Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data
Abstract
:1. Introduction
Country | Area (km2) * | Population * | GDP (Per Capita in US $) * | Irrigated area (% of Arable Land) ** |
---|---|---|---|---|
Kazakhstan | 2,724,900 | 16,724,000 | 14,570 | 6% |
Kyrgyzstan | 198,974 | 5,700,000 | 1343 | 3% |
Tajikistan | 141,949 | 8,354,000 | 988 | 35% |
Turkmenistan | 488,962 | 5,796,000 | 6602 | 31% |
Uzbekistan | 432,544 | 29,893,000 | 2123 | 89% |
2. Data Sources
Satellite(s)—Instrument(s) | Operational since/until | Revisit Time | Spatial Resolution | Swath Width |
---|---|---|---|---|
Landsat MSS/TM/ETM+/OLI | 1972/Today | 16–18 days | 30–100 m | 185 km |
Terra, Aqua-MODIS | 2000/Today | Twice per day | 250–1000 m | 2330 km |
TIROS/NOAA/Metop AVHRR | 1978/Today | At least daily | 1100 m | 2400 km |
Envisat/AATSR | 2002/2012 | 2–3 days | 1000 m | 500 km |
Envisat/MERIS | 2002/2012 | 2–3 days | 300 m | 1150 km |
ERS-2/ATSR-2 | 1995/2011 | 2–3 days | 1000 m | 512 km |
Sentinel 2 | to be launched in 2015 | 3–5 days | 10–60 m | 290 km |
Sentinel 3-OLCI/SLSTR | to be launched in 2015 | 1–2 days | 300–500 m | 1270 km |
Suomi-NPP-VIIRS | 2011/Today | Daily | 375–750 m | 3040 km |
2.1. AVHRR Data
Channel * | TIROS-N | NOAA-6, -8, -10 | NOAA-7, -9, -11, -12, -14 ** | NOAA-15, -16, -17, -18, -19 |
---|---|---|---|---|
1 (VIS) | 0.55–0.90 | 0.58–0.68 | 0.58–0.68 | 0.58–0.68 |
2 (NIR) | 0.725–1.10 | 0.725–1.10 | 0.725–1.10 | 0.725–1.00 |
3A (MIR) | - | - | - | 1.58–1.64 |
3B (MIR) | 3.55–3.93 | 3.55–3.93 | 3.55–3.93 | 3.55–3.93 |
4 (TIR) | 10.50–11.50 | 10.50–11.50 | 10.30–11.30 | 10.30–11.30 |
5 (TIR) | - | - | 11.50–12.50 | 11.50–12.50 |
Operational | May 1978–January 1980 | June 1979–September 1991 | August 1981–October 2002 | October 1998–present |
2.2. MODIS Daily Snow Cover Products MOD10A1/MYD10A1
3. Processing Methods and Validation Results
3.1. AVHRR (Pre-)Processing
3.2. Estimation of Snow Cover Status below Clouds
3.3. Calculation of Snow Cover Parameters SCD, SCDES, and SCDLS
3.4. Validation
AVHRR Snow Products | Landsat Reference Maps | Total | Users Accuracy | |||||
---|---|---|---|---|---|---|---|---|
Snow | Land | Snow < 2 km | Land < 2 km | Water/Ice | Clouds | |||
Snow | 56417 | 1531 | 0 | 0 | 0 | 0 | 57948 | 0.97 |
Land | 2671 | 222905 | 0 | 0 | 266 | 0 | 225842 | 0.98 |
Snow < 2 km | 0 | 0 | 42100 | 12279 | 0 | 0 | 54379 | 0.77 |
Land < 2 km | 0 | 0 | 22289 | 50292 | 0 | 0 | 72581 | 0.69 |
Water/Ice | 0 | 401 | 0 | 0 | 142 | 0 | 543 | 0.26 |
Clouds | 48925 | 29713 | 58288 | 44883 | 0 | 0 | 181809 | N/A |
Total | 108013 | 254550 | 122677 | 107454 | 408 | 0 | 593102 | |
Produce Accuracy | 0.52 | 0.87 | 0.34 | 0.46 | 0.34 | N/A | ||
Overall Accuracy: 62.69% | Clear-sky Accuracy: 90.40% | |||||||
Khat: 0.52 | Clear-sky Khat: 0.84 |
4. Results
Catchment | SCDES Slope * | SCDLS Slope * | SCD Slope * |
---|---|---|---|
Amu Darya Upstream | 0.57 | −0.40 | 0.44 |
Amu Darya Middle Stream | 0.22 | −0.32 | 0.03 |
Amu Darya Downstream | 0.25 | 0.17 | 0.49 |
Syr Darya Upstream | 0.58 | −0.36 | 0.36 |
