Retrieving the Bioenergy Potential from Maize Crops Using Hyperspectral Remote Sensing
Abstract
:1. Introduction
- Is a spectroscopic method in combination with a multivariate statistical model a reliable alternative to classical analytical approaches using micro-digestion for BMPFM estimation of different maize varieties in the laboratory?
- Can the laboratory spectroscopic approach be adopted towards in situ conditions to allow a regionalized BMPFM assessment of maize crops based on airborne hyperspectral imaging data (HyMap)?
- Can also the BMParea be retrieved from HyMap data that strongly relies on above ground biomass?
2. Study Site and Methods
2.1. Study Site
2.2. Methods
2.2.1. Acquisition of Airborne Hyperspectral HyMap Imaging Data
2.2.2. Field Campaign
2.2.3. Anaerobic Digestion
2.2.4. Spectrometry and Partial least Square Regression
- v = vector (spectrum),
- vnorm = normalized vector,
- ||v|| = Length of the vector.
3. Results
3.1. Spectral BMPFM Estimation at Laboratory Scale
3.2. Remote Sensing Based BMPFM Assessment
4. Discussion
5. Conclusions
Acknowledgments
References
- EU Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Available online: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=Oj:L:2009:140:0016:0062:en:PDF (accessed on 14 January 2013).
- Roubanis, N.; Dahlström, C.; Noizette, P. Eurostat—Statistics in Focus 56/2010, Environment and Energy, Renewable Energy Statistics. 2010, p. 2. Available online: http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-SF-10-056/EN/KS-SF-10-056-EN.PDF (accessed on 24 April 2011).
- Biermayr, P.; Cremer, C.; Faber, T.; Kranzl, L.; Ragwitz, M.; Resch, G.; Toro, F. Bestimmung der Potenziale und Ausarbeitung von Strategien zur verstärkten Nutzung von erneuerbaren Energien in Luxemburg. Fraunhofer Institut für System- und Innovationsforschung (Fh-ISI); Energy Economics Group TU Wien/BSR-Sustainability: Luxemburg/Karlsruhe, Germany, 26 March 2007. Available online: http://www.eco.public.lu/salle_de_presse/com_presse_et_art_actu/2007/03/26_energies/endbericht.pdf (accessed on 14 January 2013).
- Singh, S. Global food crisis: Magnitude, causes and policy measures. Int. J. Soc. Econ 2009, 36, 23–36. [Google Scholar]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013; submitted. [Google Scholar]
- Chynoweth, D.; Isaacson, R. Anaerobic Digestion of Biomass; Elsevier Applied Sciences: London, UK/New York, NY, USA, 1987; p. 279. [Google Scholar]
- Malina, J.F.; Pohland, F.G. Design of Anaerobic Processes for the Treatment of Industrial and Municipal Wastes; CRC Press: Boca Raton, FL, USA, 1992; Volume 7, p. 214. [Google Scholar]
- Ahring, B.K. Biomethanation I. (Advances in Biochemical Engineering Biotechnology), 1st ed.; Springer-Verlag: Berlin/Heidelberg, Germany/New York, NY, USA, 2003; p. 220. [Google Scholar]
- Ahring, B.K. Biomethanation II. Advances in Biochemical Engineering Biotechnology, 2nd ed.; Springer-Verlag: Berlin/Heidelberg, Germany/New York, NY, USA, 2003; p. 212. [Google Scholar]
- Gerardi, M.H. The Microbiology of Anaerobic Digesters (Waste Water Microbiology Series); John Wiley & Sons, Inc: Hoboken, NJ, USA, 2003; p. 177. [Google Scholar]
- Birkmose, T. Digested Manure is a Valuable Fertiliser. The Future of Biogas in Europe III. Proceedings of an EC-Sponsored PROBIOGAS Conference, Esbjerg, Denmark, 27 June 2007; p. 91.
- Palm, O. The Quality of Liquid and Solid Digestate from Biogas Plants and its Application in Agriculture. Proceedings of ECN/ORBIT e.V. Workshop-The Future for Anaerobic Digestion of Organic Waste in Europe, Wageningen, The Netherlands, 13 October 2008; Nr. 20. 2008. [Google Scholar]
- Plaizier, J.C.; Krause, D.O.; Gozho, G.N.; McBride, B.W. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J 2008, 176, 21–31. [Google Scholar]
- Mayer, F.; Noo, A.; Sinnaeve, G.; Dardenne, P.; Hoffmann, L.; Flammang, J.; Foucart, G.; Gerin, P.; Delfosse, P. Evaluation of the Prediction of Biogas Production from Maize Silages with Near Infrared Spectroscopy (NIRS). Proceedings of the International Congress Progress: Biogas II, Stuttgart, Germany, 30 March–1 April 2011; pp. 235–240.
