Complementarity of Two Rice Mapping Approaches: Characterizing Strata Mapped by Hypertemporal MODIS and Rice Paddy Identification Using Multitemporal SAR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.1.1. MODIS Surface Reflectance 8-Day Composite
Satellite Specifications | Cosmo-Skymed (CSK) | Terra SAR-X (TSX) | Terra |
---|---|---|---|
Sensor (mode) | ScanSAR | ScanSAR | MODIS |
Product (mode) | Huge region | ScanSAR | MOD09Q1 (h29v07) |
Dates of acquisition | 6 December 2012 | 25 May 2013 | 2006–2011 |
22 December 2012 | 5 June 2013 | - | |
7 January 2013 | 16 June 2013 | - | |
23 January 2013 | 27 June 2013 | - | |
8 February 2013 | 8 July 2013 | - | |
24 February 2013 | 19 July 2013 | - | |
13 April 2013 | 30 July 2013 | - | |
- | 1 September 2013 | - | |
- | 12 September 2013 | - | |
- | 23 September 2013 | - | |
Band/wavelength (cm) | X (3.12 cm) | X (3.11 cm) | Red (620–670) NIR (841–876) |
Repeat cycle (days) | 16 | 11 | 8-day composite |
Spatial resolution (m) | 30 (experimental) | 18.5 | 250 |
Swath (km) width × length | 200 × 200 | 100 × 150 | 2330 |
Polarization | HH | HH | - |
Look | Right | Right | - |
Orbit | Ascending | Ascending | Descending |
Incidence angle | 40° | 45° | - |
2.1.2. SAR Data
2.1.3. Stratification
2.1.4. Field Data Collection
Areas | With Farmers’ Interviews and GPS Coordinates | Without Farmers’ Interviews (Only GPS Coordinates and Observation—Used for Rice/Non-rice) | Total |
---|---|---|---|
Rice | 166 | 28 | 194 |
Non-rice | 59 | - | 59 |
Sensor | Cropping System Information Tested for Accuracy | Number of Sites Used for Accuracy Assessment of MODIS | Number of Sites Used for Accuracy Assessment of SAR within TSX-Covered Area |
---|---|---|---|
MODIS | Rice or non-rice | 109 | - |
Cropping intensity: Single or double crop (regardless of the crops planted) | 81 | - | |
Single or double rice | 81 | - | |
Cropping pattern (rice-rice, rice-fallow, fallow-rice, rice-other crop) | 81 | - | |
Cropping calendar WS Cropping calendar DS | 81 81 | - - | |
Irrigated or rainfed | 81 | - | |
SAR | Rice or non-rice (points within the TSX- covered area) | - | 240 |
Flooding/transplanting DS | - | 33 | |
Flooding/transplanting WS | - | 36 |
2.2. MODIS-Based Rice System Stratification and Characterization
2.3. SAR-Based Rice Crop Identification and Planting Period Mapping
2.3.1. Basic Processing of Multitemporal SAR Images
- (1)
- Strip mosaicking and multilooking—single frames in slant range geometry with the same orbit were mosaicked along their azimuth to facilitate data processing and handling. Multilooking was carried out to improve SAR image quality through a reduction in speckle and to obtain approximately square pixels [62]. Averaging of range and resolution cells generates the multilooked images [63].
- (2)
- DEM-based orbital correction—SRTM 90 m Digital Elevation Model (DEM) tiles were used for the orbital correction. Errors of the azimuth start time and/or slant range distance were corrected on the basis of a reference DEM.
- (3)
- Co-registration—strip mosaics covering the same area with the same geometry and mode were co-registered by gross shift estimation based on orbital data. A set of sub-windows based on reference image and images to be used for co-registration was then automatically identified. The shift between pixels, including elevation, was calculated through cross-correlation. Polynomial function was used to calculate the shifts to be applied in azimuth and range direction [61].
