Future Retrievals of Water Column Bio-Optical Properties using the Hyperspectral Infrared Imager (HyspIRI)
Abstract
:1. Introduction
2. Candidate Algorithms and Coastal and Inland Water Data Products
2.1. Inherent and Apparent Optical Properties
2.1.1. Absorption
2.1.2. Backscattering
2.1.3. Diffuse Attenuation Coefficient (Kd(λ))
2.2. Retrieving Optically Active Constituents
2.2.1. Absorption by Yellow Substances
2.2.2. Suspended Particulate Matter
2.2.3. Chlorophyll-a Concentration
2.2.4. Phytoplankton Functional Types (PFTs)
2.2.5. Fluorescence
2.2.6. Coastal Fronts and Plumes
3. Challenges, Limitations, and Potential Solutions
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Cracknell, A.P. Remote sensing techniques in estuaries and coastal zones—An update. Int. J. Remote Sens 1999, 19, 485–496. [Google Scholar]
- Kildow, J.T.; Colgan, C.S.; Scorse, J. State of the U.S. Ocean and Coastal Economies—2009. Report of the National Ocean Economics Program (NOEP);. 2009, pp. 1–60. Available online: http://www.OceanEconomics.org/nationalreport (accessed on 03 December 2013).
- Yentsch, C. CZCS—Its Role in the Study of the Growth of Oceanic Phytoplankton. In Ocean. Colour: Theory and Applications; Barale, V., Ed.; Springer: Berlin, Germany, 2013. [Google Scholar]
- Klemas, V.V. Airborne remote sensing of coastal features and processes. J. Coast. Res 2013, 29, 239–255. [Google Scholar]
- Lee, Z.P.; Carder, K.; Arnone, R.; He, M. Determination of primary spectral bands for remote sensing of aquatic environments. Sensors 2007, 7, 3428–3441. [Google Scholar]
- National Research Council. Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond; Committee on Earth Science and Applications from Space: A Community Assessment and Strategy for the Future; The National Academic Press: Washington, DC, USA, 2007; pp. 1–456. [Google Scholar]
- Roberts, D.A.; Quattrochi, D.A.; Hulley, G.C.; Hook, S.J.; Green, R.O. Synergies between VSWIR and TIR data for the urban environment: An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) Decadal Survey mission. Remote Sens. Environ 2012, 117, 83–101. [Google Scholar]
- Moses, W.; Gitelson, A.; Berdnikov, S.; Povazhnyy, V. Satellite estimation of chlorophyll-a concentration using the red and NIR bands of MERIS—The Azov Sea case study. IEEE Geosci. Remote Sens. Lett 2009, 6, 845–849. [Google Scholar]
- IOCCG. Minimum Requirements for an Operational Ocean-Colour Sensor; Reports of the International Ocean.-Colour. Coordinating Group No.1; IOCCG: Dartmouth, NS, Canada, 1998. [Google Scholar]
- Gordon, H.R.; Clark, D.K.; Brown, J.W.; Brown, O.B.; Evans, R.H.; Broenkow, W.W. Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates. Appl. Opt 1983, 22, 20–36. [Google Scholar]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res 1998, 103, 24937–24953. [Google Scholar]
- Hu, C.; Lee, Z-P.; Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Craig, S.E.; Jones, C.T.; Li, W.K.W.; Lazin, G.; Horne, E.; Caverhill, C.; Cullen, J.J. Deriving optical metrics of coastal phytoplankton biomass from ocean colour. Remote Sens. Environ 2012, 119, 72–83. [Google Scholar]