- Buswell, A.M.; Müller, H.F. Mechanism of methane fermentation. Ind. Eng. Chem 1952, 44, 550–552. [Google Scholar]
- Boyle, W.C. Energy Recovery from Sanitary Landfills—A Review. In Microbiol Energy Conversion; Schlegel, H.G., Barnea, S., Eds.; Pergamon Press: Oxford, UK, 1976; pp. 119–138. [Google Scholar]
- Schittenhelm, S. Chemical composition and methane yield of maize hybrids with contrasting maturity. Eur. J. Agron 2008, 29, 72–79. [Google Scholar]
- Delfosse, P.; Lemaigre, S.; Flammang, J.; Neuberg, C.; Hausman, J.F.; Hoffmann, L. Evaluation Variétale du Maïs, du Tournesol, et du Sorgho Pour la Méthanisation au Grand-Duché de Luxembourg (in German). In Proceedings of a One Day Meeting on Biométhanisation Agricole at Redange; Centre de Recherche Public-Gabriel Lippmann & Administration des Services Techniques de l’Agriculture: Luxembourg, 13 September 2007. [Google Scholar]
- Hoffmann, R.M.; Wilson, J.A.; Kronfeld, D.S.; Cooper, W.L.; Lawrence, L.A.; Sklan, D.; Harris, P. Hydrolizable carbohydrates in pasture, hay, and horse feeds: Direct assay and seasonal variation. J. Anim. Sci 2001, 79, 500–506. [Google Scholar]
- Hollung, K.; Øverland, M.; Hrustic, M.; Sekulic, P.; Miladinovic, J.; Martens, H.; Narum, B.; Sahlstrøm, S.; Sørensen, M.; Storebakken, T.; Skrede, A. Evaluation of nonstarch polysaccharides and oligosaccharide content of different soybean varieties (Glycine max) by near-infrared spectroscopy and proteomics. J. Agric. Food Chem 2005, 53, 9112–9121. [Google Scholar]
- Kumagai, M.; Ohisa, N.; Amano, T.; Ogawa, N. Canonical discriminant analysis of cadmium content levels in unpolished rice using a portable near-infrared spectrometer. Anal. Sci 2003, 19, 1553–1555. [Google Scholar]
- Martens, H.; Næs, T. Multivariate Calibration by Data Compression. In Near-Infrared Technology in the Agricultural and Food Industries, 2nd eds.; Williams, P., Norris, K., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 2001; pp. 59–100. [Google Scholar]
- Satu, T. New estimation method for fatty acid composition in oil using near infrared spectroscopy. Biosci. Biotechnol. Biochem 2002, 66, 2543–2548. [Google Scholar]
- Park, R.; Agnew, R.E.; Kilpatrick, D.J. The effect of freezing and thawing on grass silage quality predictions based on near infrared reflectance spectroscopy. Anim. Feed Sci. Technol 2002, 102, 151–167. [Google Scholar]
- Tatavarti, A.S.; Fahmy, R.; Wu, H.; Hussain, A.S.; Marnane, W.; Bensley, D.; Hollenbeck, G.; Hoag, S.W. Assessment of NIR spectroscopy for nondestructive analysis of physical and chemical attributes of sulfamethazine bolus dosage forms. AAPS Pharm. Sci. Tech 2005, 6, E91–E99. [Google Scholar]
- Mentkink, R.L.; Hoffman, P.C.; Bauman, L.M. Utility of near-infrared reflectance spectroscopy to predict nutrient composition and in vitro digestibility of total mixed rations. J. Dairy Sci 2006, 89, 2320–2326. [Google Scholar]
- Galvão, H.R.K.; Araújo, M.C.U.; Silva, E.C.; José, G.E.; Soares, S.F.C.; Paiva, H.M. Cross-validation for the selection of spectral variables using the successive projections algorithm. J. Braz. Chem. Soc 2007, 18, 8. [Google Scholar]
- Dardenne, P.; Andrieu, J.; Barriere, Y.; Biston, R.; Demarquilly, C.; Femenais, N.; Lila, M.; Maupetit, P.; Riviere, F.; Ronsin, T. Composition and nutritive value of whole maize plants fed fresh to sheep-II Prediction of the in vivo organic matter digestibility. Ann. Zootech 1993, 42, 251–270. [Google Scholar]
- De Boever, J.L.; Cottyn, B.G.; De Brabander, D.L.; Vanacker, J.M.; Boucque, C.V. Prediction of the feedingvalue of maize silages by chemical parameters, in vitro digestibility and NIRS. Anim. Feed Sci. Technol 1997, 66, 211–222. [Google Scholar]
- Lovett, D.K.; Deaville, E.R.; Moulda, F.; Givens, D.I.; Owen, E. Using near infrared reflectance spectroscopy (NIRS) to predict the biological parameters of maize silage. Anim. Feed Sci. Tech 2004, 115, 179–187. [Google Scholar]
- Sorensen, L.K. Prediction of fermentation parameters in grass and corn silage by near infrared spectroscopy. J. Dairy Sci 2004, 87, 3826–3835. [Google Scholar]
- Todorov, N.; Atanassova, S.; Pavlov, D.; Grigorova, R. Prediction of dry matter and protein degradability of forages by near infrared spectroscopy. Livest. Prod. Sci 1994, 39, 89–91. [Google Scholar]
- Walters, C.J.; Givens, D.I. Nitrogen degradability of fresh herbage: effect of maturity and growth type, and prediction from chemical composition and by near infrared reflectance spectroscopy. Anim. Feed Sci. Technol 1992, 38, 335–349. [Google Scholar]
- Cocks, T.; Jenssen, R.; Steward, A.; Wilson, I.; Shields, T. The Hymap Airborne Hyperspectral Sensor: The System, Calibration and Performance. Proceedings of the 1st EARSEL Workshop on Imaging Spectroscopy, Zurich, German, 6–8 October 1998.