- (4)
- De Grandi time-series filtering—a balance of differences in reflectivity between images at different times was achieved with the use of an optimum weighting filter [64]. Multitemporal filtering is based on the assumption that SAR geometry is the same for all acquisitions. The reflectivity can change because of dielectric and geometrical properties but not because of a different position of the resolution element with respect to the radar [61].
- (5)
- Terrain geocoding, radiometric calibration and normalization—conversion of backscatter elements into slant range image coordinates was carried out using a DEM as a backward solution. Range-Doppler equations [65] were used in the transformation of two-dimensional coordinates of the slant range image to three-dimensional object coordinates in a cartographic reference system. Geometric and radiometric calibration of the backscatter values is necessary for inter-comparison of radar images acquired at different times with different sensors and/or different viewing geometries [63]. Radiometric calibration was performed using a radar equation that takes into consideration the scattering area, antenna gain patterns and range spread loss. The backscatter coefficient (σ°) was normalized to compensate for the range dependency using the cosine law of the incidence angle [61].
- (6)
- Anisotropic Non-Linear Diffusion (ANLD) filtering—the ANLD filter performs strong smoothing in homogeneous areas while preserving signal variations coming from neighboring areas [61] and linear structures (e.g., roads, rivers and field edges). A diffusion equation was used wherein the diffusion coefficient is a function of image positions and assumes a tensor value [66].
- (7)
- Removal of cloud-related effects from localized intense weather events—anomalous peaks or troughs caused by localized intense events were identified through the analysis of temporal σ°, which was corrected using an interpolator. A priori information on the cropping calendar and weather conditions at the time of image acquisition is necessary for correct interpretation of these events [33,61].
2.3.2. Rice Detection Algorithm and Threshold Selection
Parameter Code | Parameter | Description | Relationship between | |
---|---|---|---|---|
Parameter | Backscatter Coefficient from Growth Stage | |||
P1 | SoS Rice (dB) | Start of season (SoS), flooded rice fields (maximum admitted backscatter) | <max | leveled flooded |
P2 | PoS Rice (dB) | Peak of season (PoS), tillering (minimum admitted backscatter) | >min | tillering to stem elongation |
P3 | Span of SoS to PoS (dB) | Backscatter increase from flooding to tillering | >min range | from leveled flooded to tillering-stem elongation |
P4 | Minimum growth (dB) | Minimum backscatter absolute difference from the beginning to the end of the rice crop season | >min range | from leveled flooded to maturity |
P5 | Stable water (dB) | Permanent water backscatter | <max | - |
P6 | Built-up mean (dB) | Average backscatter of built-up or strong stable scatterers | >min | - |
P7 | Stable water (days) | Minimum number of days for the water to stay below the “Stable Water dB” threshold | ≥20 days | - |
P8 | Minimum rice cycle duration (days) | Minimum duration of the observed rice growth | >60 days | - |
2.4. Accuracy Assessment
3. Results
3.1. MODIS-Based Rice Stratification and Characterization
Sensor | Rice Cropping System | Overall Accuracy (%) | Kappa Coefficient | Correctly Classified Pixels |
---|---|---|---|---|
MODIS | Rice area (rice or non-rice) | 87.2 | 0.62 | 95/109 |
Cropping intensity (single or double crop) | 82.7 | 0.72 | 67/81 | |
Rice cropping intensity (single or double rice) | 77.8 | 0.66 | 63/81 | |
