Homogeneity Analysis of the CM SAF Surface Solar Irradiance Dataset Derived from Geostationary Satellite Observations
Abstract
:1. Introduction
2. CM SAF Surface Radiation Dataset
3. Reference Data
3.1. BSRN Measurements
3.2. ERA-Interim Reanalysis
4. Homogeneity Tests
4.1. Single-Break Detection
4.2. Multiple Break Detection
5. Analyses of Reference Data
5.1. BSRN Measurements
5.2. ERA-Interim Data
5.3. Discussion
6. Analyses of the CM SAF SIS Data Record
6.1. Analyses at BSRN Sites
6.2. Full Domain Analyses
6.3. Possible Causes of Discontinuities
7. Summary and Discussion
8. Conclusions
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ohmura, A. Observed decadal variations in surface solar radiation and their causes. J. Geophys. Res 2009, 114, D00D05. [Google Scholar]
- Ohmura, A.; Gilgen, H.; Hegner, H.; Mller, G.; Wild, M. Baseline Surface Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research. Bull. Am. Meteorol. Soc 1998, 79, 2115–2136. [Google Scholar]
- Wild, M. Global dimming and brightening: A review. J. Geophys. Res 2009, 114, D00D16. [Google Scholar]
- Wild, M. Enlightening global dimming and brightening. Bull. Am. Meteorol. Soc 2012, 93, 27–37. [Google Scholar]
- Cermak, J.; Wild, M.; Knutti, R.; Mishchenko, M.I.; Heidinger, A.K. Consistency of global satellite-derived aerosol and cloud data sets with recent brightening observations. Geophys. Res. Lett 2010, 37, L21704. [Google Scholar]
- Norris, J.R.; Wild, M. Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming,” and solar “brightening”. J. Geophys. Res 2007, 112, D08214. [Google Scholar]
- Müller, R.W.; Matsoukas, C.; Gratzki, A.; Behr, H.D.; Hollmann, R. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance—ALUT based eigenvector hybrid approach. Remote Sens. Environ 2009, 113, 1012–1024. [Google Scholar]
- Pinker, R.T.; Laszlo, I. Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteorol 1992, 31, 194–211. [Google Scholar]
- Posselt, R.; Mueller, R.; Stöckli, R.; Trentmann, J. Remote sensing of solar surface radiation for climate monitoring—the CM-SAF retrieval in international comparison. Remote Sens. Environ 2012, 118, 186–198. [Google Scholar]
- Wang, H.; Pinker, R.T. Shortwave radiative fluxes from MODIS: Model development and implementation. J. Geophys. Res 2009, 114, D20201. [Google Scholar]
- Zhang, Y.-C.; Rossow, W.B.; Lacis, A.A. Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets 1. Method and sensitivity to input data uncertainties. J. Geophys. Res 1995, 100, 1149–1165. [Google Scholar]
- Zhang, Y.; Rossow, W.B.; Lacis, A.A.; Oinas, V.; Mishchenko, M.I. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res 2004, 109, D19105. [Google Scholar]
- Stackhouse, P.W., Jr.; Gupta, S.K.; Cox, S.; Zhang, T.; Mikovitz, J.C.; Hinkelman, L.M. 24.5-year SRB data set released. GEWEX News 2011, 21, 10–12. [Google Scholar]
- Rossow, W.B.; Schiffer, R. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc 1999, 80, 2261–2287. [Google Scholar]
- Peterson, T.C.; Easterling, D.R.; Karl, T.R.; Groisman, P.; Nicholls, N.; Plummer, N.; Torok, S.; Auer, I.; Boehm, R.; Gullett, D.; et al. Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol 1998, 18, 1493–1517. [Google Scholar]
