Québec and Labrador, Canada. Permafrost Periglac 2009, 20, 407–416. [Google Scholar]
- Hachem, S.; Duguay, C.R.; Allard, M. Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. Cryosphere 2012, 6, 51–69. [Google Scholar] [Green Version]
- Marchenko, S.; Hachem, S.; Romanovsky, V.; Duguay, C. Permafrost and active layer modeling in the Northern Eurasia using MODIS Land Surface Temperature as an input data. Geophys. Res. Abstr. 2009, 11, EGU2009–EGU11077. [Google Scholar]
- Edwards, J.M. Simulation of land surface temperatures: comparison of two climate models and satellite retrievals. Geosci. Model Dev 2009, 2, 123–136. [Google Scholar]
- Jiménez, M.A.; Mira, A.; Cuxart, J.; Luque, A.; Alonso, S.; Guijarro, J.A. Verification of a clear-sky mesoscale simulation using satellite-derived surface temperatures. Mon. Weather Rev 2008, 136, 5148–5161. [Google Scholar]
- New, M.; Hulme, M.; Jones, P.D. Representing twentieth century space–Time climate variability. Part 1: Development of a 1961–90 mean monthly terrestrial climatology. J. Clim 1999, 12, 829–856. [Google Scholar]
- EarthTemp Network. Available online: http://www.earthtemp.net (accessed on 9 July 2012).
- Bartsch, A.; Wiesmann, A.; Strozzi, T.; Schmullius, C.; Hese, S.; Duguay, C.; Heim, B.; Seiffert, F.M. Implementation of a Satellite Data Based Permafrost Information System—The DUE PERMAFROST Project. Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010. SP-686(CD-ROM)..
- Duguay, C.R.; Zhang, T.; Leverington, D.W.; Romanovsky, V.E. Remote Sensing of Permafrost and Seasonally Frozen Ground. Duguay, C.R., Pietroniro, A., Eds.; Washington, DC, USA, 2005; pp. 91–118. [Google Scholar]
- Heim, B.; Opel, T.; Bartsch, A. European Space Agency (ESA) Data User Element (DUE) Permafrost Documentation-Requirements Baseline Document; ESA: Vienna, Austria, 2009. [Google Scholar]
- Sòria, G.; Sobrino, J.A. ENVISAT/AATSR derived Land Surface Temperature over a heterogeneous region. Remote Sens. Environ 2007, 111, 409–422. [Google Scholar]
- Noyes, E.J.; Sòria, G.; Sobrino, J.A.; Remedios, J.J.; Llewellyn-Jones, D.T.; Corlett, G.K. AATSR land surface temperature product algorithm verification over a WATERMED site. Adv. Space Res 2007, 39, 171–178. [Google Scholar]
- Coll, C.; Caselles, V.; Galve, J.M.; Valor, E.; Niclòs, R.; Sánchez, J.M.; Rivas, Raul. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sens. Environ 2005, 97, 288–300. [Google Scholar]
- Langer, M.; Westermann, S.; Boike, J. Spatial and temporal variations of summer surface temperatures of wet polygonal tundra in Siberia—Implications for MODIS LST based permafrost monitoring. Remote Sens. Environ 2010, 114, 2059–2069. [Google Scholar]
- Westermann, S.; Langer, M.; Boike, J. Spatial and temporal variations of summer surface temperatures of high-Arctic tundra on Svalbard—Implications for MODIS LST based permafrost monitoring. Remote Sens. Environ 2011, 115, 908–922. [Google Scholar]
- Westermann, S.; Langer, M.; Boike, J. Systematic bias of average winter-time land surface temperatures inferred from MODIS at a site on Svalbard, Norway. Remote Sens. Environ 2012, 118, 162–167. [Google Scholar] [Green Version]
- Duguay, C.; Soliman, A.; Hachem, S.; Saunders, W. Circumpolar and Regional Land Surface Temperature (LST) with Links to Geotiff Images and NetCDF Files; University of Waterloo: Waterloo, ON, Canada, 2012. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.-L. Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens 2004, 25, 261–274. [Google Scholar]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.-L. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ 2002, 83, 163–180. [Google Scholar]
- Snyder, W.; Wan, Z. BRDF models to predict spectral reflectance and emissivity in the thermal infrared. IEEE Trans. Geosci. Remote Sens 1998, 36, 214–225. [Google Scholar]
- Wan, Z. Collection-5 MODIS Land Surface Temperature Products Users’ Guide. ICESS; University of California, Santa Barbara: Santa Barbara, CA, USA, 2007. [Google Scholar]
- Wan, Z. New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens. Environ 2008, 112, 59–74. [Google Scholar]
- Wan, Z.; Li, Z.-L. Radiance-based validation of the V5 MODIS land-surface temperature product. Int. J. Remote Sens 2008, 29, 5373–5395. [Google Scholar]
- Coll, C.; Wan, Z.; Galve, J.M. Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product. J. Geophys. Res 2009, 114, D20102. [Google Scholar]
- European Space Agency. AATSR Product Handbook. Issue 2.2, Chapter 1. Available online: http://envisat.esa.int/handbooks/aatsr/ (accessed on 9 July 2012).
