Characterization of Land Transitions Patterns from Multivariate Time Series Using Seasonal Trend Analysis and Principal Component Analysis
Abstract
:1. Introduction
- (1)
- Most of the focus of previous studies has been on land cover change detection. Characterization of changes using multivariate surface state variables poses an acute problem. In particular, the complexity of relationships and the numbers of combinations of parameters increase rapidly as more variables and land cover types are added, making it challenging to extract the most important temporal patterns describing particular land change processes. The focus of this study is therefore on the development of a general method for temporal characterization of changes using burned areas as an example rather than the mapping or detection of burned areas. We use extensive ancillary information related to fire and its severity to evaluate if trends are meaningful in the context of fire disturbances and the literature. More specifically, there are two research questions investigated: (1) What combination of trends in surface variables characterize change areas that transitioned from the unburned to burned category? (2) How do combined patterns in NDVI, LST and ALB relate to ancillary information, such as land cover and the continuous variable of change-fire severity?
- (2)
- While the past research suggests that changes in NDVI-LST-ALB are intricately related by surface processes [20,52], to date, there are few studies that provide evidence of simultaneous changes in biophysical measurements at a landscape level, even though the literature has reported on biophysical changes locally at the individual fire area level [41] or regionally with a single variable [40,56]. This research overcomes this challenge by extracting the most common combination of biophysical changes occurring in burned areas with STA and PCA using times series over the 2001–2009 period in Alaska. The principal components extracted provide an empirical summary of characteristic changes in terms of seasonal trends for the three surface states variables. More broadly, our aim is to document and characterize biophysical changes occurring over the landscape level for the benefit of studies [27,28] engaged in understanding environmental changes in the Arctic system.
2. Materials and Methods
2.1. Study Area
2.2. Data Source
Product | Platform | Variables | Code Name | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|---|
MOD11A2 | Terra | Land Surface Temperature | LST | 1000 m | 8 Day |
MOD13A2 | Terra | Vegetation Index | NDVI | 1000 m | 16 Day |
MCD43B3 | Combined | Albedo | ALB | 1000 m | 16 Day |
MCD43B2 | Combined | Albedo quality | ALBQ | 1000 m | 16 Day |
MTBS | Landsat | Fire Severity Index (dNBR) | dNBR | 30 m | Annual |
MTBS | NA | Burned areas-Fire perimeters | BURNED | NA | annual |
MTBS | NA | Ignition date, Fire size | Severity | NA | Annual |
NLCD | Landsat | Land cover | LC | 30 m | NA |
2.3. Methods
- Delineate an area of selection for potential unburned candidate pixels for each scar.
- Allocate unburned candidate pixels to the closest fire scar and limit pixels to a threshold distance (20 km in this study).
- Randomly select pixels within the zone of selection.
Shape Parameter | Windowed Fourier Parameter and Interpretation |
---|---|
NDVI_A0 | Normalized Difference Vegetation Index Amplitude 0: Annual average relating to biomass |
NDVI_A1 | Normalized Difference Vegetation Index Amplitude 1: Annual amplitude of plant phenology, photosynthetic activity |
NDVI_A2 | Normalized Difference Vegetation Index Amplitude 2, semi-annual amplitude: Modifies the shape of the seasonal curve |
LST_A0 | Land surface temperature: Amplitude 0, annual average |
LST_A1 | Land surface temperature, Amplitude 1, annual amplitude: Related to annual insolation input and land cover |
LST_A2 | Land surface temperature, Amplitude 2, semi-annual amplitude: Modifies the shape of the seasonal curve |
ALB_A0 | Albedo Amplitude 0: Annual average corresponding to the fraction of visible and NIR reflected by the surface |
ALB_A1 | Albedo Amplitude 1: Annual variability corresponding to seasonal variation of surface albedo |
ALB_A2 | Albedo Amplitude 2, semi-annual amplitude: Modifies the shape of the seasonal curve |
2.4. Evaluation Analysis
2.4.1. Evaluation-Analysis of Trends Using PCA and Validation Using Ancillary Information
2.4.2. Evaluation-Determination of Number of Changes Using the SDTC Method
3. Results and Discussions
3.1. PCA Results: Variance Explained and Loadings Pattern
3.2. PCA Results: Evaluation Using Ancillary/Validation Information Related to Fire
3.2.1. Evaluating PC1 with the Continuous Variable of Change: dNBR Severity
3.2.2. PC1 Scores and Boolean Severity Derived from Fire Size and Date of Ignition