Syr Darya Middle Stream | 0.40 | −0.41 | −0.04 |
Syr Darya Downstream | 0.75 | 0.03 | 0.98 |
Issyk Kul | 0.72 | −0.27 | 0.73 |
Ili River | 0.73 | −0.30 | 0.22 |
Lake Balkhash | 0.99 | −0.06 | 1.09 |
Elevation | SCDES Slope * | SCDLS Slope * | Share ** | Elevation | SCDES Slope * | SCDLS Slope * | Share ** |
---|---|---|---|---|---|---|---|
0–100 m | 0.76 | 0.43 | 14.99 | 3501–3600 m | 1.10 | −0.32 | 0.28 |
101–200 m | 1.28 | 0.51 | 23.56 | 3601–3700 m | 1.15 | −0.26 | 0.26 |
201–300 m | 1.46 | 0.53 | 15.50 | 3701–3800 m | 1.23 | −0.24 | 0.25 |
301–400 m | 1.63 | 0.54 | 9.62 | 3801–3900 m | 1.33 | −0.06 | 0.24 |
401–500 m | 1.38 | 0.54 | 9.56 | 3901–4000 m | 1.32 | −0.10 | 0.23 |
501–600 m | 1.42 | 0.49 | 4.79 | 4001–4100 m | 1.26 | −0.03 | 0.21 |
601–700 m | 1.34 | 0.42 | 3.59 | 4101–4200 m | 1.06 | −0.16 | 0.20 |
701–800 m | 1.26 | 0.33 | 2.61 | 4201–4300 m | 1.07 | −0.06 | 0.18 |
801–900 m | 1.34 | 0.34 | 1.84 | 4301–4400 m | 1.12 | −0.04 | 0.16 |
901–1000 m | 1.34 | 0.36 | 1.19 | 4401–4500 m | 1.19 | 0.01 | 0.14 |
1001–1100 m | 1.27 | 0.43 | 0.78 | 4501–4600 m | 1.23 | 0.05 | 0.13 |
1101–1200 m | 1.21 | 0.53 | 0.57 | 4601–4700 m | 1.28 | 0.09 | 0.11 |
1201–1300 m | 1.14 | 0.47 | 0.46 | 4701–4800 m | 1.40 | 0.15 | 0.09 |
1301–1400 m | 1.10 | 0.46 | 0.40 | 4801–4900 m | 1.37 | 0.16 | 0.08 |
1401–1500 m | 1.08 | 0.42 | 0.37 | 4901–5000 m | 1.38 | 0.28 | 0.07 |
1501–1600 m | 1.02 | 0.34 | 0.33 | 5001–5100 m | 1.48 | 0.41 | 0.05 |
1601–1700 m | 1.21 | 0.36 | 0.37 | 5101–5200 m | 1.62 | 0.54 | 0.04 |
1701–1800 m | 1.16 | 0.30 | 0.34 | 5201–5300 m | 1.58 | 0.57 | 0.03 |
1801–1900 m | 1.02 | 0.18 | 0.35 | 5301–5400 m | 1.59 | 0.62 | 0.02 |
1901–2000 m | 0.97 | 0.13 | 0.34 | 5401–5500 m | 1.58 | 0.58 | 0.01 |
2001–2100 m | 0.90 | 0.01 | 0.32 | 5501–5600 m | 1.52 | 0.67 | 0.01 |
2101–2200 m | 0.83 | −0.04 | 0.30 | 5601–5700 m | 1.52 | 0.66 | 0.00 |
2201–2300 m | 0.80 | −0.12 | 0.28 | 5701–5800 m | 1.18 | 0.81 | 0.00 |
2301–2400 m | 0.80 | −0.15 | 0.27 | 5801–5900 m | 1.16 | 0.76 | 0.00 |
2401–2500 m | 0.78 | −0.21 | 0.26 | 5901–6000 m | 1.07 | 0.83 | 0.00 |
2501–2600 m | 0.75 | −0.22 | 0.26 | 6001–6100 m | 0.85 | 0.69 | 0.00 |
2601–2700 m | 0.75 | −0.27 | 0.25 | 6101–6200 m | 0.56 | 0.55 | 0.00 |
2701–2800 m | 0.75 | −0.31 | 0.25 | 6201–6300 m | 0.67 | 0.72 | 0.00 |
2801–2900 m | 0.72 | −0.36 | 0.24 | 6301–6400 m | 0.34 | 0.72 | 0.00 |
2901–3000 m | 0.76 | −0.40 | 0.25 | 6401–6500 m | 0.55 | 0.82 | 0.00 |
3001–3100 m | 0.81 | −0.38 | 0.26 | 6501–6600 m | 0.43 | 0.68 | 0.00 |
3101– 3200 m | 0.87 | −0.38 | 0.28 | 6601–6700 m | 0.62 | 0.60 | 0.00 |
3201–3300 m | 0.87 | −0.38 | 0.28 | 6701–6800 m | 0.22 | 0.33 | 0.00 |
3301–3400 m | 0.96 | −0.35 | 0.28 | 6801–6900 m | 1.56 | 0.20 | 0.00 |
3401–3500 m | 0.99 | −0.32 | 0.27 |
5. Discussions