- Sathyendranath, S.; Hoge, F.E.; Platt, T.; Swift, R.N. Detection of phytoplankton pigments from ocean color: Improved algorithms. Appl. Opt 1994, 33, 1081–1089. [Google Scholar]
- Schiller, H.; Doerffer, R. Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data. Int. J. Remote Sens 1999, 20, 1735–1746. [Google Scholar]
- Ioannou, I.; Gilerson, A.; Gross, B.; Moshary, F.; Ahmed, S. Neural network approach to retrieve the inherent optical properties of the ocean from observations of MODIS. Appl. Opt 2011, 50, 3168–3186. [Google Scholar]
- Hoge, F.E.; Lyon, P.E. Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: An analysis of model and radiance measurement errors. J. Geophys. Res. 1996, 101. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt 2002, 41, 5755–5772. [Google Scholar]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. Appl. Opt 1999, 38, 3831–3843. [Google Scholar]
- Carder, K.L.; Hawes, S.K.; Baker, K.A.; Smith, R.C.; Steward, R.G.; Mitchell, B.G. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products. J. Geophys. Res 1991, 96, 20599–20611. [Google Scholar]
- Mobley, C.D.; Sundman, L.K.; Davis, C.O.; Bowles, J.H.; Downes, T.V.; Leathers, R.A.; Montes, M.J.; Bissett, W.P.; Kohler, D.D.; Reid, R.P.; et al. Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. Appl. Opt 2005, 44, 3576–3592. [Google Scholar]
- Gordon, H.R.; Brown, O.B.; Jacobs, M.M. Computed relationships netween the inherent and apparent optical properties of a flat homogeneous ocean. Appl. Opt 1975, 14, 417–427. [Google Scholar]
- Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: Experimental results. Appl. Opt 2005, 44, 412–422. [Google Scholar]
- IOCCG. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications; IOCCG: Dartmouth, NS, Canada, 2006. [Google Scholar]
- Lee, Z-P.; Rhea, W.J.; Arnone, R.; Goode, W. Absorption coefficients of marine waters: Expanding multiband information to hyperspectral data. IEEE Trans. Geosci. Remote Sens 2005, 43, 118–124. [Google Scholar]
- Schofield, O.; Bergmann, T.; Oliver, M.J.; Irwin, A.; Kirkpatrick, G.; Bissett, P.W.; Moline, M.A.; Orrico, C. Inversion of spectral absorption in the optically complex coastal waters of the Mid-Atlantic Bight. J. Geophys. Res. 2004. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, L. Effects of temperature and salinity on light scattering by water. Proc. SPIE 2010. [Google Scholar] [CrossRef]
- Loisel, H.; Nicolas, J.-M.; Sciandra, A.; Stramski, D.; Poteau, A. Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean. J. Geophys. Res. Oceans 2006, 111. [Google Scholar] [CrossRef]
- Martinez-Vicente, V.; Land, P.E.; Tilstone, G.H.; Widdicombe, C.; Fishwick, J.R. Particulate scattering and backscattering related to water constituents and seasonal changes in the Western English Channel. J. Plankton Res 2010, 32, 577–583. [Google Scholar]
- Kostadinov, T.S.; Siegel, D.A.; Maritorena, S. Retrieval of the particle size distribution from satellite ocean color observations. J. Geophys. Res.: Oceans 2009, 114, 2156–2202. [Google Scholar]
- Doxaran, D.; Ruddick, K.; McKee, D.; Gentili, B.; Tailliez, D.; Chami, M.; Babin, M. Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared. Limnol. Oceanogr 2009, 54, 1257–1271. [Google Scholar]
