The Temporal-Spatial Distribution of Shule River Alluvial Fan Units in China Based on SAR Data and OSL Dating
Abstract
:1. Introduction
2. Study Area (SRAF) and Data
2.1. Location and Geologic Setting of the SRAF
2.2. SAR Dataset of the SRAF
2.3. Geological Survey Data of the SRAF
Unit-1
Unit-2
Unit-3
Unit-4
3. SAR Parameter Characteristics of the SRAF Units
3.1. SAR Data Preprocessing and Parameter Extraction Methods
3.1.1. SAR Data Preprocessing
3.1.2. Backscattering Coefficients of Typical Polarization States
3.1.3. Scattering Mechanism-Related Parameters
3.1.4. Polarimetric Parameters of the SAR Data
3.2. Backscattering Coefficients of the SRAF Units
3.3. Scattering Mechanism-Related Parameters of the SRAF
3.4. Polarimetric Parameters of the SRAF
4. Classification of the SRAF Units
5. Discussion
6. Conclusions
- (1)
- C-band SAR data are more suitable for distinguishing the alluvial fan units of different ages in the SRAF because of the shorter wavelength (5.4 cm) of C-band SAR data compared to that of L-band SAR data (23.6 cm). The most sensitive parameters in this study include the backscattering coefficients with a H-V linear polarization basis and with a R-L circular polarization basis and the scattering mechanism-related parameters entropy (H) and scattering-type angle (α).
- (2)
- Generally, the backscattering coefficients entropy (H) and scattering-type angle (α) follow a decreasing trend with increasing age. However, there are some differences in this pattern that are caused by differences in surface features, particularly by the existence of a bar-and-swale structure and sparsely distributed vegetation, which is capable of adding to the complexity of the backscattering return.
- (3)
- SAR data can be used to map the SRAF’s surface during a time period spanning the later portion of the Late Pleistocene to the Holocene, and obtain the temporal-spatial distribution of four alluvial unit (Unit-1,2,3,4), combined with the OSL dating results.
- (4)
- The main changes in geomorphic features from Unit-1 to Unit-4 include increases in gravel size and roundness, a decrease in spatial extension, and more developed bar-and-swale micro-topography. These changes are attributable to a mechanism of increasing stream-energy and decreasing water and sediment supply. This could be linked to both regional tectonic activities and paleoenvironmental changes. As a result, SAR data can provide valuable information for tectonic and paleoenvironmental research of the SRAF area.
Acknowledgments
Conflicts of Interest
References and Notes
- Dorn, R.I. The Role of Climatic Change in Alluvial Fan Development. In Geomorphology of Desert Environments, 2nd ed; Parsons, A.J., Abrahams, A.D., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 723–742. [Google Scholar]
- Nichols, K.K.; Bierman, P.R.; Foniri, W.R.; Gillespie, A.R.; Caffee, M.; Finkel, R. Dates and rates of arid region geomorphic processes. GSA Today 2006, 16, 4–11. [Google Scholar]
- Bull, W.B. Geomorphic Responses to Climatic Change; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Birkeland, P.W. Soils and Geomorphology; Oxford University Press: New York, NY, USA, 1984. [Google Scholar]
- Bull, W.B. The alluvial-fan environment. Prog. Phys. Geog 1977, 1, 222–270. [Google Scholar]