3.2.3. Interpreting PC1 in Terms of Land Cover Types and Black Spruce Forest
3.3. PC1 and Number of Changes in Biophysical Trends
3.4. PC2 and Burn Scar Age
3.5. Discussions
3.6. Uncertainties and Accuracy of the Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Franklin, S.E.; Wulder, M.A. Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas. Prog. Phys. Geog. 2002, 26, 173–205. [Google Scholar] [CrossRef]
- Kulik, I.; Hornsby, K.S.; Bishop, I.D. Modeling geospatial trend changes in vegetation monitoring data. Comput. Environ. Urban Syst. 2011, 35, 45–56. [Google Scholar] [CrossRef]
- Wulder, M.A.; Franklin, S.E.; White, J.C. Sensitivity of hyperclustering and labelling land cover classes to landsat image acquisition date. Int. J. Remote Sens. 2004, 25, 5337–5344. [Google Scholar] [CrossRef]
- Coops, N.C.; Wulder, M.A.; White, J.C. 2 Identifying and describing forest disturbance and spatial pattern. In Understanding Forest Disturbance and Spatial Pattern; CRC Press: Boca Rocan, FL, USA, 2007; pp. 31–61. [Google Scholar]
- Parmentier, B.; Eastman, J.R. Land transitions from multivariate time series: Using seasonal trend analysis and segmentation to detect land-cover changes. Int. J. Remote Sens. 2014, 35, 671–692. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Henebry, G.M. Land surface phenology and temperature variation in the international geosphere-biosphere program high-latitude transects. Glob. Change Biol. 2005, 11, 779–790. [Google Scholar] [CrossRef]
- Geng, L.; Ma, M.; Wang, X.; Yu, W.; Jia, S.; Wang, H. Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the heihe river basin, China. Remote Sens. 2014, 6, 2024–2049. [Google Scholar] [CrossRef]
- Hird, J.N.; McDermid, G.J. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sens. Environ. 2009, 113, 248–258. [Google Scholar] [CrossRef]
- Kandasamy, S.; Baret, F.; Verger, A.; Neveux, P.; Weiss, M. A comparison of methods for smoothing and gap filling time series of remote sensing observations: Application to MODIS LAI products. Biogeosci. Discuss. 2012, 9, 17053–17097. [Google Scholar] [CrossRef]
- Musial, J.P.; Verstraete, M.M.; Gobron, N. Technical note: Comparing the effectiveness of recent algorithms to fill and smooth incomplete and noisy time series. Atmos. Chem. Phys. 2011, 11, 7905–7923. [Google Scholar] [CrossRef] [Green Version]
- Eastman, J.R.; Sangermano, F.; Ghimire, B.; Zhu, H.; Chen, H.; Neeti, N.; Cai, Y.; Machado, E.A.; Crema, S.C. Seasonal trend analysis of image time series. Int. J. Remote Sens. 2009, 30, 2721–2726. [Google Scholar] [CrossRef]
- Cihlar, J. Land cover mapping of large areas from satellites: Status and research priorities. Int. J. Remote Sens. 2000, 21, 1093–1114. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Zhao, M.; Heinsch, F.A.; Running, S.W. A new satellite-based methodology for continental-scale disturbance detection. Ecol. Appl. 2007, 17, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Quaife, T.; Quegan, S.; Disney, M.; Lewis, P.; Lomas, M.; Woodward, F. Impact of land cover uncertainties on estimates of biospheric carbon fluxes. Glob. Biogeochem. Cy. 2008, 22. [Google Scholar] [CrossRef]
- Coops, N.C.; Wulder, M.A.; Iwanicka, D. Large area monitoring with a MODIS-based disturbance index (DI) sensitive to annual and seasonal variations. Remote Sens. Environ. 2009, 113, 1250–1261. [Google Scholar] [CrossRef]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.; Reichstein, M. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef]
- Jacquin, A.; Sheeren, D.; Lacombe, J.-P. Vegetation cover degradation assessment in madagascar savanna based on trend analysis of MODIS NDVI time series. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S3–S10. [Google Scholar] [CrossRef]
- Lambin, E. Land-cover categories versus biophysical attributes to monitor land-cover change by remote sensing. In Observing Land from Space: Science, Customers and Technology; Springer Netherlands: Berlin, Germany, 2000; pp. 137–142. [Google Scholar]
- Kabat, P. Vegetation, Water, Humans and the Climate: A New Perspective on an Internactive System; Springer: New York, NY, USA, 2004. [Google Scholar]
- Lambin, E.F. Monitoring forest degradation in tropical regions by remote sensing: Some methodological issues. Globalecol. Biogeogr. 1999, 8, 191–198. [Google Scholar] [CrossRef]
- Monteith, J.; Unsworth, M. Principles of Environmental Physics: Plants, Animals, and the Atmosphere, 4th ed.; Academic Press: Salt Lake City, UT, USA, 2013. [Google Scholar]
- Swann, A.L.; Fung, I.Y.; Levis, S.; Bonan, G.B.; Doney, S.C. Changes in Arctic Vegetation Amplify High-Latitude Warming through the Greenhouse Effect. Available online: http://www.pnas.org/content/107/4/1295.full (accessed on 26 January 2010).