- Austin, R.W.; Petzold, T. The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner. Oceanogr. Space 1981, 13, 239–256. [Google Scholar]
- Mueller, J.L.; Trees, C.C. Revised SeaWiFS Prelaunch Algorithm for the Diffuse Attenuation Coefficient Kd(490). In Case Studies for SeaWiFS Calibration and Validation, Part 4; NASA Tech. Memo. 104566; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1997; pp. 18–21. [Google Scholar]
- Loisel, H.; Poteau, A. Chapter 5. Inversion of IOP Based on Rrs and Remotely-Retrieved Kd; Reports of the International Ocean.-Colour. Coordinating Group, No. 5; IOCCG: Dartmouth, NS, Canada, 2006; pp. 1–89. [Google Scholar]
- Fichot, C.; Sathyendranath, S.; Miller, W.L. SeaUV and SeaUVC, Algorithms for the retrieval of UV/Visible diffuse attenuation coefficients from ocean colour. Remote Sens. Environ 2008, 112, 1584–1602. [Google Scholar]
- Jamet, C.; Loisel, H.; Dessailly, D. Retrieval of the spectral diffuse attenuation coefficient Kd.(λ) in open and coastal ocean waters using a neural network inversion. J. Geophys. Res.: Oceans 2012, 117, 2012. [Google Scholar] [CrossRef]
- Lee, Z-P.; Darecki, M.; Carder, K.L.; Davis, C.O.; Stramski, D.; Rhea, W.J. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods. J. Geophys. Res.: Oceans 2005, 110. [Google Scholar] [CrossRef]
- Zhao, J.; Barnes, B.; Melo, N.; English, D.; Lapointe, B.; Muller-Karger, F.; Schaeffer, B.; Hu, C. Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters. Remote Sens. Environ 2013, 131, 38–50. [Google Scholar]
- Cunningham, A.; Ramage, L.; McKee, D. Relationships between inherent optical properties and the depth of penetration of solar radiation in optically complex coastal waters. J. Geophys. Res.: Oceans 2013, 118, 2169–9291. [Google Scholar]
- Morel, A. Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible? J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Bélanger, S.; Babin, M.; Larouche, P. An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to total light absorption in optically complex waters. J. Geophys. Res.: Oceans 2008, 113. [Google Scholar] [CrossRef]
- Fichot, C.G.; Kaiser, K.; Hooker, S.B.; Amon, R.M.W.; Babin, M.; Bélanger, S.; Walker, S.A.; Benner, R. Pan-Arctic distributions of continental runoff in the Arctic Ocean. Sci. Rep 2013, 3, 2045–2322. [Google Scholar]
- Astoreca, R.; Doxaran, D.; Ruddick, K.; Rousseau, V.; Lancelot, C. Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea. Cont. Shelf Res 2012, 35, 117–128. [Google Scholar]
- Ritchie, J.C.; Schiebe, F.R.; McHenry, J.R. Remote sensing of suspended sediment in surface water. Photogramm. Eng. Remote Sens 1976, 42, 1539–1545. [Google Scholar]
- Sterckx, S.; Knaeps, E.; Bollen, M.; Trouw, K.; Houthuys, R. Retrieval of suspended sediment from advanced hyperspectral sensor data in the scheldt estuary at different stages in the tidal cycle. Mar. Geod 2007, 30, 97–108. [Google Scholar]
- Doxaran, D.; Ehn, J.; Bélanger, S.; Matsuoka, A.; Hooker, S.; Babin, M. Optical characterisation of suspended particles in the Mackenzie River plume (Canadian Arctic Ocean) and implications for ocean colour remote sensing. Biogeosciences 2012, 9, 3213–3229. [Google Scholar]