- Reeves, J.; Chena, J.; Wang, X.L.; Lund, R.; Lu, Q. A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Clim 2007, 46, 900–915. [Google Scholar]
- Venema, V.K.C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J.A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; et al. Benchmarking homogenization algorithms for monthly data. Clim. Past 2012, 8, 89–115. [Google Scholar]
- Wijngaard, J.B.; Tank, A.M.G.K.; Können, G.P. Homogeneity of the 20th century European daily temperature and precipitation series. Int. J. Climatol 2003, 23, 679–692. [Google Scholar]
- Moberg, A.; Alexandersson, H. Homogenization of swedish temperature data. part I: Homogenized gridded air temperature compared with a subset of global gridded air temperature since 1861. Int. J. Climatol 1997, 17, 35–54. [Google Scholar]
- Guentchev, G.; Barsugli, J.J.; Eischeid, J. Homogeneity of gridded precipitation datasets for the Colorado river basin. J. Appl. Meteorol. Clim 2010, 49, 2404–2415. [Google Scholar]
- Ferguson, C.; Villarini, G. Detecting inhomogeneities in the twentieth century reanalysis over the central United States. J. Geophys. Res 2012, 117, D05123. [Google Scholar]
- Sanchez-Lorenzo, A.; Wild, M.; Trentmann, J. Validation and stability assessment of the monthly mean CM SAF surface solar radiation data set over Europe against a homogenized surface dataset (1983–2005). Remote Sens. Environ 2013, 134, 355–366. [Google Scholar]
- Gilgen, H.; Wild, M.; Ohmura, A. Means and trends of shortwave irradiance at the surface estimated from GEBA. J. Clim 1998, 11, 2042–2061. [Google Scholar]
- Beyer, H.G.; Costanzo, C.; Heinemann, D. Modifications of the Heliosat procedure for irradiance estimates from satellite images. Solar Energy 1996, 56, 207–212. [Google Scholar]
- Cano, D.; Monget, J.M.; Albuisson, M.; Guillard, H.; Regas, N.; Wald, L. A method for the determination of the global solar radiation from meteorological satellite data. Solar Energy 1986, 37, 31–39. [Google Scholar]
- Hammer, A.; Heinemanna, D.; Hoyer, C.; Kuhlemann, R.; Lorenz, E.; Müller, R.; Beyer, H.G. Solar energy assessment using remote sensing technologies. Remote Sens. Environ 2003, 86, 423–432. [Google Scholar]
- Rigollier, C.; Lefèvre, M.; Wald, L. The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Solar Energy 2004, 77, 159–169. [Google Scholar]
- Diekmann, F.-J.; Happ, S.; Rieland, M.; Benesch, W.; Czeplak, G.; Kasten, F. An operational estimate of global solar irradiance at ground level from METEOSAT data: Results from 1985 to 1987. Meteorol. Rdsch 1988, 41, 65–79. [Google Scholar]
- Rigollier, C.; Lefèvre, M.; Blanc, P.; Wald, L. The operational calibration of images taken in the visible channel of the meteosat series of satellites. J. Atmos. Ocean. Technol 2002, 19, 1285–1293. [Google Scholar]
- Raschke, E.; Kinne, S.; Stackhouse, P.W. Gewex Radiative Flux Assessment (rfa); WCRP Report No. 19/2012.2012. World Climate Research Programme (WCRP): Geneva, Switzerland, 2012. Available online: http://www.wcrp-climate.org/documents/GEWEX%20RFA-Volume%201-report.pdf (accessed on 20 December 2013).