- The general characteristics of SCD within Central Asia. Figure 8 depicts the mean SCD between 2000/2001 and 2013/2014 for the main catchments areas (Figure 8 (a–c)) as well as for the whole area of Central Asia (Figure 8d). SCD increases by around four days per 100 m elevation. The mountainous regions in the south and southeast contain the highest values of SCD. The glaciers of Central Asia are located in this region too. It is the origin of the most significant rivers of Central Asia: Amu Darya, Syr Darya, and Ili River. In the plains, SCD increases by around 5 days per degree latitude until mean SCD reaches 140 in the most northern parts (at around 54° N). Figure 8 (a–d) describe the SCD as it can be expected today. However; the variability within the time series is huge (which is not shown here but for example in [14]). Every year reveals its own peculiarities but the results behind Figure 8 can be used to analyze and compare every upcoming snow cover season against these mean conditions to identify abnormal conditions.
- The diagrams in Figure 9 and the statistics from Table 5 describe an important change in snow cover characteristics since 1986: The snow cover season is shifting towards an earlier time. The slope of SCDES is positive for all catchment groups, meaning that the snow cover season is generally starting earlier today than in the late 1980s. Except for Amu Darya Middle stream, all of the presented trends are significant. SCDLS on the other hand is affected by a negative slope for most catchment groups except two, which are located downstream. The significance of these slopes is not as distinct as it is for the early season, but the most essential catchments in the upstream region show a significant level of 0.05. This is an important finding as most of Central Asia’s runoff is generated within these upstream catchments and a shift towards earlier snow cover onset and melt can influence the water availability of the whole region considerably.
- The results presented in Table 6 are segmented according to elevation levels of 100 m and show another very important finding about snow cover changes in Central Asia: The slope of SCDES is positive for all elevation zones regardless of their altitude while most of these trends are significant. In other words: Snow cover is starting earlier every year since 1986 throughout all elevation ranges. The slopes of SCDLS on the other hand are two-sided: Below 1800 m, the trend is significantly positive, describing a prolonged snow cover season with later snow cover melts. Between an altitude of 1800 and 2500 m the situation can best be interpreted as a transition zone: The positive trend is still present at the beginning but it is not significant anymore. With increasing altitude, the trend switches to a negative but not yet significant value. Only above 2500 m, the slope of SCDLS becomes significantly negative. In this region, snow cover melt occurs earlier today than in the late 1980s and can be expected to continue developing in this direction also in the future. After the altitude reaches 3300 m, the negative trend is still present but not significant anymore as snow cover development is again entering a transition zone of unstable character. Above 5500 m, the trend is significantly positive again.
