Modeling Accumulated Volume of Landslides Using Remote Sensing and DTM Data
Abstract
:1. Introduction
2. Method and Model
2.1. Problem Analysis
2.2. Modeling
2.2.1. Mass Balance Principle
2.2.2. Mass Balance Line
2.2.3. Program Termination Condition
2.2.4. Determination of the Final Results (Hb, V−, and V+)
2.3. Calculation Workflow
- (1)
- Definition of the landslide-affected area. The area affected by the landslide is defined manually using remote sensing images.
- (2)
- Preprocessing of the DTM data. Pre- and post-landslide DTM data are examined; if there is a discrepancy in the sampling intervals, a resample is conducted with the bilinear method.
- (3)
- Co-registration of the two DTMs. The pre- and post-landslide DTM data are match-optimized to eliminate co-registration errors. The classic normalized cross-correlation (NCC) algorithm for image matching is applied [48–50]. The translation that maximizes the correlation between the two DTM was searched. Due to the effect of topographical changes on the result of the NCC, the area defined by (1) is used to mask the DTM. In this way, within the area affected by the landslide, where the elevations according to the pre- and post-landslide DTMs are different will be eliminated by the NCC matching. This approach helps to improve the matching accuracy of the NCC.
- (4)
- Definition of the DTM data within the landslide-affected area. After (2) and (3), the pre- and post-landslide DTMs should have the same sampling interval and accurate co-registration. Optimized DTM data are then collected from the landslide-affected area defined in (1).
- (5)
- Calculation of the volumes V− and V+. V− and V+ are obtained using MBM and are then compared to decide whether Hb is positive or negative. If V− is larger than V+, Hb is positive; if not, then Hb is negative. The step size of Hb and the density adaptor must be set.
- (6)
- Define whether there is an intersection between the plotted values of V− and V+. The calculation terminates when the first intersection occurs.
- (7)
- The four values of V− and αV+ from the last two calculation steps are used to derive intersection coordinates according to Equations (8) and (9). The horizontal coordinate, x, is the height adaptor and the vertical coordinate y is V−, then V+ is calculated by y and α.
3. Case Study
3.1. Study Area and Data Collection
3.2. Calculation and Results
3.3. Discussion
3.3.1. Co-Registration of Pre- and Post-Landslide DTMs
3.3.2. Reliability and Accuracy: Improved Model against Conventional Model
3.3.3. Evidence for the Mass Balance Line
3.3.4. Parameter Setting in MBM
(a) Setting of Hb
(b) Setting of density adaptor
3.3.5. Limitations and Errors of MBM
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Red Cross and Red Crescent Societies. World Disaster Report; International Federation of Red Cross and Red Crescent Societies: Geneva, Switzerland, 2001. [Google Scholar]
- Yin, Y.P.; Wang, F.W.; Sun, P. Landslides hazards triggered by the 2008 Wenchuan earthquake. Landslides 2009, 6, 139–152. [Google Scholar]
- Assilzadeh, H.; Levy, J.K.; Wang, X. Landslide catastrophes and disaster risk reduction: A GIS framework for landslide prevention and management. Remote Sens 2010, 2, 2259–2273. [Google Scholar]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic landslides hazard assessment at the basin scale. Geomorphology 2005, 72, 272–299. [Google Scholar]
- Nichol, J.E.; Shaker, A.; Wong, M.S. Application of high resolution stereo satellite image to detailed landslide hazard assessment. Geomorphology 2006, 76, 68–75. [Google Scholar]
- Jaiswal, P.; van Westen, C.J.; Jetten, V. Quantitative landslides hazard assessment along a transportation corridor in southern India. Eng. Geol 2010, 116, 236–250. [Google Scholar]