Cropping pattern (sequential cropping types: rice-rice, rice-fallow, rice-other, fallow-rice) | 77.8 | 0.71 | 63/81 | |
Cropping calendar WS | 75.3 | 0.60 | 61/81 | |
Cropping calendar DS | 61.7 | 0.52 | 50/81 | |
Rice ecosystem (irrigated or rainfed) | 74.1 | 0.60 | 60/81 | |
SAR | Rice or non-rice | 90.4 | 0.72 | 217/240 |
3.2. Temporal Rice Backscatter Signature from TSX and CSK ScanSAR and Threshold Selection
Parameters | Thresholds | Values from Temporal Backscatter | Percentage of Values Meeting the Threshold |
---|---|---|---|
SoS Rice (dB) | <−10 | −8.31 | 83 |
PoS Rice (dB) | >−11 | −12.11 | 97 |
Span of SoS to PoS (dB) | >2.2 | 4.59 | 71 |
Minimum growth (dB) | >1.5 | 1.97 | 50 |
Stable water (dB) | <−16 | −18.2 | 100 |
Built-up mean (dB) | >−7.5 | 4.50 | 100 |
Stable water (days) | ≥20 | - | - |
Minimum rice cycle duration (days) | >60 | - | - |
Parameters | Thresholds | Values from Temporal Backscatter | Percentage of Values Meeting the Threshold |
---|---|---|---|
SoS Rice (dB) | <−12 | −12.23 | 100 |
PoS Rice (dB) | >−13 | −14.9 | 98 |
Span of SoS to PoS (dB) | >2.3 | 2.71 | 56 |
Minimum growth (dB) | >1.0 | 1.40 | 100 |
Stable water (dB) | <−17 | −20.5 | 100 |
Built-up mean (dB) | >−9 | 2.0 | 100 |
Stable water (days) | ≥20 | - | - |
Minimum rice cycle duration (days) | >60 | - | - |
3.3. SAR-Based Rice Cropped Area and Flooding/Transplanting Dates Map (TSX and CSK ScanSAR)
Measure of Accuracy | TSX-Derived Flooding/Transplanting Dates for WS |
---|---|
R2 | 0.87 |
RMSE | 9 days |
3.4. Comparison of MODIS and SAR Planting Dates
4. Discussions
4.1. MODIS-Based Rice Stratification and Characterization
4.2. Rice SAR Temporal Backscatter Signature and SAR-Based Rice Cropped Area and Flooding/Transplanting Dates Map
4.3. Comparison of General Planting Dates from MODIS with SAR-Derived Flooding/Transplanting Dates
5. Conclusions
Supplementary Files
Supplementary File 1Acknowledgment
Author Contributions
Conflicts of Interest
References
- Pandey, S.; Byerlee, D.; Dawe, D.; Dobermann, A.; Mohanty, S.; Rozelle, S.; Hardy, B. Rice in the Global Economy: Strategic Research and Policy Issues for Food Security; International Rice Research Institute: Los Baños, Philippines, 2010. [Google Scholar]
- Nguyen, N.V. Global climate changes and rice food security. 2005, 54, 24–30. [Google Scholar]
- Toriyama, K.; Heong, K.L.; Hardy, B. Rice is life: Scientific perspectives for the 21st century. In World Rice Research Conference; International Rice Research Institute: Tsukuba, Japan, 2004; p. 590. [Google Scholar]
- FAOSTAT. Production (Crops: Rice Paddy). Available online: http://faostat.fao.org/site/567/default.aspx#ancor (accessed on 30 August 2014).
- Boschetti, M.; Nutini, F.; Manfron, G.; Brivio, P.A.; Nelson, A. Comparative analysis of normalised difference spectral indices derived from MODIS for detecting surface water in flooded rice cropping systems. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Torbick, N.; Salas, W.; Xiao, X.; Ingraham, P.; Fearon, M.; Biradar, C.; Zhao, D.; Liu, Y.; Li, P.; Zhao, Y. Integrating SAR and optical imagery for regional mapping of paddy rice attributes in the Poyang Lake watershed, China. Can. J. Remote Sens. 2011, 37, 17–26. [Google Scholar] [CrossRef]
- Inoue, Y.; Kurosu, T.; Maeno, H.; Uratsuka, S.; Kozu, T.; Dabrowska-Zielinska, K.; Qi, J. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables. Remote Sens. Environ. 2002, 81, 194–204. [Google Scholar] [CrossRef]