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Klein, I.; Gessner, U.; Kuenzer, C. Regional land cover mapping and change detection in Central Asia using MODIS time-series. Appl. Geogr. 2012, 35, 219–234. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Melack, J.M. Climate, snow cover, glaciers, and runoff in the Tien Shan, Central Asia. Water Resour. Bull. 1995, 31, 1113–1129. [Google Scholar] [CrossRef]
- Ososkova, T.; Gorelkin, N.; Chub, V. Water resources of Central Asia and adaptation measures for climate change. Environ. Monit. Assess. 2000, 61, 161–166. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Aizen, V.B.; Kuzmichenok, V.A.; Surazakov, A.B.; Aizen, E.M. Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. Ann. Glaciol. 2006, 43, 202–213. [Google Scholar] [CrossRef]
- Micklin, P. The aral sea disaster. Ann. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef]
- Strickman, R.; Porkka, M. Water and Social Changes in Central Asia: Problems Related to Cotton Production in Uzbekistan. Available online: http://water.tkk.fi/English/wr/research/global/material/Central_Asian_Waters-book.pdf#page=113 (accessed on 10 October 2014).
- Bernauer, T.; Siegfried, T. Climate change and international water conflict in Central Asia. J. Peace Res. 2012, 49, 227–239. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Melack, J.; Dozier, J. Climatic and hydrologic changes in the Tien Shan, Central Asia. J. Clim. 1997, 10, 1393–1404. [Google Scholar] [CrossRef]
- Siegfried, T.; Bernauer, T.; Guiennet, R.; Sellars, S.; Robertson, A.W.; Mankin, J.; Bauer-Gottwein, P.; Yakovlev, A. Will climate change exacerbate water stress in Central Asia? Clim. Change 2011, 112, 881–899. [Google Scholar] [CrossRef]
- Rakhmatullaev, S.; Huneau, F.; Le Coustumer, P.; Motelica-Heino, M.; Bakiev, M. Facts and perspectives of water reservoirs in Central Asia: A special focus on Uzbekistan. Water 2010, 2, 307–320. [Google Scholar] [CrossRef]
- Glantz, M.H. Water, climate, and development issues in the Amu Darya Basin. Mitig. Adapt. Strat. Glob. Change 2005, 10, 23–50. [Google Scholar] [CrossRef]
- Granit, J.; Jägerskog, A.; Löfgren, R.; Bullock, A.; Gooijer, G. De; Pettigrew, S.; Lindström, A. Regional Water Intelligence Report Central Asia. Available online: http://www.watergovernance.org/documents/WGF/Reports/Paper-15_RWIR_Aral_Sea.pdf (accessed on 10 October 2014).
- Dietz, A.J.; Kuenzer, C.; Conrad, C. Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. Int. J. Remote Sens. 2013, 34, 3879–3902. [Google Scholar] [CrossRef]
- Zhou, H.; Aizen, E.; Aizen, V. Deriving long term snow cover extent dataset from AVHRR and MODIS data: Central Asia case study. Remote Sens. Environ. 2013, 136, 146–162. [Google Scholar] [CrossRef]
- International Monetary Fund. Available online: http://www.imf.org/external/ (accessed on 14 July 2014).
- Lucas, R.M.; Harrison, A.R. Snow observation by satellite: A review. Remote Sens. Rev. 1990, 4, 285–348. [Google Scholar] [CrossRef]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012, 13, 4094–4134. [Google Scholar] [CrossRef]
- Solberg, R.; Koren, H.; Amlien, J. A Review of Optical Snow Cover Algorithms. Available online: http://www.nr.no/en/nrpublication?query=/file/4400/Solberg_-_A_review_of_optical_snow_algorithms.pdf (accessed on 10 October 2014).