- Chang, C.W.; Lin, P.S.; Tsai, C.L. Estimation of sediment volume of debris flow caused by extreme rainfall in Taiwan. Eng. Geol 2011, 123, 83–90. [Google Scholar]
- Yin, Y.P.; Zheng, W.M.; Li, X.C.; Sun, P.; Li, B. Catastrophic landslides associated with the M8.0 Wenchuan earthquake. Bull. Eng. Geol. Environ 2011, 70, 15–32. [Google Scholar]
- Guzzetti, F.; Ardizzone, F.; Cardinali, M.; Galli, M.; Rossi, M.; Valigi, D. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet. Sci. Lett 2009, 279, 222–229. [Google Scholar]
- Fan, J.C.; Wu, M.F. The critical rainfall line of debris flow occurrence at Feng-Chiou. Sino-Geotech 1999, 74, 39–64. [Google Scholar]
- Wu, X.H.; Yao, L.K.; Zhang, T.G. Analysis on spatial characteristics of landslide based on GIS. J. Catastrophol 2006, 21, 22–26. [Google Scholar]
- Wang, G.X.; Lv, L.; Wang, H. Application of parallel section method to the calculation of landslide volume. Resour. Environ. Eng 2012, 26, 107–108. [Google Scholar]
- Roux, O.L.; Jongmans, D.; Kasperski, J.; Schwartz, S.; Potherat, P.; Lebrouc, V.; Lagabrielle, R.; Meric, O. Deep geophysical investigation of the large Séchilienne landslide (Western Alps, France) and calibration with geological data. Eng. Geol 2011, 120, 18–31. [Google Scholar]
- Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslides, earthquakes, and erosion. Earth Planet. Sci. Lett 2004, 229, 45–59. [Google Scholar]
- Larsen, I.J.; Montgomery, D.R.; Korup, O. Landslide erosion controlled by hillslope material. Nat. Geosci 2010, 3, 247–251. [Google Scholar]
- Booth, A.M.; Roering, J.J.; Rempe, A.W. Topographic signatures and a general transport law for deep-seated landslides in a landscape evolution model. J. Geophys. Res.: Earth Surf 2013, 118, 603–624. [Google Scholar]
- Dai, F.C.; Lee, C.F. Frequency volume relation and prediction of rainfall-induced landslides. Eng. Geol 2001, 59, 253–266. [Google Scholar]
- Li, J.; Zhou, C.H. Analysis of relationship between landslide volume and antecedent precipitation in Hong Kong. J. Nat. Disasters 2002, 11, 37–54. [Google Scholar]
- Keefer, D.K.; Wilson, R.C. Predicting Earthquake Induced Landslides with Emphasis on Arid Semi-Arid Environments. In Landslides in a Semi-Arid Environment with Emphasis on the Inland Valleys of Southern California, Geological Society; Sadler, P.M., Morton, D.M., Eds.; Inland Geological Society: Riverside, Canada, 1989; pp. 118–149. [Google Scholar]
- Rodriguez, C.E.; Bommer, J.J.; Chandler, R.J. Earthquake-induced landslides: 1980–1997. Soil Dyn. Earthq. Eng 1999, 18, 325–346. [Google Scholar]
- Burns, W.J.; Coe, J.A.; Kaya, B.S.; Ma, L. Analysis of elevation changes detected from multi-temporal LiDAR surveys in forested landslide terrain in western Oregon. Environ. Eng. Geosci 2010, 16, 315–341. [Google Scholar]
- Hilley, G.E.; Burgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of slowmoving landslides from permanent scatterer analysis. Sci. Total Environ 2004, 304, 1952–1955. [Google Scholar]
- Metternicht, G.; Hurni, L.; Gogu, R. Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens. Environ 2005, 98, 284–303. [Google Scholar]
- Herrera, G.; Davalillo, J.C.; Mulas, J.; Cooksley, G.; Monserrat, O.; Pancioli, V. Mapping and monitoring geomorphological processes in mountainous areas using PSI data: Central pyrenees case study. Nat. Hazards Earth Syst. Sci 2009, 9, 1587–1598. [Google Scholar]
- Zhang, W.J.; Lin, J.Y.; Peng, J.; Lu, Q.F. Estimating Wenchuan earthquake induced landslides based on remote sensing. Int. J. Remote Sens 2010, 31, 3495–3508. [Google Scholar]
- McKean, J.; Bird, E.; Pettinga, J.; Campbell, J.; Roering, J. Using LiDAR to objectively map bedrock landslides and infer their mechanics and material properties. Geol. Soc. Am. Abstr. Programs 2004, 36, 332. [Google Scholar]
