Slope Stability Assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated Using InSAR and GPS Observations
Abstract
:1. Introduction
2. Data and Methodology
2.1. InSAR Analysis
2.2. GPS Analysis
3. Results
3.1. InSAR Results
3.2. GPS Results
4. Discussion
5. Conclusion
Acknowledgments
Conflict of Interest
References
- Sidle, R.C.; Ochiai, H. Landslides: Processes, Prediction, and Land Use; American Geophysical Union: Washington, DC, USA, 2006; Volume 18, p. 312. [Google Scholar]
- Landslide in Iran. Available online: http://landslide.ir (accessed on 20 December 2012).
- National Geoscience Database of Iran. Available online: http://www.ngdir.ir/landslide/LandSlideInfo.asp (accessed on 20 December 2012).
- Greif, V.; Vlcko, J. Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia. Environ. Earth Sci 2012, 66, 1585–1595. [Google Scholar]
- Malet, J.-P.; Maquaire, O.; Calais, E. The use of Global Positioning System techniques for the continuous monitoring of landslides: Application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 2002, 43, 33–54. [Google Scholar]
- Brückl, E.; Brunner, F.; Kraus, K. Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng. Geol 2006, 88, 149–159. [Google Scholar]
- Delacourt, C.; Allemand, P.; Berthier, E.; Raucoules, D.; Casson, B.; Grandjean, P.; Pambrun, C.; Varel, E. Remote-sensing techniques for analysing landslide kinematics: A review. Bull. Soc. Geol. Fr 2007, 178, 89–100. [Google Scholar]
- Strozzi, T.; Ambrosi, C.; Raetzo, H. Interpretation of aerial photographs and satellite SAR interferometry for the inventory of landslides. Remote Sens 2013, 5, 2554–2570. [Google Scholar]
- Kimura, H.; Yamaguchi, Y. Detection of landslide areas using satellite radar interferometry. Photogramm. Eng. Remote Sensing 2000, 66, 337–344. [Google Scholar]
- Lacroix, P.; Zavala, B.; Berthier, E.; Audin, L. Supervised method of landslide inventory using panchromatic SPOT5 images and application to the earthquake-triggered landslides of Pisco (Peru, 2007, Mw8.0). Remote Sens 2013, 5, 2590–2616. [Google Scholar]
- Othman, A.A.; Gloaguen, R. River courses affected by landslides and implications for hazard assessment: A high resolution remote sensing case study in NE Iraq–W Iran. Remote Sens 2013, 5, 1024–1044. [Google Scholar]
- National Aeronautics and Space Administration. Rainfall Analysis Tools. Available online: http://disc2.nascom.nasa.gov/Giovanni/tovas/rain.GPCP.2.shtml (accessed on 11 January 2013).
- Water Science. Available online: http://waterscience.blogfa.com (accessed on 20 December 2012).
- Geological Survey of Iran. States Information. Available online: http://gsi.ir/States/Lang_en/StateId_51/Action_LastUpdate/index.html (accessed on 25 June 2011).
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic Publishers: New York, NY, USA, 2001. [Google Scholar]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys 1998, 36, 441–500. [Google Scholar]
- Strozzi, T.; Farina, P.; Corsini, A.; Ambrosi, C.; Thüring, M.; Zilger, J.; Wiesmann, A.; Wegmüller, U.; Werner, C. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2005, 2, 193–201. [Google Scholar]
- Tantianuparp, P.; Shi, X.; Zhang, L.; Balz, T.; Liao, M. Characterization of landslide deformations in three gorges area using multiple InSAR data stacks. Remote Sens 2013, 5, 2704–2719. [Google Scholar]
- Motagh, M.; Wetzel, H.-U.; Roessner, S.; Kaufmann, H. A TerraSAR-X InSAR study of landslides in southern Kyrgyzstan, Central Asia. Remote Sens. Lett 2013, 4, 657–666. [Google Scholar]
- Rott, H.; Scheuchl, B.; Siegel, A.; Grasemann, B. Monitoring very slow slope movements by means of SAR interferometry: A case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophys. Res. Lett 1999, 26, 1629–1632. [Google Scholar]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens 2013, 5, 1045–1065. [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens 2002, 40, 2375–2383. [Google Scholar]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An overview of the small baseline subset algorithm: A DInSAR technique for surface deformation analysis. Pure Appl. Geophys 2007, 164, 637–661. [Google Scholar]
- Akbari, V.; Motagh, M. Improved ground subsidence monitoring using small baseline SAR interferograms and a weighted least squares inversion algorithm. IEEE Geosci. Remote Sens. Lett 2012, 9, 437–441. [Google Scholar]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins, J. Global Positioning System. Theory and Practice; Springer: Wien, Austria, 1993; p. 347. [Google Scholar]
- Zhou, P.; Zhou, B.; Guo, J.; Li, D.; Ding, Z.; Feng, Y. A demonstrative GPS-aided automatic landslide monitoring system in sichuan province. J. Glob. Position. Syst 2005, 4, 184–191. [Google Scholar]
- Gili, J.A.; Corominas, J.; Rius, J. Using Global Positioning System techniques in landslide monitoring. Eng. Geol 2000, 55, 167–192. [Google Scholar]
- Squarzoni, C.; Delacourt, C.; Allemand, P. Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Eng. Geol 2005, 79, 215–229. [Google Scholar]
- Motagh, M.; Djamour, Y.; Walter, T.R.; Wetzel, H.U.; Zschau, J.; Arabi, S. Land subsidence in Mashhad Valley, northeast Iran: Results from InSAR, levelling and GPS. Geophys. J. Int 2006, 168, 518–526. [Google Scholar]
- Yin, Y.; Zheng, W.; Liu, Y.; Zhang, J.; Li, X. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides 2010, 7, 359–365. [Google Scholar]
- Strozzi, T.; Delaloye, R.; Kääb, A.; Ambrosi, C.; Perruchoud, E.; Wegmüller, U. Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Kampes, B.; Hanssen, R.; Perski, Z. Radar Interferometry with Public Domain Tools. Proceedings of FRINGE, ESA ESRIN, Frascati, Italy, 1–5 December 2003; Available online: http://earth.esa.int/fringe03/proceedings/papers/22_kampes.pdf (accessed on 25 May 2013).