- Kiss, T.; Sümeghy, B.; Sipos, G. Late Quaternary paleodrainage reconstruction of the Maros River alluvial fan. Geomorphology 2014, 204, 49–60. [Google Scholar]
- Gómez-Paccard, M.; López-Blanco, M.; Costa, E.; Garcés, M.; Beamud, E.; Larrasoańa, J.C. Tectonic and climatic controls on the sequential arrangement of an alluvial fan/fan-delta complex (Montserrat, Eocene, Ebro Basin, NE Spain). Basin Res 2012, 24, 437–455. [Google Scholar]
- Macklin, M.G.; Lewin, J.; Woodward, J.C. The fluvial record of climate change. Phil. Trans. R. Soc. A 2012, 370, 2143–2172. [Google Scholar]
- Wells, S.G.; McFadden, L.D.; Dohrenwend, J.C. Influence of late Quaternary climatic changes on geomorphic and pedogenic processes on a desert piedmont, Eastern Mojave Desert, California. Quat. Res 1987, 27, 130–146. [Google Scholar]
- McFadden, L.D.; Ritter, J.B.; Wells, S.G. Use of multiparameter relative-age methods for age estimation and correlation of alluvial fan surfaces on a desert piedmont, eastern Mojave Desert, California. Quat. Res 1989, 32, 276–290. [Google Scholar]
- Guo, H. Radar Earth Observation Theory and Applications; (in Chinese); Science Press: Beijing, China, 2000. [Google Scholar]
- Zani, H.; Assine, M.L.; McGlue, M.M. Remote sensing analysis of depositional landforms in alluvial settings: Method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology 2012, 161–162, 82–92. [Google Scholar]
- Ferrier, G.; Pope, R.J.J. Quantitative mapping of alluvial fan evolution using ground-based reflectance spectroscopy. Geomorphology 2012, 175–176, 14–24. [Google Scholar]
- Le Page, M.; Berjamy, B.; Fakir, Y.; Bourgin, F.; Jarlan, L.; Abourida, A.; Benrhanem, M.; Jacob, G.; Huber, M.; Sghrer, F.; et al. An integrated DSS for groundwater management based on remote sensing. The case of a semi-arid aquifer in Morocco. Water Resour. Manag 2012, 26, 3209–3230. [Google Scholar]
- Farr, T.G.; Chadwick, O.A. Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun mountains, China. J. Geophys. Res 1996, 101, 23091–23100. [Google Scholar]
- Kierein-Young, K.S. The integration of optical and radar data to characterize mineralogy and morphology of surfaces in Death Valley, California, USA. Int. J. Remote Sens 1997, 18, 1517–1541. [Google Scholar]
- Wang, C.; Guo, H. Estimation of surface parameters from polarimetric SIR-C data (in Chinese). J. Remote Sens 1998, 2, 107–111. [Google Scholar]
- Liao, J.; Pang, Z. Surface Parameters Retrieval from Alluvial Fan in Ejina Area of Inner Mongolia Using Multi-polarization SAR Data. Proceedings of the IEEE International on Geoscience and Remote Sensing Symposium, IGARSS 2009, Cape Town, South Africa, 12–17 July 2009.
- Duarte, M.R.; Wozniak, E.; Recondo, C.; Cabo, C.; Marquínez, J.; Fernández, S. Estimation of surface roughness and stone cover in burnt soils using SAR images. Catena 2008, 74, 264–272. [Google Scholar]
- Zhang, L.; Guo, H.; Liao, J.; Han, C. Research on copolarized correlation characteristic from Bodunqi alluvial fan using full-polarized SAR data (in Chinese). Remote Sens. Technol. Appl 2008, 23, 385–388. [Google Scholar]
- Hung, W.-C.; Hwang, C.; Chen, Y.-A.; Chang, C.-P.; Yen, J.-Y.; Hooper, A.; Yang, C.-Y. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sens. Environ 2011, 115, 957–967. [Google Scholar]