- Frei, A.; Tedesco, M.; Lee, S.; Foster, J.; Hall, D.K.; Kelly, R.; Robinson, D.A. A review of global satellite-derived snow products. Adv. Space Res. 2012, 50, 1007–1029. [Google Scholar] [CrossRef]
- König, M.; Winther, J.; Isaksson, E. Measuring snow and glacier ice properties from satellite. Rev. Geophys. 2001, 39, 1–27. [Google Scholar] [CrossRef]
- WMO. GCOS Systematic Observation Requirements for Satellite-Based Data Products for Climate-2011 Update; WMO GCOS: Geneva, Switzerland, 2011; p. 127. [Google Scholar]
- Klein, A.G.; Hall, D.K.; Nolin, A.W. Development of a prototype snow albedo algorithm for the NASA MODIS Instrument. In Proceedings of 57th Eastern Snow Conference, Syracuse, NY, USA, 2–3 June 2000; pp. 143–158.
- Khlopenkov, K.V.; Trishchenko, A.P. SPARC: New cloud, snow, and cloud shadow detection scheme for historical 1-km AVHHR data over Canada. J. Atmos. Ocean. Technol. 2007, 24, 322–343. [Google Scholar] [CrossRef]
- Hüsler, F.; Jonas, T.; Wunderle, S.; Albrecht, S. Validation of a modified snow cover retrieval algorithm from historical 1-km AVHRR data over the European Alps. Remote Sens. Environ. 2012, 121, 497–515. [Google Scholar] [CrossRef]
- Wang, L.; Derksen, C.; Brown, R. Detection of pan-Arctic terrestrial snowmelt from QuikSCAT, 2000–2005. Remote Sens. Environ. 2008, 112, 3794–3805. [Google Scholar] [CrossRef]
- Rott, H.; Künzi, K.F. Remote sensing of snow cover with passive and active microwave sensors. Hydrol. Appl. Remote Sens. Data Trans. 1983, 145, 361–369. [Google Scholar]
- Song, K.; Zhang, Y. Snow-cover environmental monitoring and assessment in Northeast China using passive microwave emission models. Environ. Monit. Assess. 2008, 140, 223–9. [Google Scholar] [CrossRef] [PubMed]
- Derksen, C. The contribution of AMSR-E 18.7 and 10.7 GHz measurements to improved boreal forest snow water equivalent retrievals. Remote Sens. Environ. 2008, 112, 2701–2710. [Google Scholar] [CrossRef]
- Tedesco, M.; Miller, J. Northern hemisphere snow-covered area mapping: Optical versus active and passive microwave data. IEEE Geosci. Remote Sens. Lett. 2007, 4, 221–225. [Google Scholar] [CrossRef]
- Amlien, J. Remote Sensing of Snow with Passive Microwave Radiometers—A Review of Current Algorithms. Available online: http://www.nr.no/en/nrpublication?query=/file/4936/Amlien_-_Remote_sensing_of_snow_with_passive_microwave_radi.pdf (accessed on 10 October 2014).
- Luojus, K.P.; Pulliainen, J.T.; Takala, M.; Kangwa, M.; Smolander, T. GlobSnow-2 Product User Guide; Finnish Meteorological Institute: Helsinki, Finland, 2013; pp. 0–23. [Google Scholar]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.-H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The global monitoring for environment and security (GMES) sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Dozier, J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- ESA. ATSR Mission Description. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/atsr (accessed on 1 October 2014).
- ESA. AATSR Mission Description. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/aatsr (accessed on 1 October 2014).
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Solberg, R.; Wangensteen, B.; Amlien, J.; Koren, H.; Metsämäki, S.; Nagler, T.; Luojus, K.; Pulliainen, J. A new global snow extent product based on ATSR-2 and AATSR. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010.
- Rosenfeld, D.; Liu, G.; Yu, X.; Zhu, Y.; Dai, J.; Xu, X.; Yue, Z. High-resolution (375 m) cloud microstructure as seen from the NPP/VIIRS satellite imager. Atmos. Chem. Phys. 2014, 14, 2479–2496. [Google Scholar] [CrossRef]
- NOAA’s Comprehensive Large Array-Data Stewardship System. Available online: http://www.class.noaa.gov (accessed on 3 November 2014).