- Falkowski, P.G.; Raven, J.A. Aquatic Photosynthesis; Blackwell Scientific Publishers: Oxford, UK, 1997; pp. 1–375. [Google Scholar]
- Schalles, J.F.; Gitelson, A.A.; Yacobi, Y.Z.; Kroenke, A.E. Estimation of Chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake. J. Phycol 1998, 34, 383–390. [Google Scholar]
- IOCCG. Status and Plans for Satellite Ocean-Colour Missions: Considerations for Complimentary Missions. In Reports of the International Ocean.-Colour. Coordinating Group, No. 2; Yoder, J.A., Ed.; IOCCG: Dartmouth, NS, Canada, 1999; p. 43. [Google Scholar]
- Gitelson, A.A. The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens 1992, 13, 3367–3373. [Google Scholar]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens 2011, 32, 6855–6899. [Google Scholar]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ 2012, 118, 116–126. [Google Scholar] [Green Version]
- Gilerson, A.A; Gitelson, A.A.; Zhou, J.; Gurlin, D.; Moses, W.J.; Ioannou, I.; Ahmed, S.A. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Opt. Express 2010, 18, 24109–24125. [Google Scholar]
- Gitelson, A.A.; Gao, B-C.; Li, R.-R.; Berdnikov, S.; Saprygin, V. Estimation of chlorophyll-a concentration in productive turbid waters using a Hyperspectral Imager for the Coastal Ocean—the Azov Sea case study. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Gurlin, D.; Gitelson, A.A.; Moses, W.J. Remote estimation of chl-a concentration in turbid productive waters—Return to a simple two-band NIR-red model? Remote Sens. Environ 2011, 115, 3479–3490. [Google Scholar]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Saprygin, V.; Povazhnyi, V. Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters—The Azov Sea case study. Remote Sens. Environ 2012, 121, 118–124. [Google Scholar]
- Pozdnyakov, D.; Korosov, A.; Grassl, H.; Pettersson, L. An advanced algorithm for operational retrieval of water quality from satellite data in the visible. Int. J. Remote Sens 2005, 26, 2669–2687. [Google Scholar]
- Moses, W.J.; Bowles, J.H.; Lucke, R.L.; Corson, M.R. Impact of signal-to-noise ratio in a hyperspectral sensor on the accuracy of biophysical parameter estimation in case II waters. Appl. Opt 2012, 20, 4309–4330. [Google Scholar]
- Lee, Z-P.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters. I. A Semi-analytical model. Appl. Opt 1998, 37, 6329–6338. [Google Scholar]
- Davis, C.O.; Kavanaugh, M.; Letelier, R.; Bissett, W.P.; Kohler, D. Spatial and spectral resolution considerations for imaging coastal waters. Proc. SPIE 2007, 6680. [Google Scholar] [CrossRef] [Green Version]
- Falkowski, P.G.; Katz, M.E.; Knoll, A.H.; Quigg, A.; Raven, J.A.; Schofield, O. The evolution of modern eukaryotic phytoplankton. Science 2004, 305, 354–360. [Google Scholar]
- Chesson, P.L.; Case, T.J. Nonequilibrium community theories: Chance, variability, history, and coexistence. Community Ecol 1986, 1, 229–239. [Google Scholar]
- DeAngelis, D.; Waterhouse, J.C. Equilibrium and nonequilibrium concepts in ecological models. Ecol. Monogr 1987, 57, 1–21. [Google Scholar]
- Moisan, T.; Sathyendranath, S.; Bouman, H.A. Ocean Color Remote Sensing of Phytoplankton Functional Types. In Remote Sensing of Biomass—Principles and Applications; InTech: Morn Hill, Winchester, UK, 2012; pp. 101–124. [Google Scholar]