- Catalano, S.; Bonforte, A.; Guglielmino, F.; Romagnoli, G.; Tarsia, C.; Tortorici, G. The influence of erosional processes on the visibility of Permanent Scatterers Features from SAR remote sensing on Mount Etna (E Sicily). Geomorphology 2013, 198, 128–137. [Google Scholar]
- Zhang, L.; Liao, J.J.; Guo, H.D.; Han, C.M. Retrieving surface characteristic of alluvial fan from shuttle imaging radar data based on genetic algorithm and backscattering model (in Chinese). Chin. High Technol. Letters 2008, 8, 851–856. [Google Scholar]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. Semi-empirical model of the ensemble-averaged differential mueller matrix for microwave backscattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens 2002, 40, 1348–1355. [Google Scholar]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens 1992, 30, 370–381. [Google Scholar]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag 2013, 1, 6–43. [Google Scholar]
- Werninghaus, R.; Buckreuss, S. The TerraSAR-X mission and system design. IEEE Trans. Geosci. Remote Sens 2010, 48, 606–614. [Google Scholar]
- Morena, L.C.; James, K.V.; Beck, J. An introduction to the RADARSAT-2 mission. Can. J. Remote Sens 2004, 30, 221–234. [Google Scholar]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote Sens 2007, 45, 3307–3316. [Google Scholar]
- Guo, H.; Li, X. Technical characteristics and potential application of the new generation SAR for earth observation (in Chinese). Chin. Sci. Bull 2011, 56, 1155–1168. [Google Scholar]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens 1997, 35, 68–78. [Google Scholar]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens 1996, 34, 498–518. [Google Scholar]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens 1998, 36, 963–973. [Google Scholar]
- Wang, P.; Lu, Y.; Ding, G.; Chen, J.; Karl, H.W. Response of the development of the Shule River alluvial fan to tectonic activity. Quat. Sci. 2004, 24, 74–81. [Google Scholar]
- Wang, P. Development of the Shule Alluvial-Fan and its Response to Tectonic Activity in Gansu Province, China—Characteristics of Neotectonic Activity of the East End of the Altyn Tagh Fault (in Chinese). Institute of Geology, China Earthquake Administration, Beijing, China, 2003. [Google Scholar]
- Mao, H.; Zhao, H.; Lu, Y.; Wang, C.; Zhang, K.; Yang, Z.; Liang, J. Pollen assemblages and environment evolution in shule river alluvial fan oasis of Gansu Province in Holocene. ACTA Geosci. Sin 2007, 28, 528–534. [Google Scholar]
- Huntley, D.J.; Godfrey-Smith, D.I.; Thewalt, M.L.W. Optical dating of sediments. Nature 1985, 313, 105–107. [Google Scholar]
- Jong-Sen, L.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Richard, J.A.; Jia, X. Remote Sensing Digital Image Analysis: An Introduction, 3rd ed; Springer: Berlin, Germany, 1999. [Google Scholar]
- Mather, P.; Tso, B. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Yao, T.; Thompson, L.G.; Shi, Y.; Qin, D.; Jiao, K.; Yang, Z.; Tian, L.; Thompson, E.M. Climate variation since the Last Interglaciation recorded in the Guliya ice core. Sci. China Ser. D: Earth Sci 1997, 40, 662–668. [Google Scholar]
- Wu, Y.; Yang, T.; Yu, Y.; Liu, X.; An, C.; Li, Y.; Su, X. Holocene climate change and the ancient culture response in central Hexi corridor (in Chinese). Arid Zone Res 2006, 23, 650–653. [Google Scholar]
SAR Sensor | Time | Band | Polarization | Resolution (m) | Incidence Angle (degree) |
