Canopy Fuel Load Mapping of Mediterranean Pine Sites Based on Individual Tree-Crown Delineation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outline of the Methodology
2.1. Study Sites
2.1.1. Kassandra Forest
2.1.2. Thessaloniki suburban forest
2.2. Crown Fuel Load Estimation
2.3. Satellite Data and Preprocessing
2.4. Identification of Crown Regions
2.5. Identification of Individual Tree Crowns and Crown Width Estimation
2.6. Accuracy Assessment of Tree Crown Identification and Crown Width Estimation
3. Results and Discussion
4. Conclusions
Acknowledgments
Conflict of Interest
References and Notes
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape–wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manage 2011, 92, 2389–2402. [Google Scholar]
- Koutsias, N.; Arianoutsou, M.; Kallimanis, A.S.; Mallinis, G.; Halley, J.M.; Dimopoulos, P. Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agric. For. Meteorol 2012, 156, 41–53. [Google Scholar]
- Pérez, B.; Cruz, A.; Fernández-González, F.; Moreno, J.M. Effects of the recent land-use history on the postfire vegetation of uplands in Central Spain. For. Ecol. Manage 2003, 182, 273–283. [Google Scholar]
- Dimitrakopoulos, A.P.; Panov, P.I. Pyric properties of some dominant Mediterranean vegetation species. Int. J. Wildland Fire 2001, 10, 23–27. [Google Scholar]
- Quezel, P. Taxonomy and Biogeography of Mediterranean Pines (Pinus halepensis and P-brutia). In Ecology, Biogeography and Management of Pinus halepensis and P. brutia Forest Ecosystems in the Mediterranean Basin; Ne'eman, G., Trabaud, L., Eds.; Backhuys Publishers: Leiden, Sweden, 2000; pp. 1–12. [Google Scholar]
- Dimitrakopoulos, A.P. PYROSTAT—A computer program for forest fire data inventory and analysis in Mediterranean countries. Environ. Model. Softw 2001, 16, 351–359. [Google Scholar]
- Salis, M.; Ager, A.A.; Arca, B.; Finney, M.A.; Bacciu, V.; Duce, P.; Spano, D. Assessing exposure of human and ecological values to wildfire in Sardinia, Italy. Int. J. Wildland Fire 2013, 22, 549–565. [Google Scholar]
- Koutsias, N.; Karteris, M. Classification analyses of vegetation for delineating forest fire fuel complexes in a Mediterranean test site using satellite remote sensing and GIS. Int. J. Remote Sens 2003, 24, 3093–3104. [Google Scholar]
- Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int. J. Wildland Fire 2003, 12, 39–50. [Google Scholar]
- Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Development and testing of models for predicting crown fire rate of spread in conifer forest stands. Can. J. Forest Res 2005, 35, 1626–1639. [Google Scholar]
- Keane, R.E.; Burgan, R.; van Wagtendonk, J. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. Int. J. Wildland Fire 2001, 10, 301–319. [Google Scholar]
- Seielstad, C.; Stonesifer, C.; Rowell, E.; Queen, L. Deriving fuel mass by size class in Douglas-fir (Pseudotsuga menziesii) using terrestrial laser scanning. Remote Sens 2011, 3, 1691–1709. [Google Scholar]
- Skowronski, N.S.; Clark, K.L.; Duveneck, M.; Hom, J. Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems. Remote Sens. Environ 2011, 115, 703–714. [Google Scholar]
- Fernandes, P.A.M.; Loureiro, C.A.; Botelho, H.S. Fire behaviour and severity in a maritime pine stand under differing fuel conditions. Ann. Forest Sci 2004, 61, 537–544. [Google Scholar]
- Mitsopoulos, I.D.; Dimitrakopoulos, A.P. Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) forests. Ann. For. Sci 2007, 64, 287–299. [Google Scholar]
- Küçük, Ö.; Bilgili, E.; Saglam, B. Estimating crown fuel loading for calabrian pine and Anatolian black pine. Int. J. Wildland Fire 2008, 17, 147–154. [Google Scholar]