- Gesell, G. An algorithm for snow and ice detection using AVHRR data: An extension to the APOLLO software package. Int. J. Remote Sens. 1989, 10, 897–905. [Google Scholar] [CrossRef]
- Saunders, R.W.; Kriebel, K.T. An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens. 1988, 9, 123–150. [Google Scholar] [CrossRef]
- NOAA/NESDIS. NOAA KLM User’s Guide with NOAA-N, -P Supplement. Available online: http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/klm/index.htm (accessed on 23 July 2012).
- NOAA/NESDIS. NOAA Polar Orbiter Data User’s Guide. Available online: http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/podug/index.htm (accessed on 22 July 2012).
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 5. Available online: https://nsidc.org/data/docs/daac/modis_v5/mod10a1_modis_terra_snow_daily_global_500m_grid.gd.html (accessed on 10 October 2014).
- Crane, R.G.; Anderson, M.R. Satellite discrimination of snow/cloud surfaces. Int. J. Remote Sens. 1984, 5, 213–223. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1747–1756. [Google Scholar] [CrossRef]
- Klein, A.G.; Barnett, A.C. Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000–2001 snow year. Remote Sens. Environ. 2003, 86, 162–176. [Google Scholar] [CrossRef]
- Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 2009, 113, 868–879. [Google Scholar] [CrossRef]
- Hall, D.; Riggs, G. Accuracy assessment of the MODIS snow products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Maurer, E.P.; Rhoads, J.D.; Dubayah, R.O.; Lettenmaier, D.P. Evaluation of the snow-covered area data product from MODIS. Hydrol. Process. 2003, 17, 59–71. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. Validation of MODIS snow cover images over Austria. Hydrol. Earth Syst. Sci. 2006, 10, 679–689. [Google Scholar] [CrossRef]
- Huang, X.; Liang, T.; Zhang, X.; Guo, Z. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over northern Xinjiang, China. Int. J. Remote Sens. 2011, 32, 133–152. [Google Scholar] [CrossRef]
- Simic, A.; Fernandes, R.; Brown, R.; Romanov, P.; Park, W. Validation of VEGETATION, MODIS, and GOES+ SSM/I snow-cover products over Canada based on surface snow depth observations. Hydrol. Process. 2004, 18, 1089–1104. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Liang, T. Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China. Remote Sens. Environ. 2008, 112, 1497–1513. [Google Scholar] [CrossRef]
- Hall, D.K.; Foster, J.L.; Salomonson, V.V.; Klein, A.G.; Chien, J.Y.L. Development of a technique to assess snow-cover mapping errors from space. IEEE Trans. Geosci. Remote Sens. 2001, 39, 432–438. [Google Scholar] [CrossRef]
- Bormann, K.J.; McCabe, M.F.; Evans, J.P. Satellite based observations for seasonal snow cover detection and characterisation in Australia. Remote Sens. Environ. 2012, 123, 57–71. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K.; Salomonson, V.V. MODIS Snow Products User Guide to Collection 5; National Snow and Ice Data Center: Boulder, CO, USA, 2006. [Google Scholar]
- Stowe, L.L.; Davis, P.A.; McClain, P.E. Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification algorithm for the advanced very high resolution radiometer. J. Atmos. Ocean. Technol. 1998, 16, 656–681. [Google Scholar] [CrossRef]
- Dech, S.W.; Tungalagsaikhan, P.; Preusser, C.; Meisner, R.E. Operational value-adding to AVHRR data over Europe: Methods, results, and prospects. Aerosp. Sci. Technol. 1998, 2, 335–346. [Google Scholar] [CrossRef]
- Kriebel, K.T.; Gesell, G.; Kästner, M.; Mannstein, H. The cloud analysis tool APOLLO: improvements and validations. Int. J. Remote Sens. 2003, 24, 2389–2408. [Google Scholar] [CrossRef]
- TeraScan Software Package. Available online: http://www.seaspace.com/software.php (accessed on 17 December 2014).
- Gafurov, A.; Bárdossy, A. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci. 2009, 13, 1361–1373. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-filled SRTM for the Globe Version 4. Available online: http://srtm.csi.cgiar.org (accessed on 10 October 2014).
- Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Blöschl, G. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol. 2010, 381, 203–212. [Google Scholar] [CrossRef]
- Dietz, A.J.; Wohner, C.; Kuenzer, C. European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products. Remote Sens. 2012, 4, 2432–2454. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua. J. Hydrol. 2009, 371, 192–200. [Google Scholar] [CrossRef]
- Brown, R.; Derksen, C.; Wang, L. Assessment of spring snow cover duration variability over Northern Canada from satellite datasets. Remote Sens. Environ. 2007, 111, 367–381. [Google Scholar] [CrossRef]
- Hantel, M.; Ehrendorfer, M.; Haslinger, A. Climate sensitivity of snow cover duration in Austria. Int. J. Climatol. 2000, 20, 615–640. [Google Scholar] [CrossRef]
- Falarz, M. Variability and trends in the duration and depth of snow cover in Poland in the 20th century. Int. J. Climatol. 2004, 24, 1713–1727. [Google Scholar] [CrossRef]
- Brown, R.D.; Mote, P.W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim. 2009, 22, 2124–2145. [Google Scholar] [CrossRef]
- Armstrong, R. Historical Soviet Daily Snow Depth Version 2. Available online: http://nsidc.org/data/docs/noaa/g01092_hsdsd/index.html (accessed on 10 October 2014).
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Adam, J.C.; Hamlet, A.F.; Lettenmaier, D.P. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Process. 2009, 23, 962–972. [Google Scholar] [CrossRef]
- Severskiy, I.V. Distribution of Snow Cover in the Mountains of Central Asia. Available online: http://lib.icimod.org/record/24560/files/c_attachment_347_5309.pdf (accessed on 10 October 2014).
- Severskiy, I.V.; Blagoveshchenskiy, V.P.; Severskiy, S.I.; Pimankina, N.V.; Zichu, X.; Zhizhong, Z.; Ruji, H. Influence of local factors on the distribution of snow cover in mountains. In Snow Cover and Avalanches in Tien Shan Mountains; Severskiy, I.V., Zichu, X., Eds.; VAC Publishing House: Almaty, Kazakhstan, 2000; pp. 91–106. [Google Scholar]
- Beniston, M. Climatic change in mountain regions: A review of possible impacts. Clim. Change 2003, 36, 281–300. [Google Scholar] [CrossRef]
- Räisänen, J.; Eklund, J. 21st Century changes in snow climate in Northern Europe: A high-resolution view from ENSEMBLES regional climate models. Clim. Dynam. 2012, 38, 2575–2591. [Google Scholar] [CrossRef]
- Diebold, A.; Sehring, J. From the Glaciers to the Aral Sea-Water Unites, 1st ed.; Trescher Verlag: Berlin, Germany, 2012. [Google Scholar]
- Jalilov, S.; Desutter, T.M.; Leitch, J.A. Impact of Rogun dam on downstream Uzbekistan agriculture. Int. J. Water Resour. Environ. Eng. 2011, 3, 161–166. [Google Scholar]
- Lillis, J. Uzbekistan Leader Warns of Water Wars in Central Asia. Available online: http://www.eurasianet.org/node/65877 (accessed on 7 September 2012).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dietz, A.J.; Conrad, C.; Kuenzer, C.; Gesell, G.; Dech, S. Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sens. 2014, 6, 12752-12775. https://doi.org/10.3390/rs61212752
Dietz AJ, Conrad C, Kuenzer C, Gesell G, Dech S. Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sensing. 2014; 6(12):12752-12775. https://doi.org/10.3390/rs61212752
Chicago/Turabian StyleDietz, Andreas J., Christopher Conrad, Claudia Kuenzer, Gerhard Gesell, and Stefan Dech. 2014. "Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data" Remote Sensing 6, no. 12: 12752-12775. https://doi.org/10.3390/rs61212752
APA StyleDietz, A. J., Conrad, C., Kuenzer, C., Gesell, G., & Dech, S. (2014). Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sensing, 6(12), 12752-12775. https://doi.org/10.3390/rs61212752