- Schaepman, M. E.; de Vos, L.; Itten, K. I. APEX-airborne PRISM experiment: Hyperspectral radiometric performance analysis for the simulation of the future ESA land surface processes earth explorer mission. Proc. SPIE 1998, 3438, 253–262. [Google Scholar]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Chetwind, J.H.; Bernstein, L.S.; Shettle, E.P.; Matthew, M.W.; Alder-Golden, S.M. Modtran4 User’s Manual; Air Force Research Laboratory: Hanscom, MA, USA, 1999; p. 93.
- Richter, R.; Schlapfer, D.; Muller, A. An automatic atmospheric correction algorithm for visible/NIR imagery. Int. J. Remote Sens 2006, 27, 2077–2085. [Google Scholar]
- Rodger, A.; Lynch, M.J. Determining Atmospheric Column Water Vapour in the 0.4–2.5 μm Spectral Region. Proceedings of the JPL-NASA AVIRIS Workshop 2001, Pasadena, CA, USA, 27 February–2 March 2001.
- Verein Deutscher Ingenieure. VDI 4630-Fermentation of Organic Materials, Characterisation of the Substrates, Sampling, Collection of Material Data, Fermentation Tests; VDI-Handbuch Energietechnik, Beuth Verlag GmbH: Berlin, Germany, 2006; p. 92. [Google Scholar]
- Fachgrupe Wasserchemie in der Gesellschaft Deutscher Chemiker und Normausschuss Wasserwesen (NAW) im DIN Deutscher Institut für Normung e.V. DIN 38414-Bestimmung des Faulverhaltens (S8). In Deutsche Einheitsverfahren zur Wasser-, Abwasser-, und Schlammuntersuchung. Physikalische, Chemische, Biologische und Bakteriologische Verfahren; VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1987.
- Kowalewska, G.; Szymczak, M. Influence of selected abiotic factors on the decomposition of chlorophylls. Oceanologia 2001, 43, 315–328. [Google Scholar]
- Woodman, H.E. The nature of the pigment of silage. J. Agr. Sci 1923, 13, 240–242. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. Syst 2001, 58, 109–130. [Google Scholar]
- Cho, A.K.; Skidmore, M.A. Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy. Int. J. Remote Sens 2009, 30, 499–515. [Google Scholar]
- Koppe, W.; Li, F.; Gnyp, M.; Miao, Y.; Jia, L.; Chen, X.; Zhang, F.; Bareth, G. Evaluating multispectral and hyperspectral satellite remote sensing data for estimating winter wheat growth parameters at regional scale in the North China plain. Photogramm. Fernerkun 2010, 3, 167–178. [Google Scholar]
- Darvishzadeh, R.; Skidmore, A.; Atzberger, C.; van Wieren, S. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture. Int. J. Appl. Earth Obs. Geoinf 2008, 10, 358–373. [Google Scholar]
- Ranney, J.W.; Cushman, J.H. Regional Evaluation of Woody Biomass Production for Fuels in the Southeast. In Biotechnology and Bioengineering Symposium No. 10; Wiley: New York, NY, USA, 1980; pp. 10–20. [Google Scholar]
- Gehrung, J.; Scholz, Y. The application of simulated NPP data in improving the assessment of the spatial distribution of biomass in Europe. Biomass Bioenerg 2009, 33, 712–720. [Google Scholar]
- Phillips, V.D.; Liu, W.; Merriam, R.A.; Singh, D. Biomass systems model estimates of short-rotation hardwood production in Hawaii. Biomass Bioenerg 1993, 5, 421–429. [Google Scholar]
- Liu, W.; Merriam, R.A.; Phillips, V.D.; Singh, D. Estimating shortrotation Eucalyptus saligna production in Hawaii: An integrated yields and economic model. Bioresour. Technol 1993, 45, 167–176. [Google Scholar]
- Voivontas, D.; Assimacopoulos, D.; Koukios, E.G. Assessment of biomass potential for power production: a GIS based method. Biomass Bioenerg 2001, 20, 101–112. [Google Scholar]
- Milbrandt, A. A Geographic Perspective on the Current Biomass Resource Availability in the United States; Technical Report No. NREL/TP-560-39181; NREL: Golden, CO, USA, 2005; Available online: http://www.nrel.gov/docs/fy06osti/39181.pdf (accessed on 11 January 2013).