- Chen, R.F.; Chang, K.J.; Angelier, J.; Chan, Y.C.; Deffontaines, B.; Lee, C.T.; Lin, M.L. Topographical changes revealed by high-resolution airborne LiDAR data: The 1999 Tsaoling landslide induced by the Chi-Chi earthquake. Eng. Geol 2006, 88, 160–172. [Google Scholar]
- Baldo, M.; Bicocchi, C.; Chiocchini, U.; Giordan, D.; Lollino, G. LiDAR monitoring of mass wasting processes: The Radicofani landslides, Province of Siena, central Italy. Geomorphology 2009, 105, 193–201. [Google Scholar]
- Corsini, A.; Borgatti, L.; Cervi, F.; Dahne, A.; Ronchetti, F.; Sterzai, P. Estimating mass-wasting processes in active earth slides–earth flows with time-series of High-Resolution DTMs from photogrammetry and airborne LiDAR. Nat. Hazards Earth Syst. Sci 2009, 9, 443–439. [Google Scholar]
- Joyce, K.E.; Samsonov, S.; Manville, V.; Jongens, R.; Graettinger, A.; Cronin, S.J. Remote sensing data types and techniques for lahar path detection: A case study at Mt Ruapehu, New Zealand. Remote Sens. Environ 2009, 113, 1778–1786. [Google Scholar]
- Kasai, M.; Ikeda, M.; Asahina, T.; Fujisawa, K. LiDAR-derived DTM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology 2009, 113, 57–69. [Google Scholar]
- Bull, J.M.; Miller, H.; Gravley, D.M.; Costello, D.; Hikuroa, D.C.H.; Dix, J.K. Assessing debris flows using LiDAR differencing: 18 May 2005 Matata event, New Zealand. Geomorphology 2005, 124, 75–84. [Google Scholar]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards Earth Syst. Sci 2012, 61, 5–28. [Google Scholar]
- Süzen, M.L.; Kaya, B.Ş. Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping. Int. J. Digit. Earth 2012, 5, 338–355. [Google Scholar]
- Du, J.C.; Teng, H.C. 3D laser scanning and GPS technology for landslides earthwork volume estimation. Autom. Constr 2007, 16, 657–663. [Google Scholar]
- Kasperski, J.; Delacourt, C.; Allemand, P.; Potherat, P.; Jaud, M.; Varrel, E. Application of a Terrestrial Laser Scanner (TLS) to the study of the Séchilienne landslide (Isère, France). Remote Sens 2010, 2, 2785–2802. [Google Scholar]
- Coe, J.; Glancy, P.; Whitney, J. Volumetric analysis and hydrologic characterization of a modern debris flow near Yucca mountain, Nevada. Geomorphology 1997, 20, 11–28. [Google Scholar]
- Schrott, L.; Hufschmidt, G.; Hankammer, M.; Hoffman, T.; Dikau, R. Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology 2003, 55, 44–63. [Google Scholar]
- Quantin, C.; Allemand, P.; Delacourt, C. Morphology and geometry of Valles Marineris landslides. Planet. Space Sci 2004, 52, 1011–1022. [Google Scholar]
- Kervyn, M.G.; Ernst, G.J.; Klaudius, J.; Keller, J.; Mbede, E.; Jacobs, P. Remote sensing study of sector collapses and debris avalanche deposits at Oldoinyo Lengai and Kerimasi volcanoes, Tanzania. Int. J. Remote Sens 2008, 29, 6565–6595. [Google Scholar]
- Caelli, T.; Osman, E.; West, G. 3D shape matching and inspection using geometric features and relational learning. Comput. Vis. Image Underst 1998, 72, 340–350. [Google Scholar]
- Mitchell, H.L.; Chadwick, R.G. Digital photogrammetric concepts applied to surface deformation studies. Geomatica 1999, 53, 405–414. [Google Scholar]
- Tarchi, D.; Casagli, N.; Fanti, R.; Leva, D.; Luzi, G.; Pasuto, A.; Pieraccini, M.; Silvano, S. Landslide monitoring by using ground-based SAR interferometry: An example of application to the Tessina landslide in Italy. Eng. Geol 2003, 68, 15–30. [Google Scholar]
- Rosser, N.J.; Petley, D.N.; Lim, M.; Dunning, S.A.; Allison, R.J. Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q. J. Eng. Geol. Hydrogeol 2005, 38, 363–375. [Google Scholar]
- Zhang, T.; Cen, M. Robust DEM co-registration method for terrain changes assessment using least trimmed squares estimator. Adv. Space Res 2008, 41, 1827–1835. [Google Scholar]
- US Department of the Interior, US Geological Survey. Landslide Types and Processes. Available online: http://pubs.usgs.gov/fs/2004/3072.html (accessed on 10 June 2012).