- Bidigare, R.R.; Latasa, M.; Johnson, Z.; Barber, R.T.; Trees, C.C.; Balch, W.M. Observation of a Synechococcus.-dominated cyclonic eddy in open-oceanic waters of the Arabian Sea. Proc. SPIE 1990, 2963, 260–265. [Google Scholar]
- Bricaud, A.; Claustre, H.; Ras, J.; Oubelkheir, K. Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal population. J. Geophys. Res.: Oceans 2004, 109. [Google Scholar] [CrossRef]
- Hoepffner, N.; Sathyendranath, S. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter. J. Geophys. Res 1993, 98, 22789–22803. [Google Scholar]
- Bricaud, A.; Mejia, C.; Blondeau-Patissier, D.; Claustre, H.; Crepon, M.; Thiria, S. Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons. Appl. Opt 2007, 46, 1251–1260. [Google Scholar]
- Chazottes, A.; Crepon, M.; Bricaud, A.; Ras, J.; Thiria, S. Statistical analysis of absorption spectra of phytoplankton and of pigment concentrations observed during three POMME cruises using a neural network clustering method. Appl. Opt 2007, 46, 3790–3799. [Google Scholar]
- Balch, W.; Holligan, PM.; Ackleson, SG.; Voss, KJ. Biological and optical properties of mesoscale coccolithophore blooms. Limnol. Oceanogr 1991, 36, 629–643. [Google Scholar]
- Subramanian, A.; Carpenter, E.J.; Karentz, P.G.; Falkowski, P.G. Optical properties of the marine diazotrophic cyanobacteria Trichodesmium. spp. I. Absorption and spectral photosynthetic characteristics. Limnol. Oceanogr 1999, 44, 608–617. [Google Scholar]
- Sathyendranath, S.; Watts, L.; Devred, E. Discrimination of diatoms from other phytoplankton using ocean-colour data. Mar. Ecol. Prog. Ser 2004, 272, 59–68. [Google Scholar]
- Whitmire, A.L.; Pegau, W.S.; Karp-Boss, L.; Boss, E.; Cowles, T.J. Spectral backscattering properties of marine phytoplankton cultures. Opt. Express 2010, 18, 1680–1690. [Google Scholar]
- Moisan, J.R.; Moisan, T.A.H; Linkswiler, M.A. Estimating phytoplankton pigment concentrations from phytoplankton absorption spectra. J. Geophys. Res.: Oceans 2011, 116, 0148–0227. [Google Scholar]
- Devred, E.; Sathyendranath, S.; Stuart, V.; Maass, H.; Ulloa, O.; Platt, T. Bio-optics of the ocean: A two-component model of absorption by phytoplankton. J. Geophys. Res.: Oceans 2006, 111. [Google Scholar] [CrossRef]
- Ciotti, A.M.; Bricaud, A. Retrievals of a size parameter for phytoplankton and spectral light absorption by Colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil. Limnol. Oceanogr. Methods 2006, 4, 237–253. [Google Scholar]
- Hirata, T.; Aiken, J.; Hardman-Mountford, N.; Smyth, T.J.; Barlow, R. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens. Environ 2008, 112, 3153–3159. [Google Scholar]
- Devred, E.; Sathyendranath, S.; Stuart, S.; Platt, T. Absorption-derived phytoplankton cell size: Application to satellite ocean-colour data in the Northwest Atlantic. Remote Sens. Environ 2011, 115, 2255–2266. [Google Scholar]
- Alvain, S.; Moulin, C.; Dandonneau, Y. Remote sensing of phytoplankton groups in Case 1 waters from global SeaWiFS imagery. Deep Sea Res 2005, 52, 1989–2004. [Google Scholar]
- Bracher, A.; Vountas, M.; Dinter, T.; Burrows, J.P.; Röttgers, R.; Peeken, I. Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences 2009, 6, 751–764. [Google Scholar]