- Betts, R.A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 2000, 408, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Chapin, F.S., 3rd; Sturm, M.; Serreze, M.C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; McGuire, A.D.; Rupp, T.S.; Lynch, A.H.; Schimel, J.P.; et al. Role of land-surface changes in arctic summer warming. Science 2005, 310, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Geist, H.J. Land-Use and Land-Cover Change; Springer: New York, NY, USA, 2006. [Google Scholar]
- Bunn, A.G.; Goetz, S.J. Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: The influence of seasonality, cover type, and vegetation density. Earth Interact. 2006, 10, 1–19. [Google Scholar] [CrossRef]
- Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, A.; Huntington, H.P. Evidence and implications of recent climate change in Northern Alaska and other arctic regions. Clim. Change 2005, 72, 251–298. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Tape, K.D.; Macias-Fauria, M.; Sass-Klaassen, U.; Lévesque, E. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Lupo, F.; Linderman, M.; Vanacker, V.; Bartholome, E.; Lambin, E. Categorization of land-cover change processes based on phenological indicators extracted from time series of vegetation index data. Int. J. Remote Sens. 2007, 28, 2469–2483. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ. 2007, 110, 370–386. [Google Scholar] [CrossRef]
- Sparks, T.H.; Menzel, A. Observed changes in seasons: An overview. Int. J. Climatol. 2002, 22, 1715–1725. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. B. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Harmonic Analysis of Time-Series AVHRR NDVI Data. Available online: http://kbs.ku.edu/media/uploads/work/Jakubauskas_PERS2001_Harmonic_analysis_of_time-series_AVHRR_NDVI_data.pdf (accessed on 5 October 2014).
- Moody, A.; Johnson, D.M. Land-surface phenologies from AVHRR using the discrete fourier transform. Remote Sens. Environ. 2001, 75, 305–323. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis; Springer Netherlands: Berlin, Germany, 1950. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Eastman, J.R. Idrisi Taiga Guide to GIS and Image Processing; Clark University: Worcester, MA, USA, 2009. [Google Scholar]
- Eastman, J.R.; Sangermano, F.; Machado, E.A.; Rogan, J.; Anyamba, A. Global trends in seasonality of Normalized Difference Vegetation Index (NDVI), 1982–2011. Remote Sens. 2013, 5, 4799–4818. [Google Scholar] [CrossRef]
- Liu, H.; Randerson, J.T.; Lindfors, J.; Chapin, F.S., III. Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; et al. The impact of boreal forest fire on climate warming. Science 2006, 314, 1130–1132. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, J.F.; Hollingsworth, T.N.; Chapin, F.S.; Mack, M.C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 2010, 16, 1281–1295. [Google Scholar] [CrossRef]
- Epting, J.; Verbyla, D. Landscape-level interactions of prefire vegetation, burn severity, and postfire vegetation over a 16-year period in interior Alaska. Can. J. Forest Res. 2005, 35, 1367–1377. [Google Scholar] [CrossRef]
- Chambers, S.; Chapin, F. Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems: Implications for feedbacks to regional climate. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Kasischke, E.; French, N. Constraints on using avhrr composite index imagery to study patterns of vegetation cover in boreal forests. Int. J Remote Sens. 1997, 18, 2403–2426. [Google Scholar] [CrossRef]
- Lyons, E.A.; Jin, Y.; Randerson, J.T. Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Bourgeau-Chavez, L.L.; Johnstone, J.F. Assessing spatial and temporal variations in surface soil moisture in fire-disturbed black spruce forests in interior Alaska using spaceborne synthetic aperture radar imagery—Implications for post-fire tree recruitment. Remote Sens. Environ. 2007, 108, 42–58. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.; Kasischke, E.; Riordan, K.; Brunzell, S.; Nolan, M.; Hyer, E.; Slawski, J.; Medvecz, M.; Walters, T.; Ames, S. Remote monitoring of spatial and temporal surface soil moisture in fire disturbed boreal forest ecosystems with ERS SAR imagery. Int. J. Remote Sens. 2007, 28, 2133–2162. [Google Scholar] [CrossRef]