- Dorman, J.L.; Sellers, P.J. A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere model (SiB). J. Appl. Meteorol 1989, 28, 833–855. [Google Scholar]
- Zeller, O.; Prata, F.; Remedios, J. Significant Improvements in the AATSR Land Surface Temperature Algorithm. Proceedings of ESA Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010.
- Noyes, E.; Corlett, G.; Remedios, J.; Kong, X.; Llewellyn-Jones, D. An accuracy assessment of AATSR LST data using empirical and theoretical methods. Proceedings of the ENVISAT Symposium 2007, Montreux, Switzerland, 23–27 April 2007. ESA SP-636.
- Coll, C.; Valor, E.; Galve, J.M.; Mira, M.; Bisquert, M.; García-Santos, V.; Caselles, E.; Caselles, V. Long-term accuracy assessment of land surface temperatures derived from the Advanced Along-Track Scanning Radiometer. Remote Sens. Environ 2012, 116, 211–225. [Google Scholar]
- European Space Agency. MERCI Catalogue and Inventory, ENVISAT MERIS Reduced Resolution Archive. Available online: http://ats-merci-uk.eo.esa.int:8080/merci/welcome.do (accessed on 9 July 2012).
- Land Processes Distributed Active Archive, Data Pool; Available online: https://lpdaac.usgs.gov/lpdaac/get_data/data_pool (accessed on 9 July 2012).
- Luojus, K.; Pulliainen, J.; Takala, M.; Derksen, C.; Rott, H.; Nagler, T.; Solberg, R.; Wiesmann, A.; Metsamaki, S.; Malnes, E.; et al. Investigating the Feasibility of the GlobSnow Snow Water Equivalent Data for Climate Research Purposes. Proceedings of 2010 Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 4851–4853.
- National Snow and Ice Data Center. Ease Grid Data. Available online: http://nsidc.org/data/ease/index.html (accessed on 9 July 2012).
- Bartsch, A. Production and Validation Report. In DUE Permafrost Project; European Space Agency: Paris, Cedex, France, 2011; Issue 1.1, Version 1. [Google Scholar]
- Jiménez, C.; Prigent, C.; Mueller, B.; Seneviratne, S.I.; McCabe, M.F.; Wood, E.F.; Rossow, W.B.; Balsamo, G.; Betts, A.K.; Dirmeyer, P.A.; et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res 2011, 116, D02102. [Google Scholar]
- Mueller, B.; Seneviratne, S.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, J.; Guo, Z.; et al. Evaluation of global observations based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett 2011, 38, L06402. [Google Scholar]
- Jones, L.A.; Ferguson, C.R.; Kimball, J.S.; Zhang, K.; Chan, S.K.; McDonald, K.C. Satellite microwave remote sensing of daily land surface air temperature minima and maxima from AMSR-E. IEEE-JSTARS 2010, 3, 111–123. [Google Scholar]
- Numerical Terradynamic Simulation Group. AMSR-E Land Parameters. Available online: http://ntsg.umt.edu/project/amsrelp#data-product (accessed on 9 July 2012).
- Royer, A.; Poirier, S. Surface temperature spatial and temporal variations in North America from homogenized satellite SMMR-SSM/I microwave measurements and reanalysis for 1979–2008. J. Geophys. Res 2010, 115, D08110. [Google Scholar]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American regional reanalysis. Bull. Amer. Meteor. Soc 2006, 87, 343–360. [Google Scholar]
- Earth System Research Laboratory. NCEP North American Regional Reanalysis (NARR). Available online: http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html (accessed on 9 July 2012).