- Sadeghi, A.; Dinter, T.; Vountas, M.; Taylor, B.; Peeken, I.; Altenburg Soppa, M.; Bracher, A. Improvements to the PhytoDOAS method for identification of coccolithophores using hyperspectral satellite data. Ocean Sci 2012, 8, 1055–1070. [Google Scholar]
- Lubac, B.; Loisel, H.; Guiselin, N.; Astoreca, R.; Artigas, L.F.; Mériaux, X. Hyperspectral versus multispectral remote sensing approach to detect phytoplankton blooms in coastal waters: Application to a Phaeocystis globosa bloom. J. Geophys. Res.: Oceans 2008, 113. [Google Scholar] [CrossRef]
- Raitsos, D.E.; Lavender, S.J.; Maravelias, C.D.; Haralambous, J.; Richardson, A.J.; Reid, P.C. Identifying phytoplankton functional groups from space: an ecological approach. Limnol. Oceanogr 2008, 53, 605–613. [Google Scholar]
- Hu, C.; Cannizzaro, J.; Carder, K.L.; Muller-Karger, F.E.; Hardy, R. Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data. Remote Sens. Environ 2010, 114, 2048–2058. [Google Scholar]
- Anderson, D.M.; Alpermann, T.J.; Cembella, A.D.; Collos, Y.; Masseret, E.; Montresor, M. The globally distributed genus Alexandrium.: Multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 2012, 14, 10–35. [Google Scholar]
- Gower, J.; Doeffer, R.; Borstad, G. Interpretation of the 685 nm peak in water leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS. Int. J. Remote Sens 1999, 20, 1771–1786. [Google Scholar]
- Huot, Y.; Brown, C.A.; Cullen, J.J. Retrieval of phytoplankton biomass from simultaneous inversion of reflectance, the diffuse attenuation coefficient, and sun-induced fluorescence in coastal waters. J. Geophys. Res.: Oceans 2005, 112. doi: 10.10292006JC003794. [Google Scholar]
- Huot, Y.; Babin, M.; Bruyant, F.; Grob, C.; Twardowski, M.S.; Claustre, H. Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies? Biogeosciences 2007, 4, 853–868. [Google Scholar]
- Abbott, M.R.; Letelier, R.M. Algorithm Theoretical Basis Document Chlorophyll Fluorescence. MODIS Product Number 20; 1999. p. 42. Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod22.pdf (accessed on 03 December 2013).
- Gower, J.; King, S.; Goncalves, P. Global monitoring of plankton blooms using MERIS MCI. Int. J. Remote Sens 2008, 29, 6209–6216. [Google Scholar]
- Hu, C.; Müller-Karger, F.E.; Taylor, C.J.; Carder, K.L.; Kelble, C.; Johns, E.; Heil, C.A. Red tide detection and tracking using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sens. Environ 2005, 97, 311–321. [Google Scholar]
- McKee, D.; Cunningham, A.; Wright, D.; Hay, L. Potential impacts of nonalgal materials on water-leaving sun induced chlorophyll fluorescence signals in coastal waters. Appl. Opt 2007, 46, 7720–7729. [Google Scholar]
- Gilerson, A.; Zhou, J.; Hlaing, S.; Ioannou, I.; Schalles, J.; Gross, B.; Moshary, F; Ahmed, S. Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition. Opt. Express 2007, 15, 15702–15721. [Google Scholar]
- Falkowski, P.G.; Kiefer, D.A. Chlorophyll a fluorescence in phytoplankton: Relationship to photosynthesis and biomass. J. Plankton Res 1985, 7, 715–731. [Google Scholar]