---|---|---|---|---|---|
ALOS-PALSAR | 10 October 2009 | L | HH/HV | 15 | 39 |
ALOS-PALSAR | 10 October 2009 | L | HH/HV | 15 | 39 |
RADARSAT-2 | 8 July 2010 | C | HH/HV/VH/VV | 8 | 38 |
RADARSAT-2 | 18 November 2011 | C | HH/HV/VH/VV | 8 | 37 |
Fan Unit | Age | Surface Appearance | Desert Pavement Development | Gravel Characteristics | Relative Coverage * |
---|---|---|---|---|---|
Unit-1 | ∼11.3 ka Late Pleistocene | Smooth surface; nonexistent bar-and-swale morphology | Well developed | Very small size and poorly rounded gravel | 100% |
Unit-2 | ∼5.6 ka Middle Holocene | Smooth surface; nonexistent bar-and-swale morphology | Well developed | Small size and poorly rounded gravel | 90% |
Unit-3 | 0.8∼1.2 ka Late Holocene | Nearly smooth surface, with remnants of bar-and-swale pattern | Well developed | Medium size and medium-rounded gravel | 50% |
Unit-4 | 0.3∼0.6 ka Nearly present | Remnants of the abandoned gulch structure, with channels with finer-grained sand | Medium | Large size and well-rounded gravel | 25% |
Fan Unit | Backscattering Coefficients (dB)/Mean (std) | |||||||
---|---|---|---|---|---|---|---|---|
C-HH | C-HV | C-VV | C-RR | C-RL | C-LL | L-HH | L-HV | |
Unit-1 | −13.7 (0.8) | −21.4 (0.6) | −12.3 (0.7) | −20.0 (0.6) | −13.5 (0.8) | −20.1 (0.6) | −20.6 (0.9) | −29.2 (0.8) |
Unit-2 | −11.9 (0.9) | −18.8 (0.9) | −10.7 (0.9) | −17.9 (0.8) | −11.8 (1.0) | −17.9 (0.8) | −21.1 (1.5) | −29.5 (0.9) |
Unit-3 | −11.3 (1.0) | −17.0 (0.9) | −10.1 (0.9) | −16.3 (1.0) | −11.4 (1.0) | −16.4 (0.9) | −19.6 (1.1) | −28.9 (1.0) |
Unit-4 | −9.5 (0.9) | −15.1 (1.0) | −8.7 (0.9) | −14.6 (1.0) | −9.8 (0.9) | −14.6 (1.0) | −19.3 (1.3) | −29.0 (0.9) |
Fan Unit | Scattering Mechanism-Related Parameter | Degree of Polarization | Correlation Coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|
Entropy | Alpha | Anisotropy | C-H | C-V | C-R | C-L | HH-VV | RR-LL | |
Unit-1 | 0.51 (0.06) | 20.9 (2.8) | 0.27 (0.08) | 0.85 (0.03) | 0.89 (0.02) | 0.67 (0.06) | 0.68 (0.06) | 0.77 (0.04) | 0.29 (0.08) |
Unit-2 | 0.54 (0.08) | 22.4 (4.0) | 0.26 (0.10) | 0.82 (0.05) | 0.86 (0.04) | 0.63 (0.09) | 0.64 (0.09) | 0.76 (0.06) | 0.24 (0.10) |
Unit-3 | 0.62 (0.08) | 26.2 (4.3) | 0.25 (0.10) | 0.77 (0.06) | 0.82 (0.05) | 0.55 (0.10) | 0.55 (0.10) | 0.7 (0.07) | 0.22 (0.10) |
Unit-4 | 0.64 (0.07) | 26.5 (4.3) | 0.24 (0.09) | 0.76 (0.06) | 0.8 (0.05) | 0.53 (0.10) | 0.54 (0.10) | 0.7 (0.07) | 0.2 (0.10) |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, L.; Guo, H. The Temporal-Spatial Distribution of Shule River Alluvial Fan Units in China Based on SAR Data and OSL Dating. Remote Sens. 2013, 5, 6997-7016. https://doi.org/10.3390/rs5126997
Zhang L, Guo H. The Temporal-Spatial Distribution of Shule River Alluvial Fan Units in China Based on SAR Data and OSL Dating. Remote Sensing. 2013; 5(12):6997-7016. https://doi.org/10.3390/rs5126997
Chicago/Turabian StyleZhang, Lu, and Huadong Guo. 2013. "The Temporal-Spatial Distribution of Shule River Alluvial Fan Units in China Based on SAR Data and OSL Dating" Remote Sensing 5, no. 12: 6997-7016. https://doi.org/10.3390/rs5126997
APA StyleZhang, L., & Guo, H. (2013). The Temporal-Spatial Distribution of Shule River Alluvial Fan Units in China Based on SAR Data and OSL Dating. Remote Sensing, 5(12), 6997-7016. https://doi.org/10.3390/rs5126997