- Shao, Y.; Fan, X.; Liu, H.; Xiao, J.; Ross, S.; Brisco, B.; Brown, R.; Staples, G. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sens. Environ. 2001, 76, 310–325. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; de Bie, C.A.J.M.; Ali, A.; Smaling, E.M.A.; Chu, T.H. Mapping the irrigated rice cropping patterns of the Mekong Delta, Vietnam, through hyper-temporal SPOT NDVI image analysis. Int. J. Remote Sens. 2011, 33, 415–434. [Google Scholar] [CrossRef]
- Kurosu, T.; Fujita, M.; Chiba, K. Monitoring of rice crop growth from space using the ERS-1 C-band SAR. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1092–1096. [Google Scholar] [CrossRef]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Chen, C.F.; Huang, S.W.; Son, N.T.; Chang, L.Y. Mapping double-cropped irrigated rice fields in Taiwan using time-series Satellite Pour I’Observation de la Terre data. J. Appl. Remote Sens. 2011, 5. [Google Scholar] [CrossRef]
- Turner, M.D.; Congalton, R.G. Classification of multi-temporal SPOT-XS satellite data for mapping rice fields on a West African floodplain. Int. J. Remote Sens. 1998, 19, 21–41. [Google Scholar] [CrossRef]
- Panigrahy, S.; Parihar, J.S. Role of middle infrared bands of Landsat Thematic Mapper in determining the classification accuracy of rice. Int. J. Remote Sens. 1992, 13, 2943–2949. [Google Scholar] [CrossRef]
- Okamoto, K.; Fukuhara, M. Estimation of paddy field area using the area ratio of categories in each mixel of Landsat TM. Int. J. Remote Sens. 1996, 17, 1735–1749. [Google Scholar] [CrossRef]
- Miyazato, M.; Ishiguro, E.; Hidaka, Y.; Sato, M.; Yoshida, S.; Chen, J.Y. Estimation of the Area of Rice Paddy Field Using Satellite Data: By Multi Level Slice Method and Band Ratio Method. Available online: http://ir.kagoshima-u.ac.jp/bitstream/10232/2928/1/KJ00000011053.pdf (accessed on 30 August 2014).
- Fang, H. Rice crop area estimation of an administrative division in China using remote sensing data. Int. J. Remote Sens. 1998, 19, 3411–3419. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lee, K.S.; Rim, S.K.; Kim, K.U. Estimation of rice field area using two-date Landsat TM images in Korea. In Proceedings of Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999; pp. 732–734.
- Tennakoon, S.B.; Murty, V.V.N.; Eiumnoh, A. Estimation of cropped area and grain yield of rice using remote sensing data. Int. J. Remote Sens. 1992, 13, 427–439. [Google Scholar] [CrossRef]
- Van Niel, T.G.; McVicar, T.R.; Fang, H.; Liang, S. Calculating environmental moisture for per-field discrimination of rice crops. Int. J. Remote Sens. 2003, 24, 885–890. [Google Scholar] [CrossRef]
- Kuenzer, C.; Knauer, K. Remote sensing of rice crop areas. Int. J. Remote Sens. 2012, 34, 2101–2139. [Google Scholar] [CrossRef]
- Ishiguro, E.; Kumar, M.K.; Hidaka, Y.; Yoshida, S.; Sato, M.; Miyazato, M.; Chen, J.Y. Use of rice response characteristics in area estimation by Landsat/TM and MOS-1 satellites data. ISPRS J. Photogramm. Remote Sens. 1993, 48, 26–32. [Google Scholar] [CrossRef]
- Ribbes, F. Rice field mapping and monitoring with RADARSAT data. Int. J. Remote Sens. 1999, 20, 745–765. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Boschetti, M.; Stroppiana, D.; Brivio, P.A.; Bocchi, S. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens. 2009, 30, 4643–4662. [Google Scholar] [CrossRef]
- Chen, C.F.; Son, N.T.; Chen, C.R.; Chang, L.Y. Wavelet filtering of time-series moderate resolution imaging spectroradiometer data for rice crop mapping using support vector machines and maximum likelihood classifier. J. Appl. Remote Sens. 2011, 5. [Google Scholar] [CrossRef]
- Gray, J.; Friedl, M.; Frolking, S.; Ramankutty, N.; Nelson, A.; Gumma, M. Mapping Asian Cropping Intensity with MODIS. Available online: http://ftp-earth.bu.edu/public/joshgray/MultiCropRevisions/AsiaCroppingIntensity.pdf (accessed on 30 August 2014).