- Roesch, A.; Wild, M.; Ohmura, A.; Dutton, E.G.; Long, C.N.; Zhang, T. Assessment of BSRN radiation records for the computation of monthly means. Atmos. Meas. Tech 2011, 4, 339–354. [Google Scholar] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc 2011, 137, 553–597. [Google Scholar]
- Simmons, A.J.; Willett, K.M.; Jones, P.; Thorne, P.W.; Dee, D.P. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res.: Atmos 2010, 115, D01110. [Google Scholar]
- Alexandersson, H. A homogeneity test applied to precipitation data. Int. J. Climatol 1986, 6, 661–675. [Google Scholar]
- Alexandersson, H.; Moberg, A. Homogenization of swedish temperature data. part I: Homogeneity test for linear trends. Int. J. Climatol 1997, 17, 25–34. [Google Scholar]
- Buishand, T. Some methods for testing the homogeneity of rainfall records. J. Hydrol 1982, 58, 11–27. [Google Scholar]
- Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat 1979, 28, 126–135. [Google Scholar]
- Hawkins, D.M. Testing a sequence of observations for a shift in location. J. Am. Stat. Assoc 1977, 72, 180–186. [Google Scholar]
- Easterling, D.R.; Peterson, T.C. A new method for detecting undocumented discontinuities in climatological time series. Int. J. Climatol 1995, 15, 369–377. [Google Scholar]
- Govaerts, Y.M.; Clerici, M.; Clerbaux, N. Operational calibration of the meteosat radiometer VIS band. IEEE Trans. Geosci. Remote Sens 2004, 42, 1900–1914. [Google Scholar]
- Krähenmann, S.; Obregon, A.; Müller, R.; Trentmann, J.; Ahrens, B. A satellite-based surface radiation climatology derived by combining climate data records and near-real-time data. Remote Sens 2013, 5, 4693–4718. [Google Scholar]
Appendix A. Test Procedures
A.1. Buishand Range Test
A.2. Pettitt Test
Satellite | Start | End |
---|---|---|
Meteosat-2 | 16 August 1981 | 11 August 11 1988 |
Meteosat-3 | 11 August 1988 | 19 June 19 1989 |
Meteosat-4 | 19 June 1989 | 24 January 1990 |
Meteosat-3 | 24 January 1989 | 19 April 1990 |
Meteosat-4 | 19 April 1990 | 4 February 1994 |
Meteosat-5 | 4 February 1994 | 13 February 1997 |
Meteosat-6 | 13 February 1997 | 3 June 1998 |
Meteosat-7 | 3 June 1998 | 31 December 2005 |
Station | CAR | FLO | BER | LIN | PAY | PAY ASRB | ASRB vs. BSRN |
Start Date | 9/1996 | 7/1994 | 1/1992 | 10/1994 | 10/1992 | 1/1995 | 1/1995 |
SNHT: | |||||||
T0/Tc | 3.44/8.53 | 2.65/8.71 | 3.39/8.92 | 6.52/8.69 | 11.61/8.82 | 8.16/8.67 | 8.90/8.67 |
Date of Break | 2/2003 | (2/2003) | 5/1996 | ||||
Buishand: | |||||||
R/Rc | 1.04/1.62 | 1.32/1.63 | 1.06/1.63 | 1.48/1.63 | 1.39/1.63 | 1.29/1.63 | 1.03/1.63 |
Date of Break | (2/2003) | (2/2003) | (5/1996) | ||||
Pettitt: | |||||||
Xk0/Xc | 617/887 | 700/1,220 | 1,067/1,649 | 1,088/1,190 | 1,582/1,520 | 1,080/1,147 | 1,201/1,147 |
Date of Break | 1/2003 | (2/2003) | 5/1996 | ||||
Linear Trend | |||||||
[W·m−2·yr−1] | 0.59 ± 0.92 | 0.31 ± 0.87 | 0.23 ± 0.54 | 0.37 ± 0.82 | 0.98 ± 0.62 | 0.71 ± 0.84 | 0.06 ± 0.08 |
Station | CAR | FLO | BER | LIN | PAY | PAY ASRB |