- Farr, T.G.; Kobrick, M. The shuttle radar topography mission. Rev. Geophys 2007, 45. [Google Scholar] [CrossRef]
- Scharroo, R.; Visser, P. Precise orbit determination and gravity field improvement for the ERS satellites. J. Geophys. Res 1998, 103, 8113–8127. [Google Scholar]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- National Geodetic Survey. GPS Orbit Data. Available online: http://www.ngs.noaa.gov/orbits/orbit_data.shtml (accessed on 30 November 2012).
- Wesche, C.; Eisen, O.; Oerter, H.; Schulte, D.; Steinhage, D. Surface topography and ice flow in the vicinity of the EDML deep-drilling site, Antarctica. J. Glaciol 2007, 53, 442–448. [Google Scholar]
- Lowry, A.R.; Hamburger, M.W.; Meertens, C.M.; Ramos, E.G. GPS monitoring of crustal deformation at Taal Volcano, Philippines. J. Volcanol. Geotherm. Res 2001, 105, 35–47. [Google Scholar]
- Hessami, K.; Nilforoushan, F.; Talbot, C.J. Active deformation within the Zagros mountains deduced from GPS measurements. J. Geol. Soc 2006, 163, 143–148. [Google Scholar]
- McClusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Veis, G. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res.-Solid Earth 2000, 105, 5695–5719. [Google Scholar]
- Langbein, J. Noise in GPS displacement measurements from Southern California and Southern Nevada. J. Geophys. Res.-Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ 2006, 102, 195–210. [Google Scholar]
- Iran Water Resources Management Company. North Khorasan Province. Available online: http://wnkh.ir/showpage.aspx?pgid=8&ids=29&? (accessed on 11 January 2013).
No | Acquisition Date | Mission | Sensor | Orbit | Track | Pass |
---|---|---|---|---|---|---|
1 | 2004.03.23 | Envisat | ASAR | 10781 | 206 | Descending |
2 | 2004.06.01 | Envisat | ASAR | 11783 | 206 | Descending |
3 | 2004.09.14 | Envisat | ASAR | 11783 | 206 | Descending |
4 | 2004.10.19 | Envisat | ASAR | 13787 | 206 | Descending |
5 | 2004.11.23 | Envisat | ASAR | 14288 | 206 | Descending |
6 | 2004.12.28 | Envisat | ASAR | 14789 | 206 | Descending |
7 | 2005.02.01 | Envisat | ASAR | 15290 | 206 | Descending |
8 | 2005.03.08 | Envisat | ASAR | 15791 | 206 | Descending |
9 | 2005.04.12 | Envisat | ASAR | 16292 | 206 | Descending |
10 | 2005.05.17 | Envisat | ASAR | 16793 | 206 | Descending |
11 | 2005.06.21 | Envisat | ASAR | 17294 | 206 | Descending |
12 | 2005.07.26 | Envisat | ASAR | 17795 | 206 | Descending |
13 | 2005.08.30 | Envisat | ASAR | 18296 | 206 | Descending |
14 | 2005.10.04 | Envisat | ASAR | 18296 | 206 | Descending |
15 | 2005.11.08 | Envisat | ASAR | 19298 | 206 | Descending |
16 | 2006.02.21 | Envisat | ASAR | 20801 | 206 | Descending |
Point Name | Disp. Velocity (cm/year) | Standard Deviation (cm/year) |
---|---|---|
TS.3 | 0.1 | ±0.4 |