- Peng, D.; Huete, A.R.; Huang, J.; Wang, F.; Sun, H. Detection and estimation of mixed paddy rice cropping patterns with MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 13–23. [Google Scholar] [CrossRef]
- Gumma, M.K.; Nelson, A.; Thenkabail, P.S.; Singh, A.N. Mapping rice areas of South Asia using MODIS multitemporal data. Int. J. Remote Sens. 2011, 5. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore Iii, B. Mapping paddy rice agriculture in Southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Sun, H.S.; Huang, J.F.; Huete, A.; Peng, D.L.; Zhang, F. Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China. J. Zhejiang Univ. Sci. A 2009, 10, 1509–1522. [Google Scholar] [CrossRef]
- Xiao, X.M.; Boles, S.; Frolking, S.; Li, C.S.; Babu, J.Y.; Salas, W.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using Multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Holecz, F.; Barbieri, M.; Collivignarelli, F.; Gatti, L.; Nelson, A.; Setiyono, T.D.; Boschetti, M.; Manfron, G.; Brivio, P.A. An Operational Remote Sensing Based Service for Rice Production Estimation at National Scale. Available online: http://www.rcmrd.org/docs/RIICE.pdf (accessed on 30 August 2014).
- Inoue, Y.; Sakaiya, E.; Wang, C. Potential of X-band images from high-resolution satellite SAR sensors to assess growth and yield in paddy rice. Remote Sens. 2014, 6, 5995–6019. [Google Scholar] [CrossRef]
- Shen, S.; Yang, S.; Li, B.; Tan, B.; Li, Z.; Toan, T.L. A scheme for regional rice yield estimation using ENVISAT ASAR data. Sci. China Ser. Earth Sci. 2009, 52, 1183–1194. [Google Scholar] [CrossRef]
- Bouvet, A.; Toan, T.L.; Nguyen, L.-D. Monitoring of the rice cropping system in the Mekong Delta using ENVISAT/ASAR dual polarization data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Bouvet, A.; Toan, T.L. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sens. Environ. 2011, 115, 1090–1101. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, I.; Chakraborty, M. SAR signature investigation of rice crop using RADARSAT data. Int. J. Remote Sens. 2006, 27, 519–534. [Google Scholar] [CrossRef]
- Kurosu, T.; Fujita, M.; Chiba, K. The identification of rice fields using multi-temporal ERS-1 C band SAR data. Int. J. Remote Sens. 1997, 18, 2953–2965. [Google Scholar] [CrossRef]
- Panigrahy, S.; Chakraborty, M.; Sharma, S.A.; Kundu, N.; Ghose, S.C.; Pal, M. Early estimation of rice area using temporal ERS-1 synthetic aperture radar data a case study for the Howrah and Hughly Districts of West Bengal, India. Int. J. Remote Sens. 1997, 18, 1827–1833. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef]
- IBON. Philippines Profile, 1st ed.; DIAKONIA: Manila, Philippines, 1996. [Google Scholar]
- How to Prepare Ricefield for Planting. Available online: http://www.knowledgebank.irri.org/step-by-step-production/pre-planting/land-preparation (accessed on 19 October 2014).
- BAS. Palay and Corn: Area Harvested by Ecosystem/Croptype, by Quarter, by Semester, by Region and by Province; Bureau of Agricultural Statistics: Quezon City, Philippines, 2014.
- NASA. MODIS Components. Available online: http://modis.gsfc.nasa.gov/about/components.php (accessed on 4 June 2013).
- Vermote, E.F.; Kotchenova, S.Y.; Ray, J.P. MODIS Surface Reflectance User’s Guide. Available online: http://modis-sr.ltdri.org/products/MOD09_UserGuide_v1_3.pdf (accessed on 16 March 2014).