- Behrenfeld, M.J.; Westberry, T.K.; Boss, E.; O’Malley, R.T.; Siegel, D.A.; Wiggert, J.D.; Franz, B.A.; McClain, C.R.; Feldman, G.C.; Doney, S.C.; et al. Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences 2009, 6, 779–794. [Google Scholar]
- Cleveland, J.S.; Perry, M.J. Quantum yield, relative specific absorption and fluorescence in nitrogen limited, Chaetoceros gracilis. Mar. Biol 1987, 94, 489–497. [Google Scholar]
- Moisan, T.A.; Olaizola, M.; Mitchell, B.G. Xanthophyll Cycling in Phaeocystis. antarctica Karsten.: Changes in Cellular Fluorescence. Mar. Ecol. Progr. Ser 1998, 169, 113–121. [Google Scholar]
- Westberry, T.K.; Siegel, D.A. Phytoplankton natural fluorescence in the Sargasso Sea: Prediction of primary production and eddy induced nutrient fluxes. Deep Sea Res 2003, 50, 417–434. [Google Scholar]
- Mestres, M.; Sierra, J.P.; Sánchez-Arcilla, A. Factors influencing the spreading of a low discharge river plume. Cont. Shelf Res 2007, 27, 2116–2134. [Google Scholar]
- Riegl, B.M.; Purkis, S.J. Model of coral population response to accelerated bleaching and mass mortality in a changing climate. Ecol. Model 2009, 220, 192–208. [Google Scholar]
- Stumpf, R.P.; Gelfenbaum, G.; Pennock, J.R. Wind and tidal forcing of a buoyant plume, Mobile Bay, Alabama. Cont. Shelf Res 1993, 13, 1281–1301. [Google Scholar]
- Wiseman, W.J., Jr.; Garvine, R.W. Plumes and coastal currents near large river mouths. Estuaries 1995, 18, 509–517. [Google Scholar]
- Blanton, J.; Amft, J.; Tisue, T. Response of a small-scale bottom-attached estuarine plume to wind and tidal dissipation. J. Coast. Res 1997, 13, 349–362. [Google Scholar]
- Purkis, S.; Klemas, V. Remote Sensing and Global Environmental Change; Wiley-Blackwell: Oxford, UK, 2011; pp. 1–384. [Google Scholar]
- Chang, G.C.; Dickey, T.D.; Schofield, O.M.; Weidemann, A.D.; Boss, E.; Pegau, W.S.; Moline, M.A.; Glenn, S.M. Nearshore physical processes and bio-optical properties in the New York Bight. J. Geophys. Res.: Oceans 2002, 107, 3133. [Google Scholar]
- Brando, V.E.; Dekker, A.G. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans. Geosci. Remote Sens 2003, 41, 1378–1387. [Google Scholar]
- Hochberg, E.J.; Mobley, C.D.; Park, Y.; Goodman, J.; Turpie, K.R.; Gao, B-C.; Bruce, C.F.; Green, R.O.; Knox, R.G.; Muller-Karger, F.E.; et al. HyspIRI Sunglint Subgroup Report; NASA White Paper, 2011; pp. 1–72. Available online: http://hyspiri.jpl.nasa.gov/downloads/2011_Sunglint_Report/2011_HyspIRI_Sunglint_Report_11-4.pdf (accessed on 03 December 2013).
- Steinmetz, F.; Deschamps, P-Y.; Ramon, D. Atmospheric correction in presence of sun glint: Application to MERIS. Opt. Express 2011, 19, 9783–9800. [Google Scholar]
- Babin, S.M.; Carton, J.A.; Dickey, T.D.; Wiggert, J.D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res.: Oceans 2004, 109. [Google Scholar] [CrossRef]
- Fischer, J. On the information content of multispectral radiance measurements over an ocean. Int. J. Remote Sens 1985, 6, 773–786. [Google Scholar]
- Gao, B-C. HyspIRI Visible to Short Wavelength Infrared (VSWIR) Water Leaving Reflectance. Algorithm Theoretical Basis Document;. 2010. Available online: http://hyspiri.jpl.nasa.gov/downloads/Algorithm_Theoretical_Basis/HyspIRI_Gao_ATBD-VSWIR_Water_8_2010_101109.pdf (accessed on 03 December 2013).