Start Date | 9/1996 | 7/1994 | 1/1992 | 10/1994 | 10/1992 | 1/1995 |
SNHT: | ||||||
T0/Tc | 7.53/8.53 | 12.55/8.71 | 1.04/8.92 | 3.55/8.67 | 5.00/8.82 | 2.95/8.67 |
Date of Break | 5/1999 | |||||
Buishand: | ||||||
R/Rc | 1.21/1.62 | 2.21/1.63 | 0.83/1.63 | 1.11/1.63 | 1.34/1.63 | 1.28/1.63 |
Date of Break | 5/1999 | |||||
Pettitt: | ||||||
Xk0/Xc | 641/887 | 1,625/1,220 | 551/1,649 | 442/1,132 | 1,310/1,520 | 677/1,147 |
Date of Break | 5/1999 | |||||
Mean Bias | ||||||
W·m−2 | 4.4 | 8.6 | 7.1 | 5.0 | 7.4 | 7.3 |
Linear Trend | ||||||
[W·m−2·yr−1] | −0.30 ± 0.40 | 0.58 ± 0.56 | 0.00 ± 0.35 | 0.03 ± 0.37 | −0.26 ± 0.39 | 0.00 ± 0.50 |
Station | CAR | FLO | BER | LIN | PAY |
Start Date | 9/1996 | 7/1994 | 1/1992 | 10/1994 | 10/1992 |
SNHT: | |||||
T0/Tc | 4.78/8.53 | 2.56/8.71 | 5.44/8.92 | 7.67/8.69 | 8.12/8.82 |
Date of Break | (1/2003) | ||||
Buishand: | |||||
R/Rc | 1.12/1.62 | 1.25/1.63 | 1.54/1.63 | 1.57/1.63 | 1.18/1.63 |
Date of Break | (1/2003) | ||||
Pettitt: | |||||
Xk0/Xc | 742/887 | 607/1,220 | 1,485/1,649 | 1,156/1,190 | 1,268/1,520 |
Date of Break | (1/2003) | ||||
Linear Trend | |||||
[W· m−2· yr−1] | 0.81 ± 0.99 | 0.29 ± 0.88 | 0.31 ± 0.56 | 0.55 ± 0.86 | 0.66 ± 0.70 |
Station | CAR | FLO | BER | LIN | PAY BSRN | PAY ASRB |
Start Date | 9/1996 | 7/1994 | 1/1992 | 10/1994 | 10/1992 | 1/1995 |
SNHT: | ||||||
T0/Tc | 12.47/8.53 | 2.25/8.71 | 9.61/8.92 | 7.47/8.69 | 12.86/8.82 | 15.64/8.67 |
Date of Break | 8/2004 | 9/1993 | (4/2002) | 11/1997 | 2/1997 | |
Buishand: | ||||||
R/Rc | 1.45/1.62 | 1.11/1.63 | 1.92/1.63 | 1.52/1.63 | 1.94/1.63 | 1.92/1.63 |
Date of Break | (1/2003) | 9/1993 | (4/2002) | 9/1998 | 9/1998 | |
Pettitt: | ||||||
Xk0/Xc | 809/887 | 649/1,220 | 1,327/1,649 | 1,414/1,190 | 1,882/1,520 | 1,461/1,147 |
Date of Break | (1/2003) | (9/1993) | 4/2002 | 9/1998 | 9/1998 | |
Mean Bias | ||||||
[W· m−2] | 2.9 | 6.1 | 5.3 | 3.0 | 4.8 | 4.9 |
Linear Trend | ||||||
W·m−2·yr−1 | 0.22 ± 0.26 | −0.03 ± 0.42 | 0.04 ± 0.27 | 0.18 ± 0.21 | −0.32 ± 0.25 | −0.48 ± 0.34 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Brinckmann, S.; Trentmann, J.; Ahrens, B. Homogeneity Analysis of the CM SAF Surface Solar Irradiance Dataset Derived from Geostationary Satellite Observations. Remote Sens. 2014, 6, 352-378. https://doi.org/10.3390/rs6010352
Brinckmann S, Trentmann J, Ahrens B. Homogeneity Analysis of the CM SAF Surface Solar Irradiance Dataset Derived from Geostationary Satellite Observations. Remote Sensing. 2014; 6(1):352-378. https://doi.org/10.3390/rs6010352
Chicago/Turabian StyleBrinckmann, Sven, Jörg Trentmann, and Bodo Ahrens. 2014. "Homogeneity Analysis of the CM SAF Surface Solar Irradiance Dataset Derived from Geostationary Satellite Observations" Remote Sensing 6, no. 1: 352-378. https://doi.org/10.3390/rs6010352
APA StyleBrinckmann, S., Trentmann, J., & Ahrens, B. (2014). Homogeneity Analysis of the CM SAF Surface Solar Irradiance Dataset Derived from Geostationary Satellite Observations. Remote Sensing, 6(1), 352-378. https://doi.org/10.3390/rs6010352