- Eastman, R.; Warren, S. Interannual variations of arctic cloud types in relation to sea ice. J. Climate 2010, 23, 4216–4232. [Google Scholar]
- Istomina, L.; von Hoyningen-Huene, W.; Kokhanovsky, A.A.; Burrows, J.P. The detection of cloud free snow covered areas using AATSR measurements. Atmos. Meas. Tech 2010, 3, 1–13. [Google Scholar]
- Liu, Y.; Ackerman, S.A.; Maddux, B.C.; Key, J.R.; Frey, R.A. Errors in cloud detection over the Arctic using a satellite imager and implications for observing feedback mechanisms. J. Climate 2010, 23, 1894–1907. [Google Scholar]
- Kogler, C.; Pinnock, S.; Arino, O.; Casadio, S.; Corlett, G; Prata, F; Bras, T. Note on the quality of the (A)ATSR land surface temperature record from 1991 to 2009. Int. J. Remote Sens 2012, 33, 4178–4192. [Google Scholar]
- Detailed Description. Available online: http://landweb.nascom.nasa.gov/cgi-bin/QA_WWW/displayCase.cgi?esdt=MOD11&caseNum=SD_MOD11_10019&caseLocation=cases_data (accessed on 6 July 2012).
- Wan, Z. Personal Communication; June 2012. [Google Scholar]
- MODIS Land, MODIS C6 Processing Plans. Available online: http://modis-land.gsfc.nasa.gov/news.html (accessed on 6 July 2012).
- Pulliainen, J.T.; Grandell, J.; Hallikainen, M.T. Retrieval of surface temperature in boreal forest zone from SSM/I data. IEEE Trans. Geosci. Remote Sens 1997, 35, 1188–1200. [Google Scholar]
- Vincent, R.F.; Marsden, R.F.; Minnett, P.J.; Buckley, J.R. Arctic waters and marginal ice zones: 2 An investigation of Arctic atmospheric infrared absorption for advanced very high resolution radiometer sea surface temperature estimates. J. Geophys. Res 2008, 113, C08044. [Google Scholar]
MODIS Products | Location | Bias [K] | Validation Method | Source |
---|---|---|---|---|
L2 TERRA & AQUA | California & Tibet Plateau | ME < 1 RMSE < 0.7 | Radiative transfer model | [33] |
L2 TERRA | Rice field, Valencia, Spain | ME = −0.29 SD = 0.06 RMSE = 0.67 | Comparison with LST radiometer | [34] |
L2 TERRA | Rice field, Valencia, Spain | ME = 0.24 SD = 0.58 RMSE = 0.63 | Radiative transfer model | [34] |
L2 TERRA & AQUA | Mixed broad leaf forest, Hainich forest, Germany | ME = −0.3 SD = 0.5 RMSE = 0.59 | Radiative transfer model | [34] |
L2 TERRA & AQUA | Wet polygon tundra, Northern Siberia | ME (weekly) Min = −0.5 Max = +2 | Comparison with thermal camera | [24] |
L2 TERRA & AQUA | Variable moisture tundra, Svalbard | ME (weekly) = ±2 | Comparison with thermal camera | [25] |
L2 TERRA & AQUA | Variable moisture tundra, Svalbard | ME = −3 Min = −6 Max = −1.5 | Comparison with LST radiometer | [26] |
L3 TERRA & AQUA | Various land cover types, Northern Quebec and the North Slope of Alaska | Correlation coefficient = 0.97 ME = 1.8 | Comparison with 2-m height air temperature | [12] |
Location | Algorithm | Bias[K] | Validation Method | Source |
---|---|---|---|---|
Homogenous rice field, Valencia, Spain | Operational split window algorithm | ME = 3 | Comparison with LST radiometer | [23] |
Operational algorithm (vegetation fraction corrected) | ME = −0.9 SD = 0.9 | Comparison with LST radiometer | ||
Emissivity dependent retrieval algorithm | ME = 0.3 SD = 0.9 | Comparison with LST radiometer | ||
Mixed land cover (bare soil, wheat crop) | Operational algorithm daytime | ME = −1 SD = 0.07 | Radiative transfer model | [22] |
Marrakech, Morocco | Operational algorithm nighttime | ME = −1.74 SD = 0.02 | Radiative transfer model | |