- Erdody, T.L.; Moskal, L.M. Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sens. Environ 2010, 114, 725–737. [Google Scholar]
- Mallinis, G.; Mitsopoulos, I.D.; Dimitrakopoulos, A.P.; Gitas, I.Z.; Karteris, M. Local-scale fuel-type mapping and fire behavior prediction by employing high-resolution satellite imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2008, 1, 230–239. [Google Scholar]
- Lasaponara, R.; Lanorte, A. On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape. Ecol. Model 2007, 204, 79–84. [Google Scholar]
- Lasaponara, R.; Lanorte, A. Remotely sensed characterization of forest fuel types by using satellite ASTER data. Int. J. Appl. Earth Obs. Geoinf 2007, 9, 225–234. [Google Scholar]
- Keramitsoglou, I.; Kontoes, C.; Sykioti, O.; Sifakis, N.; Xofis, P. Reliable, accurate and timely forest mapping for wildfire management using ASTER and Hyperion satellite imagery. For. Ecol. Manage 2008, 255, 3556–3562. [Google Scholar]
- Jin, S.; Chen, S.-C. Application of QuickBird imagery in fuel load estimation in the Daxinganling region, China. Int. J. Wildland Fire 2012, 21, 583–590. [Google Scholar]
- Arroyo, L.A.; Pascual, C.; Manzanera, J.A. Fire models and methods to map fuel types: The role of remote sensing. For. Ecol. Manage 2008, 256, 1239–1252. [Google Scholar] [Green Version]
- Brandis, K.; Jacobson, C. Estimation of vegetative fuel loads using Landsat TM imagery in New South Wales, Australia. Int. J. Wildland Fire 2003, 12, 185–194. [Google Scholar]
- Falkowski, M.J.; Gessler, P.E.; Morgan, P.; Hudak, A.T.; Smith, A.M.S. Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. For. Ecol. Manage 2005, 217, 129–146. [Google Scholar]
- Saatchi, S.; Halligan, K.; Despain, D.G.; Crabtree, R.L. Estimation of forest fuel load from radar remote sensing. IEEE Trans Geosci Remote Sens 2007, 45, 1726–1740. [Google Scholar]
- Andersen, H.E.; McGaughey, R.J.; Reutebuch, S.E. Estimating forest canopy fuel parameters using LIDAR data. Remote Sens. Environ 2005, 94, 441–449. [Google Scholar]
- Hudak, A.T.; Evans, J.S.; Smith, A.M.S. LiDAR utility for natural resource managers. Remote Sens 2009, 1, 934–951. [Google Scholar]
- Kaartinen, H.; Hyyppä, J.; Yu, X.; Vastaranta, M.; Hyyppä, H.; Kukko, A.; Holopainen, M.; Heipke, C.; Hirschmugl, M.; Morsdorf, F.; et al. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens 2012, 4, 950–974. [Google Scholar]
- Skowronski, N.; Clark, K.; Nelson, R.; Hom, J.; Patterson, M. Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey. Remote Sens. Environ 2007, 108, 123–129. [Google Scholar]
- Wang, L.; Gong, P.; Biging, G.S. Individual tree-crown delineation and tree top detection in high-spatial-resolution aerial imagery. Photogramm. Eng. Remote Sens 2004, 70, 351–357. [Google Scholar]
- Katoh, M.; Gougeon, F.A. Improving the precision of tree counting by combining tree detection with crown delineation and classification on homogeneity guided smoothed high resolution (50 cm) multispectral airborne digital data. Remote Sens 2012, 4, 1411–1424. [Google Scholar]
- Ke, Y.; Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int. J. Remote Sens 2011, 32, 4725–4747. [Google Scholar]
- Shoshany, M. Satellite remote sensing of natural Mediterranean vegetation: A review within an ecological context. Prog. Phys. Geogr 2000, 24, 153–178. [Google Scholar]
- Scarascia-Mugnozza, G.; Oswald, H.; Piussi, P.; Radoglou, K. Forests of the Mediterranean region: Gaps in knowledge and research needs. For. Ecol. Manage 2000, 132, 97–109. [Google Scholar]