- Balshi, M.S.; McGuire, A.D.; Zhuang, Q.; Melillo, J.; Kicklighter, D.W.; Kasischke, E.; Wirth, C.; Flannigan, M.; Harden, J.; Clein, J.S.; et al. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Foley, J.A. Tipping points in the tundra. Science 2005, 310, 627–628. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Ehrlich, D. Land-cover changes in sub-Saharan Africa (1982–1991): Application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sens. Environ. 1997, 61, 181–200. [Google Scholar] [CrossRef]
- Nemani, R.; Running, S. Land cover characterization using multitemporal red, near-IR, and thermal-IR data from NOAA/AVHRR. Ecol. Appl. 1997, 7, 79–90. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. The yearly land cover dynamics (YLCD) method: An analysis of global vegetation from NDVI and LST parameters. Remote Sens. Environ. 2009, 113, 329–334. [Google Scholar] [CrossRef]
- Kaufmann, R.; Zhou, L.; Myneni, R.; Tucker, C.; Slayback, D.; Shabanov, N.; Pinzon, J. The effect of vegetation on surface temperature: A statistical analysis of ndvi and climate data. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Betts, A.K.; Ball, J.H. Albedo over the boreal forest. J. Geophys. Res. Atmos. 1997, 102, 28901–28909. [Google Scholar] [CrossRef]
- Beck, P.S.A.; Goetz, S.J.; Mack, M.C.; Alexander, H.D.; Jin, Y.; Randerson, J.T.; Loranty, M.M. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Glob. Change Biol. 2011, 17, 2853–2866. [Google Scholar] [CrossRef]
- Susan, S. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Serreze, M.; Walsh, J.; Chapin, F.S.; Osterkamp, T.; Dyurgerov, M.; Romanovsky, V.; Oechel, W.; Morison, J.; Zhang, T.; Barry, R. Observational evidence of recent change in the northern high-latitude environment. Clim. Change 2000, 46, 159–207. [Google Scholar] [CrossRef]
- Angert, A.; Biraud, S.; Bonfils, C.; Henning, C.; Buermann, W.; Pinzon, J.; Tucker, C.; Fung, I. Drier Summers Cancel out the CO2 Uptake Enhancement induced by Warmer Springs. Available online: http://www.pnas.org/content/102/31/10823.full (accessed on 2 August 2005).
- Osterkamp, T.; Romanovsky, V. Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafrost Periglac. 1999, 10, 17–37. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Racine, C.H.; Walters, J.C.; Osterkamp, T.E. Permafrost degradation and ecological changes associated with a warming climate in Central Alaska. Clim. Change 2001, 48, 551–579. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Hinzman, L.D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska. Permafrost Periglac. 2003, 14, 151–160. [Google Scholar] [CrossRef]
- Malmström, C.M.; Raffa, K.F. Biotic disturbance agents in the boreal forest: Considerations for vegetation change models. Glob. Change Biol. 2002, 6, 35–48. [Google Scholar] [CrossRef]
- Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate change and forest disturbances. BioScience 2001, 51, 723–734. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Verbyla, D.L.; Rupp, T.S.; McGuire, A.D.; Murphy, K.A.; Jandt, R.; Barnes, J.L.; Hoy, E.E.; Duffy, P.A.; Calef, M.; et al. Alaska’s changing fire regime—Implications for the vulnerability of its boreal forests. Can. J. Forest Res. 2010, 40, 1313–1324. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 2010, 4, 27–31. [Google Scholar] [CrossRef]
- Tape, K.E.N.; Sturm, M.; Racine, C. The evidence for shrub expansion in Northern Alaska and the pan-arctic. Glob. Change Biol. 2006, 12, 686–702. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Oswood, M.W.; Van Cleve, K.; Verbyla, D. Alaska Changing Boreal Forest; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Harden, J.; Trumbore, S.; Stocks, B.; Hirsch, A.; Gower, S.; O’neill, K.; Kasischke, E. The role of fire in the boreal carbon budget. Glob. Change Biol. 2002, 6, 174–184. [Google Scholar] [CrossRef]
- Shenoy, A.; Johnstone, J.F.; Kasischke, E.S.; Kielland, K. Persistent effects of fire severity on early successional forests in interior Alaska. Forest Ecol. Manag. 2011, 261, 381–390. [Google Scholar] [CrossRef]
- Bachelet, D.; Lenihan, J.; Neilson, R.; Drapek, R.; Kittel, T. Simulating the response of natural ecosystems and their fire regimes to climatic variability in Alaska. Can. J. Forest Res. 2005, 35, 2244–2257. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; D'amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C. Terrestrial ecoregions of the world: A new map of life on earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Wan, Z. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD). Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf (accessed on 5 October 2014).