Mixed land cover, Marrakech, Morocco | Split window with nadir view | 1.1 ≤ RMSE ≤ 1.7 | Comparison with a reconstructed LST image* | [21] |
Split window with forward view | 1.6 ≤ RMSE ≤ 2.4 | Comparison with a reconstructed LST image | ||
Dual angle algorithm channel 11 | 0.6 ≤ RMSE ≤ 1.3 | Comparison with a reconstructed LST image | ||
Dual angle algorithm channel 12 | 0.9 ≤ RMSE ≤ 1.6 | Comparison with a reconstructed LST image | ||
Homogenous rice field, Valencia, Spain | Operational algorithm | ME = 3.5 SD = 0.6 | Comparison with LST radiometer | [34] |
Operational algorithm (Land cover adjusted) | ME = 0.16 SD = 0.51 | Comparison with LST radiometer | ||
Homogenous rice field, Valencia, Spain | Operational split window algorithm | Overestimated +2 to +5 | Long-term accuracy assessment | [39] |
Split window algorithm (land cover corrected) | RMSE = ±0.5 to ±1.1 | Long-term accuracy assessment | ||
Emissivity dependent SW algorithm | RMSE = ±0.4 to ±0.6 | Long-term accuracy assessment |
Sensor | Type | Product | Pixel Size | Temporal Resolution | Reported Accuracy | Advantages | Source |
---|---|---|---|---|---|---|---|
AMSRE 18.7/23.8 Ghz H/V modes | Passive microwave | Near surface temperature (Ta) | 25 km | Daily during snow free period | 1 to 3.5 K | Measuring under clear and cloudy sky | [47,48] |
SSM/I 37 GHz H/V modes | Passive microwave | Land surface temperature (LST) | 25 km | Daily during snow free period | +0.05 °K ±1.85 °K | Measuring under clear and cloudy sky | [49] |
NARR | Atmospheric reanalysis | 0 height air temperature (LST) | 32 km | Daily | Positive bias +1 K [49] | Continuous year around | [50,51] |
MODIS-SSM/I | MODIS-AMSR-E | MODIS-NARR | SSM/I-AMSR-E | SSM/I-NARR | AMSRE-NARR | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MD [K] | RMSD [±K] | MD [K] | RMSD [±K] | MD [K] | RMSD [±K] | MD [K] | RMSD [±K] | MD [K] | RMSD [±K] | MD [K] | RMSD [±K] | |
Clear-sky | −0.89 | 2.56 | −1.06 | 2.55 | −2.16 | 3.38 | −0.19 | 2.38 | −1.65 | 2.98 | −1.65 | 3.46 |
All-sky | −0.31 | 2.28 | −0.58 | 2.46 | −1.61 | 3.2 | −0.56 | 2.33 | −1.69 | 2.74 | −1.38 | 3.24 |
Year | (MODIS-NARR) | (AATSR-NARR) | (MODIS-AATSR) | |||
---|---|---|---|---|---|---|
MD [K] RMSD [K] | MD [K] RMSD [K] | MD [K] RMSD [K] | ||||
2005 | −3.84 | 4.41 | −2.33 | 3.56 | −1.8 | 2.78 |
2006 | −3.6 | 4.14 | −3.61 | 4 | 0.1 | 1.63 |
2007 | −3.9 | 4.4 | −2.07 | 3.19 | −1.48 | 2.22 |
2008 | −4.16 | 4.61 | −2.24 | 3.41 | −1.46 | 2.22 |
2009 | −3.71 | 4.17 | −2.55 | 3.36 | −0.89 | 1.77 |
Share and Cite
Soliman, A.; Duguay, C.; Saunders, W.; Hachem, S. Pan-Arctic Land Surface Temperature from MODIS and AATSR: Product Development and Intercomparison. Remote Sens. 2012, 4, 3833-3856. https://doi.org/10.3390/rs4123833
Soliman A, Duguay C, Saunders W, Hachem S. Pan-Arctic Land Surface Temperature from MODIS and AATSR: Product Development and Intercomparison. Remote Sensing. 2012; 4(12):3833-3856. https://doi.org/10.3390/rs4123833
Chicago/Turabian StyleSoliman, Aiman, Claude Duguay, William Saunders, and Sonia Hachem. 2012. "Pan-Arctic Land Surface Temperature from MODIS and AATSR: Product Development and Intercomparison" Remote Sensing 4, no. 12: 3833-3856. https://doi.org/10.3390/rs4123833
APA StyleSoliman, A., Duguay, C., Saunders, W., & Hachem, S. (2012). Pan-Arctic Land Surface Temperature from MODIS and AATSR: Product Development and Intercomparison. Remote Sensing, 4(12), 3833-3856. https://doi.org/10.3390/rs4123833