- Townshend, J.; Justice, C.; Li, W.; Gurney, C.; McManus, J. Global land cover classification by remote sensing: Present capabilities and future possibilities. Remote Sens. Environ. 1991, 35, 243–255. [Google Scholar] [CrossRef]
- ASI. COSMO-SkyMed System Description & User Guide. Available online: http://www.cosmo-skymed.it/en/index.htm (accessed on 20 October 2013).
- Eineder, M.; Fritz, T.; Mittermayer, J.; Roth, A.; Boerner, E.; Breit, H. TerraSAR-X Ground Segment, Basic Product Specification Document. Available online: http://www.researchgate.net/publication/235027942_TerraSAR-X_Ground_Segment_Basic_Product_Specification_Document (accessed on 30 August 2014).
- De Bie, C.A.J.M. Comparative Performance Analysis of Agro-Ecosystems. Ph.D. Thesis, Wageningen University and Research Centre, Enschede, The Netherlands, 2000. [Google Scholar]
- Submerge Soils for Rice Production: Rice Growing Environments. Available online: http://www.knowledgebank.irri.org/submergedsoils/index.php/rice-growing-environments/lesson-1 (accessed on 21 August 2014).
- Martínez-Casasnovas, J.A.; Martín-Montero, A.; Auxiliadora Casterad, M. Mapping multi-year cropping patterns in small irrigation districts from time-series analysis of Landsat TM images. Eur. J. Agron. 2005, 23, 159–169. [Google Scholar] [CrossRef]
- Eklundh, L.; Jönsson, P. TIMESAT 3.1 Software Manual. Available online: http://www.nateko.lu.se/timesat/docs/timesat3_1_1_SoftwareManual.pdf (accessed on 20 August 2014).
- Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Tou, J.T.; Gonzalez, R.C. Pattern Recognition Principles; Addison-Wesley Publishing Company: Massachusetts, MA, USA, 1974. [Google Scholar]
- Ali, A.; de Bie, C.A.J.M.; Skidmore, A.K.; Scarrott, R.G.; Hamad, A.; Venus, V.; Lymberakis, P. Mapping land cover gradients through analysis of hyper-temporal NDVI imagery. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 301–312. [Google Scholar] [CrossRef]
- De Bie, C.A.J.M.; Nguyen, T.T.H.; Ali, A.; Scarrott, R.; Skidmore, A.K. LaHMa: A landscape heterogeneity mapping method using hyper-temporal datasets. Int. J. Geogr. Inf. Sci. 2012, 26, 2177–2192. [Google Scholar] [CrossRef]
- Khan, M.R.; de Bie, C.A.J.M.; van Keulen, H.; Smaling, E.M.A.; Real, R. Disaggregating and mapping crop statistics using hypertemporal remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 36–46. [Google Scholar] [CrossRef]
- Swain, P.; King, R. Two Effective Feature Selection Criteria for Multispectral Remote Sensing. Available online: http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1038&context=larstech (accessed on 30 August 2014).
- Nelson, A.; Setiyono, T.; Rala, A.; Quicho, E.; Raviz, J.; Abonete, P.; Maunahan, A.; Garcia, C.; Bhatti, H.; Villano, L.; et al. Towards an operational SAR-based rice monitoring system in Asia: Examples from 13 demonstration sites across Asia in the RIICE project. Remote Sens. 2014, 6, 10773–10812. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Tapley, I.; Milne, A.K.; Williams, M.; Lowell, K. Radar Processing Methodologies for the Generation of Wall-to-Wall Mosaics. Available online: http://crcsi.com.au/assets/Uploads/Files/1-IFCIRA-SARproc.pdf (accessed on 30 August 2014).
- Lemp, D.; Koch, B. In Forest Monitoring Using TerraSAR-X Data—Evaluation of Processing Methods and First Results. Available online: http://sss.terrasar-x.dlr.de/papers_sci_meet_3/poster/MTH0384_lemp.pdf (accessed online 30 August 2014).