TS.4 | 0.1 | ±0.4 |
TS.7 | 0.2 | ±0.4 |
TS.8 | 0.2 | ±0.5 |
TS.9 | 0.0 | ±0.4 |
TS.10 | 0.2 | ±0.4 |
TS.12 | −0.4 | ±0.5 |
TS.13 | 0.3 | ±0.4 |
TS.14 | 0.2 | ±0.4 |
TS.16 | 0.2 | ±0.4 |
TS.17 | 0.2 | ±0.3 |
Point Name | Epoch 1 to 2 (5 Months) | Epoch 2 to 3 (3 Months) | Epoch 3 to 4 (8 Months) | |||
---|---|---|---|---|---|---|
E-W (mm) | N-S (mm) | E-W (mm) | N-S (mm) | E-W (mm) | N-S (mm) | |
BM1 | 0 ± 1 | 0 ± 1 | 0 ± 5 | 0 ± 7 | 0 ± 5 | 0 ± 8 |
BM2 | −2 ± 2 | 0 ± 2 | 1 ± 5 | 0 ± 7 | 0 ± 5 | −1 ± 8 |
BM3 | −6 ± 1 | −4 ± 2 | −3 ± 7 | 2 ± 9 | 4 ± 7 | −5 ± 9 |
Point Name | Epoch 1 to 2 (5 Months) | Epoch 3 to 4 (8 Months) | Epoch 2 to 3 (3 Months) | |||
---|---|---|---|---|---|---|
E-W(mm) | N-S (mm) | E-W (mm) | N-S (mm) | E-W (mm) | N-S (mm) | |
MP1 | −4 ± 4 | −2 ± 6 | −1 ± 4 | 3 ± 6 | 1 ± 4 | 2 ± 6 |
MP2 | −1 ± 4 | 6 ± 4 | −3 ± 6 | −4 ± 6 | 4 ± 4 | 6 ± 6 |
MP3 | −4 ± 4 | −2 ± 4 | −2 ± 12 | −3 ± 14 | 4 ± 12 | 7 ± 14 |
MP4 | −4 ± 4 | 0 ± 4 | 2 ± 6 | 1 ± 6 | −3 ± 6 | 3 ± 8 |
MP5 | 4 ± 4 | 12 ± 4 | −3 ± 4 | −4 ± 6 | 2 ± 4 | 4 ± 6 |
MP6 | −3 ± 2 | 3 ± 4 | 0 ± 2 | 0 ± 4 | 0 ± 4 | 1 ± 6 |
MP7 | −4 ± 2 | 4 ± 4 | 0 ± 4 | −4 ± 6 | −3 ± 4 | 2 ± 8 |
MP8 | −6 ± 6 | 4 ± 8 | −5 ± 4 | −1 ± 6 | 2 ± 4 | 1 ± 6 |
MP9 | −1 ± 2 | −3 ± 4 | −2 ± 4 | −4 ± 10 | 2 ± 4 | 7 ± 10 |
MP10 | −7 ± 6 | −1 ± 6 | 2 ± 4 | 3 ± 4 | −3 ± 4 | 1 ± 4 |
MP11 | −3 ± 4 | 1 ± 4 | −2 ± 4 | −1 ± 4 | 1 ± 4 | −1 ± 4 |
MP12 | −2 ± 4 | 2 ± 4 | 0 ± 4 | −3 ± 6 | −3 ± 4 | 4 ± 6 |
MP13 | −9 ± 2 | 6 ± 4 | −6 ± 2 | −1 ± 4 | −5 ± 2 | 6 ± 4 |
MP14 | −4 ± 2 | 1 ± 4 | 130 ± 2 | 57 ± 4 | 25 ± 2 | 17 ± 4 |
MP15 | −2 ± 2 | −2 ± 4 | −1 ± 4 | 2 ± 8 | −2 ± 4 | 2 ± 8 |
MP16 | −5 ± 2 | 1 ± 6 | 2 ± 4 | 2 ± 6 | −6 ± 4 | −3 ± 4 |
MP17 | −1 ± 4 | 0 ± 4 | −4 ± 4 | −1 ± 6 | 2 ± 4 | 4 ± 6 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Akbarimehr, M.; Motagh, M.; Haghshenas-Haghighi, M. Slope Stability Assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated Using InSAR and GPS Observations. Remote Sens. 2013, 5, 3681-3700. https://doi.org/10.3390/rs5083681
Akbarimehr M, Motagh M, Haghshenas-Haghighi M. Slope Stability Assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated Using InSAR and GPS Observations. Remote Sensing. 2013; 5(8):3681-3700. https://doi.org/10.3390/rs5083681
Chicago/Turabian StyleAkbarimehr, Mehrdad, Mahdi Motagh, and Mahmud Haghshenas-Haghighi. 2013. "Slope Stability Assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated Using InSAR and GPS Observations" Remote Sensing 5, no. 8: 3681-3700. https://doi.org/10.3390/rs5083681
APA StyleAkbarimehr, M., Motagh, M., & Haghshenas-Haghighi, M. (2013). Slope Stability Assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated Using InSAR and GPS Observations. Remote Sensing, 5(8), 3681-3700. https://doi.org/10.3390/rs5083681