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Land Processes Distributed Active Archive Center (LP DAAC). MODIS Data Products Table. Available online: https://lpdaac.usgs.gov/products/modis_products_table (accessed on 5 October 2014).
- MTBS. Monitoring Trends in Burn Severity. Available online: http://www.mtbs.gov/ (accessed on 10 December 2010).
- French, N.H.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildland Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
- Homer, C.; Huang, C.; Yang, L.; Wylie, B.K.; Coan, M. Development of a 2001 national land-cover database for the United States. Photogramm. Eng. Remote Sens. 2004, 70. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Hoy, E.E. Controls on carbon consumption during Alaskan wildland fires. Glob. Change Biol. 2012, 18, 685–699. [Google Scholar] [CrossRef]
- Neeti, N.; Eastman, J.R. A contextual mann-kendall approach for the assessment of trend significance in image time series. Trans. GIS 2011, 15, 599–611. [Google Scholar] [CrossRef]
- Hoaglin, D.C.M.; John, W. Understanding Robust and Exploratory Data Analysis; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Jolliffe, I. Principal Component Analysis; Wiley Online Library: New York, NY, USA, 2005. [Google Scholar]
- Jaccard, J.; Turrisi, R. Interaction Effects in Multiple Regression; Sage Publications: Thousands Oaks, CA, USA, 2003. [Google Scholar]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S. A Project for Monitoring Trends in Burn Severity. Available online: http://naldc.nal.usda.gov/naldc/download.xhtml?id=16261&content=PDF (accessed on 5 October 2014).
- Allen, J.L.; Sorbel, B. Assessing the differenced normalized burn ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildland Fire 2008, 17, 463–475. [Google Scholar] [CrossRef]
- Hoy, E.E.; French, N.H.; Turetsky, M.R.; Trigg, S.N.; Kasischke, E.S. Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests. Int. J. Wildland Fire 2008, 17, 500–514. [Google Scholar] [CrossRef]
- Murphy, K.A.; Reynolds, J.H.; Koltun, J.M. Evaluating the ability of the delta normalized burn ratio (DNBR) to predict ecologically significant burn severity in Alaskan boreal forests. Int. J. Wildland Fire 2008, 17, 490–499. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Hyer, E.J.; Novelli, P.C.; Bruhwiler, L.P.; French, N.H.F.; Sukhinin, A.I.; Hewson, J.H.; Stocks, B.J. Influences of boreal fire emissions on northern hemisphere atmospheric carbon and carbon monoxide. Glob. Biogeochem. Cy. 2005, 19. [Google Scholar] [CrossRef]
- Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D. Analysis of Alaskan burn severity patterns using remotely sensed data. Int. J. Wildland Fire 2007, 16, 277–284. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Turetsky, M.R.; Ottmar, R.D.; French, N.H.; Hoy, E.E.; Kane, E.S. Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests. Int. J. Wildland Fire 2008, 17, 515–526. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parmentier, B. Characterization of Land Transitions Patterns from Multivariate Time Series Using Seasonal Trend Analysis and Principal Component Analysis. Remote Sens. 2014, 6, 12639-12665. https://doi.org/10.3390/rs61212639
Parmentier B. Characterization of Land Transitions Patterns from Multivariate Time Series Using Seasonal Trend Analysis and Principal Component Analysis. Remote Sensing. 2014; 6(12):12639-12665. https://doi.org/10.3390/rs61212639
Chicago/Turabian StyleParmentier, Benoit. 2014. "Characterization of Land Transitions Patterns from Multivariate Time Series Using Seasonal Trend Analysis and Principal Component Analysis" Remote Sensing 6, no. 12: 12639-12665. https://doi.org/10.3390/rs61212639
APA StyleParmentier, B. (2014). Characterization of Land Transitions Patterns from Multivariate Time Series Using Seasonal Trend Analysis and Principal Component Analysis. Remote Sensing, 6(12), 12639-12665. https://doi.org/10.3390/rs61212639