- De Grandi, G.F.; Leysen, M.; Lee, J.S.; Schuler, D. Radar Reflectivity Estimation Using Multiple SAR Scenes of the Same Target: Technique and Applications. Available online: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=615338&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel3%2F4810%2F13419%2F00615338.pdf%3Farnumber%3D615338 (accessed on 8 August 1997).
- Meier, E.; Frei, U.; Nüesch, D. Precise Terrain Corrected Geocoded Images. Available online: http://citeseer.uark.edu:8080/citeseerx/showciting;jsessionid=A5ABC292190B6C7331543DA9D7EDE934?cid=192163 (accessed on 30 August 2014).
- Aspert, F.; Cuadra, M.B.; Thiran, J.; Cantone, A.; Holecz, F. Time-Varying Segmentation for Mapping of Land Cover Changes. Available online: http://earth.esa.int/workshops/envisatsymposium/proceedings/sessions/4E4/462651as.pdf (accessed on 30 August 2014).
- Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Los Banos, Philippines, 1981. [Google Scholar]
- Toan, T.L.; Ribbes, F.; Wang, L.F.; Floury, N.; Ding, K.H.; Kong, J.A.; Fujita, M.; Kurosu, T. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans. Geosci. Remote Sens. 1997, 35, 41–56. [Google Scholar] [CrossRef]
- Stergiopoulos, S. Advanced Signal Processing Handbook: Theory and Implementation for RADAR, Sonar, and Medical Real Time Systems; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 6th ed.; John Wiley and Sons, Inc.: New York, USA, 2008. [Google Scholar]
- Inoue, Y.; Sakaiya, E. Relationship between X-band backscattering coefficients from high-resolution satellite SAR and biophysical variables in paddy rice. Remote Sens. Lett. 2012, 4, 288–295. [Google Scholar] [CrossRef]
- PAGASA. Current Climate Trends in the Philippines. Available online: http://www.pagasa.dost.gov.ph/climate-agromet/climate-change-in-the-philippines/116-climate-change-in-the-philippines/594-current-climate-and-observed-trends (accessed on 25 March 2014).
- Aschbacher, J.; Pongsrihadulchai, A.; Karnchanasutham, S.; Rodprom, C.; Paudyal, D.R.; Toan, T.L. Assessment of ERS-1 SAR Data for Rice Crop Mapping and Monitoring. Available online: http://www.researchgate.net/publication/224589687_Assessment_of_ERS-1_SAR_data_for_rice_crop_mapping_and_monitoring (accessed on 30 August 2014).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asilo, S.; De Bie, K.; Skidmore, A.; Nelson, A.; Barbieri, M.; Maunahan, A. Complementarity of Two Rice Mapping Approaches: Characterizing Strata Mapped by Hypertemporal MODIS and Rice Paddy Identification Using Multitemporal SAR. Remote Sens. 2014, 6, 12789-12814. https://doi.org/10.3390/rs61212789
Asilo S, De Bie K, Skidmore A, Nelson A, Barbieri M, Maunahan A. Complementarity of Two Rice Mapping Approaches: Characterizing Strata Mapped by Hypertemporal MODIS and Rice Paddy Identification Using Multitemporal SAR. Remote Sensing. 2014; 6(12):12789-12814. https://doi.org/10.3390/rs61212789
Chicago/Turabian StyleAsilo, Sonia, Kees De Bie, Andrew Skidmore, Andrew Nelson, Massimo Barbieri, and Aileen Maunahan. 2014. "Complementarity of Two Rice Mapping Approaches: Characterizing Strata Mapped by Hypertemporal MODIS and Rice Paddy Identification Using Multitemporal SAR" Remote Sensing 6, no. 12: 12789-12814. https://doi.org/10.3390/rs61212789
APA StyleAsilo, S., De Bie, K., Skidmore, A., Nelson, A., Barbieri, M., & Maunahan, A. (2014). Complementarity of Two Rice Mapping Approaches: Characterizing Strata Mapped by Hypertemporal MODIS and Rice Paddy Identification Using Multitemporal SAR. Remote Sensing, 6(12), 12789-12814. https://doi.org/10.3390/rs61212789