- Ozdemir, I.; Karnieli, A. Predicting forest structural parameters using the image texture derived from worldview-2 multispectral imagery in a dryland forest, Israel. Int. J. Appl. Earth Obs. Geoinf 2011, 13, 701–710. [Google Scholar]
- Mallinis, G.; Koutsias, N.; Tsakiri-Strati, M.; Karteris, M. Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS J. Photogramm. Remote Sens 2008, 63, 237–250. [Google Scholar]
- Mallinis, G.; Koutsias, N.; Makras, A.; Karteris, M. Forest parameters estimation in a European Mediterranean landscape using remotely sensed data. Forest Sci 2004, 50, 450–460. [Google Scholar]
- Spanos, I.; Ganatsas, P.; Tsakaldimi, M. Evaluation of postfire restoration in suburban forest of Thessaloniki, Northern Greece. Global Nest J 2010, 12, 390–400. [Google Scholar]
- Mitsopoulos, I. Crown Fire Analysis and Management in Aleppo pine (Pinus halepensis Mill.) Forests of Greece. Aristotle University, Thessaloniki, Greece, 2005. [Google Scholar]
- Brown, J.K. Weight and Density of Crowns of Rocky Mountains Conifer; USDA, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1978; p. 56. [Google Scholar]
- Call, P.; Albini, F. Aerial and Surface Fuel Consumption in Crown Fires. Int. J. Wildland Fire 1997, 7, 259–264. [Google Scholar]
- Goetz, S.J.; Wright, R.K.; Smith, A.J.; Zinecker, E.; Schaub, E. IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-Atlantic region. Remote Sens. Environ 2003, 88, 195–208. [Google Scholar]
- Key, T.; Warner, T.A.; McGraw, J.B.; Fajvan, M.A. A comparison of multispectral and multitemporal information in high spatial resolution imagery for classification of individual tree species in a temperate hardwood forest. Remote Sens. Environ 2001, 75, 100–112. [Google Scholar]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens 2004, 58, 239–258. [Google Scholar]
- Hay, G.J.; Blaschke, T.; Marceau, D.J.; Bouchard, A. A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS J. Photogramm. Remote Sens 2003, 57, 327–345. [Google Scholar]
- Ma, H.; Qin, Q.; Shen, X. Shadow Segmentation and Compensation in High Resolution Satellite Images. Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’08, Boston, MA, USA, 7–11 July 2008; pp. II-1036–II-1039.
- Jing, L.; Hu, B.; Noland, T.; Li, J. An individual tree crown delineation method based on multi-scale segmentation of imagery. ISPRS J. Photogramm. Remote Sens 2012, 70, 88–98. [Google Scholar]
- Leckie, D.G.; Gougeon, F.A.; Tinis, S.; Nelson, T.; Burnett, C.N.; Paradine, D. Automated tree recognition in old growth conifer stands with high resolution digital imagery. Remote Sens. Environ 2005, 94, 311–326. [Google Scholar]
- Whiteside, T.G.; Boggs, G.S.; Maler, S.W. Extraction of tree crowns from high resolution imagery over Eucalypt dominant tropical savannas. Photogramm. Eng. Remote Sens 2011, 77, 813–824. [Google Scholar]
- Ke, Y.; Quackenbush, L.J. A comparison of three methods for automatic tree crown detection and delineation from high spatial resolution imagery. Int. J. Remote Sens 2011, 32, 3625–3647. [Google Scholar]
- Pouliot, D.A.; King, D.J.; Bell, F.W.; Pitt, D.G. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens. Environ 2002, 82, 322–334. [Google Scholar]
- Zhang, W.; Quackenbush, L.J.; Im, J.; Zhang, L. Indicators for separating undesirable and well-delineated tree crowns in high spatial resolution images. Int. J. Remote Sens 2012, 33, 5451–5472. [Google Scholar]
- Shaw, J.D. Models for Estimation and Simulation of Crown and Canopy Cover. Proceedings of 5th Annual Forest Inventory and Analysis Symposium, New Orleans, LA, USA, 18–20 November 2003; pp. 183–221.