- Beccali, M.; Columba, P.; D’Alberti, V.; Franzitta, V. Assessment of bioenergy potential in Sicily: A GIS–based support methodology. Biomass Bioenerg 2009, 33, 79–87. [Google Scholar]
- van Diepen, C.A.; van der Wal, T. Crop Growth Monitoring and Yield Forecasting at Regional and National Scale. Proceedings of Workshop for Central and Eastern Europe on Agrometeorological Models: Theory and Applications in the MARS Project, Ispra, Italy, 21–25 November 1994; pp. 143–157.
- Svendsen, H.; Hansen, S.; Jensen, H.E. Simulation of crop production, water and nitrogen balances in two German agro-ecosystems using the DAISY model. Ecol. Model 1995, 81, 197–212. [Google Scholar]
- Diekrüger, B.; Sönergerath, D.; Kersebaum, K.C.; McVoy, C.W. Validity of agroecosystem models—A comparison of results of different models applied to the same data set. Ecol. Model 1995, 81, 3–29. [Google Scholar]
- Wallach, D.; Makowski, D.; Jones, J. Working with Dynamic Crop Models—Evaluation, Analysis, and Parameterization, and Applications; Elsevier: Amsterdam, The Netherlands, 2006; p. 446. [Google Scholar]
Variety | Laboratory (Bruker MPA, FieldSpec 3MAX) | In situ (HyMap) |
---|---|---|
Unknown | 15 | 14 |
P9578 | 2 | 2 |
INTENTION | 1 | 1 |
HR 3400 | 1 | 1 |
FERNANDEZ | 1 | 1 |
Piazza | 2 | |
Seiddi CS | 2 | |
Atletico | 4 | 1 |
Graphic | 1 | |
0808HYB | 1 | |
Franki CS | 1 | |
Aapple | 2 | |
0945HYB | 1 | |
Lucatoni | 1 | |
35 | 20 |
Biomass (t/ha) | BMPFM (Nm3/t FM) | BMParea (Nm3/ha) | |
---|---|---|---|
Biomass (t/ha) | 1.00** | ||
BMPFM (Nm3/t FM) | 0.06 | 1.00** | |
BMParea (Nm3/ha] | 0.97** | 0.03 | 1.00** |
Share and Cite
Udelhoven, T.; Delfosse, P.; Bossung, C.; Ronellenfitsch, F.; Mayer, F.; Schlerf, M.; Machwitz, M.; Hoffmann, L. Retrieving the Bioenergy Potential from Maize Crops Using Hyperspectral Remote Sensing. Remote Sens. 2013, 5, 254-273. https://doi.org/10.3390/rs5010254
Udelhoven T, Delfosse P, Bossung C, Ronellenfitsch F, Mayer F, Schlerf M, Machwitz M, Hoffmann L. Retrieving the Bioenergy Potential from Maize Crops Using Hyperspectral Remote Sensing. Remote Sensing. 2013; 5(1):254-273. https://doi.org/10.3390/rs5010254
Chicago/Turabian StyleUdelhoven, Thomas, Philippe Delfosse, Christian Bossung, Franz Ronellenfitsch, Frédéric Mayer, Martin Schlerf, Miriam Machwitz, and Lucien Hoffmann. 2013. "Retrieving the Bioenergy Potential from Maize Crops Using Hyperspectral Remote Sensing" Remote Sensing 5, no. 1: 254-273. https://doi.org/10.3390/rs5010254
APA StyleUdelhoven, T., Delfosse, P., Bossung, C., Ronellenfitsch, F., Mayer, F., Schlerf, M., Machwitz, M., & Hoffmann, L. (2013). Retrieving the Bioenergy Potential from Maize Crops Using Hyperspectral Remote Sensing. Remote Sensing, 5(1), 254-273. https://doi.org/10.3390/rs5010254