- Hu, C.; Feng, L.; Lee, Z-P.; Davis, C.O.; Mannino, A.; McClain, C.R.; Franz, B.A. Dynamic range and sensitivity requirements of satellite ocean color sensors: Learning from the past. Appl. Opt 2012, 51, 6045–6062. [Google Scholar]
- Lucke, R.L.; Corson, M.; McGlothlin, N.R.; Butcher, S.D.; Wood, D.L.; Korwan, D.R.; Li, R.R.; Snyder, W.A.; Davis, C.O.; Chen, D.T. Hyperspectral Imager for the Coastal Ocean: instrument description and first images. Appl. Opt 2011, 50, 1501–1516. [Google Scholar]
- Fargion, G.S.; McClain, C.R. The SeaWiFS Bio-optical Archive and Storage System (SeaBASS): Current Architecture and Implementation; NASA Tech. Memo. 2002–211617; Fargion, G.S.; McClain, C.R. NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2002; pp. 1–45. [Google Scholar]
- Werdell, P.J.; Bailey, S.W. An improved in situ data set for bio-optical algorithm development and ocean color satellite validation. Remote Sens. Environ 2005, 98, 122–140. [Google Scholar]
- Nikolakopoulos, K.G.; Karathanassi, V.; Rokos, D. Hyperspectral data and methods for coastal water mapping. Proc. SPIE 2006, 6359. [Google Scholar] [CrossRef]
- Braga, F.; Giardino, C.; Bassani, C.; Matta, E.; Candiani, G.; Strombeck, N.; Adamo, M.; Bresciani, M. Assessing water quality in the northern Adriatic Sea from HICO™ data. Remote Sens. Lett 2013, 4, 1028–1037. [Google Scholar]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Bowles, J.H.; Povazhnyi, V.; Saprygin, V.; Wagner, E.J.; Patterson, K.W. HICO-based NIR-red models for estimating chlorophyll-a concentration in productive coastal waters. IEEE Geosci. Remote Sens. Lett. 2013. [Google Scholar] [CrossRef]
VSWIR | TIR | |
---|---|---|
Spectral Range | 380 to 2500 nm | 3.98, 7.35, 8.28, 9.07,10.53, 11.33, and 12.05 μm |
Spectral Bandwidth | 10 nm, uniform over range | 0.084, 0.32, 0.34, 0.35,0.36, 0.54, 0.54, and 0.52 μm |
Radiometric Resolution | 14-bit | 14-bit |
Angular Field of View | 12° | 51° |
Altitude | 700 km | 700 km |
Swath Width | 145 km | 600 km |
Cross Track Samples | >2400 | 10,000 |
Spatial Resolution | 60 m (Depth < 50m) | 60 m (Depth < 50m) |
1 km (Depth > 50m) | 1 km (Depth > 50m) | |
Orbit | Polar Ascending | Polar Ascending |
Equatorial Crossing | 11:00 a.m. | 11:00 a.m. |
Equatorial Revisit | 19 days | 5 days |
Rapid Response | 3 days | 3 days |
Tilt | 4° West | 4° West |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Devred, E.; Turpie, K.R.; Moses, W.; Klemas, V.V.; Moisan, T.; Babin, M.; Toro-Farmer, G.; Forget, M.-H.; Jo, Y.-H. Future Retrievals of Water Column Bio-Optical Properties using the Hyperspectral Infrared Imager (HyspIRI). Remote Sens. 2013, 5, 6812-6837. https://doi.org/10.3390/rs5126812
Devred E, Turpie KR, Moses W, Klemas VV, Moisan T, Babin M, Toro-Farmer G, Forget M-H, Jo Y-H. Future Retrievals of Water Column Bio-Optical Properties using the Hyperspectral Infrared Imager (HyspIRI). Remote Sensing. 2013; 5(12):6812-6837. https://doi.org/10.3390/rs5126812
Chicago/Turabian StyleDevred, Emmanuel, Kevin R. Turpie, Wesley Moses, Victor V. Klemas, Tiffany Moisan, Marcel Babin, Gerardo Toro-Farmer, Marie-Hélène Forget, and Young-Heon Jo. 2013. "Future Retrievals of Water Column Bio-Optical Properties using the Hyperspectral Infrared Imager (HyspIRI)" Remote Sensing 5, no. 12: 6812-6837. https://doi.org/10.3390/rs5126812
APA StyleDevred, E., Turpie, K. R., Moses, W., Klemas, V. V., Moisan, T., Babin, M., Toro-Farmer, G., Forget, M. -H., & Jo, Y. -H. (2013). Future Retrievals of Water Column Bio-Optical Properties using the Hyperspectral Infrared Imager (HyspIRI). Remote Sensing, 5(12), 6812-6837. https://doi.org/10.3390/rs5126812