- Alexander, M.E.; Stefner, C.N.; Mason, J.A.; Stocks, B.J.; Hartley, G.R.; Maffey, M.E.; Wotton, B.M.; Taylor, S.W.; Lavoie, N.; Dalrymple, G.N. Characterizing the Jack Pine—Black Spruce Fuel Complex in the International Crown Fire Modelling Experiment (ICFME); Canadian Forest Service, Northern Forestry Centre: Edmonton, AB, Canada, 2004; p. 48. [Google Scholar]
- Alexander, M.E. Fire Behaviour as a Factor in Forest and Rural Fire Suppression; Forest Research, Rotorua, in association with the National Rural Fire Authority, Wellington: Rotorua, New Zealand, 2000; p. 50. [Google Scholar]
- Scott, J.H.; Reinhardt, E.D. Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Potential; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2001; p. 59. [Google Scholar]
- Fulé, P.Z.; Covington, W.W.; Smith, H.B.; Springer, J.D.; Heinlein, T.A.; Huisinga, K.D.; Moore, M.M. Comparing ecological restoration alternatives: Grand Canyon, Arizona. For. Ecol. Manage 2002, 170, 19–41. [Google Scholar]
- Stephens, S.L. Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. For. Ecol. Manage 1998, 105, 21–35. [Google Scholar]
Canopy Fuel Load (kg) (Needles + twigs 0.0 – 0.63 cm) | Crown Width (m) | |
---|---|---|
Number of sampled trees | 40 | 40 |
Minimum | 1.2 | 1.4 |
Maximum | 50.6 | 10.8 |
Mean | 21.2 | 4.8 |
Stdev. | 15.8 | 3.3 |
Number of Tree Crowns | % | |
---|---|---|
Kassandra forest | ||
Reference crowns | 250 | |
Perfectly matched | 85 | 34.00 |
Delineated crowns with > 50% overlap with reference | 178 | 71.20 |
Reference crowns with > 50% overlap with delineated | 107 | 42.80 |
Thessaloniki suburban forest | ||
Reference crowns | 1,796 | |
Perfectly matched | 870 | 48.41 |
Delineated crowns with > 50% overlap with reference | 989 | 55.07 |
Reference crowns with > 50% overlap with delineated | 1,353 | 75.33 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mallinis, G.; Mitsopoulos, Ι.; Stournara, P.; Patias, P.; Dimitrakopoulos, A. Canopy Fuel Load Mapping of Mediterranean Pine Sites Based on Individual Tree-Crown Delineation. Remote Sens. 2013, 5, 6461-6480. https://doi.org/10.3390/rs5126461
Mallinis G, Mitsopoulos Ι, Stournara P, Patias P, Dimitrakopoulos A. Canopy Fuel Load Mapping of Mediterranean Pine Sites Based on Individual Tree-Crown Delineation. Remote Sensing. 2013; 5(12):6461-6480. https://doi.org/10.3390/rs5126461
Chicago/Turabian StyleMallinis, Giorgos, Ιoannis Mitsopoulos, Panagiota Stournara, Petros Patias, and Alexandros Dimitrakopoulos. 2013. "Canopy Fuel Load Mapping of Mediterranean Pine Sites Based on Individual Tree-Crown Delineation" Remote Sensing 5, no. 12: 6461-6480. https://doi.org/10.3390/rs5126461
APA StyleMallinis, G., Mitsopoulos, Ι., Stournara, P., Patias, P., & Dimitrakopoulos, A. (2013). Canopy Fuel Load Mapping of Mediterranean Pine Sites Based on Individual Tree-Crown Delineation. Remote Sensing, 5(12), 6461-6480. https://doi.org/10.3390/rs5126461