- Zhang, Y. Study on Exploration, Evaluation and Control Design of Shattering Mountains in 5.12 Wenchuan Earthquake. Ph.D. Dissertation. Chengdu University of Technology: Chengdu, China, 2009. [Google Scholar]
- Lewis, J.P. Fast Normalized Cross-Correlation. In Proceedings of the Canadian Image Processing Pattern Recognition Society Conference on Vision Interface 95, Quebec City, QC, Canada, 15–19 May 1995; pp. 120–123.
- Vosselman, G.; Sester, M.; Mayer, H. Basic Computer Vision Techniques. In Manual of Photogrammetry; McGlone, J.C., Ed.; American Society of Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2004; pp. 455–504. [Google Scholar]
- Debella-Gilo, M.; Kääb, A. Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sens. Environ 2011, 115, 130–142. [Google Scholar]
- Dai, F.C.; Xu, C.; Yao, X.; Xu, L.; Tu, X.B.; Gong, Q.M. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J. Asian Earth Sci 2011, 40, 883–895. [Google Scholar]
- Gorum, T.; Fan, X.; van Westen, C.J.; Huang, R.Q.; Xu, Q.; Tang, C.; Wang, G. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 2011, 133, 152–167. [Google Scholar]
- ASTRIUM. PIXEL FACTORY™ Brochure. Available online: http://www.astrium-geo.com/en/161-pixel-factory (accessed on 10 August 2012).
- Team, A.G.V. ASTER Global DEM Validation Summary Report. 2009. Available online: https://lpdaac.usgs.gov/sites/default/files/public/aster/docs/ASTER_GDEM_Validation_Summary_Report.pdf (accessed on 15 December 2012).
Data Type | Grid Spacing | Accuracy | Data Acquisition |
---|---|---|---|
DOM-post | 0.6 m | ±2 m | ADS40 system |
DTM-post | 3 m | Horizontal ±3 m; vertical ±5 m | From ADS40 stereo images by Photogrammetry |
DTM-pre | ∼30 m | Horizontal ±30 m; vertical ±20 m | ASTER GDEM |
DTM Data | Min | Max | Mean | Stdev | Max Elevation Difference |
---|---|---|---|---|---|
DTM-pre | 797 | 1,411 | 970 | 130 | 614 |
DTM-post | 773 | 1,384 | 930 | 130 | 611 |
Pre-Landslide Samples | Post-Landslide Samples | ||||||
---|---|---|---|---|---|---|---|
Sample ID | Mass (g) | Volume (cm3) | Density (kg/m3) | Sample ID | Mass (g) | Volume (cm3) | Density (kg/m3) |
i | 11,273.0 | 4,029.0 | 2.8 × 10−3 | I | 64,017.0 | 23,658.4 | 2.7 × 10−3 |
ii | 18,446.0 | 6,475.3 | 2.8 × 10−3 | II | 16,998.0 | 6,510.4 | 2.6 × 10−3 |
iii | 69,896.0 | 23,197.0 | 3.0 × 10−3 | III | 74,762.0 | 27,769.5 | 2.7 × 10−3 |
iv | 62,637.0 | 20,175.3 | 3.1 × 10−3 | IV | 88,167.0 | 32,776.8 | 2.7 × 10−3 |
Hb (m) | V− (m3) | αV+ (m3) |
---|---|---|
52.3 | 1.2209 × 106 | 1.2107 × 106 |
52.4 | 1.2146 × 106 | 1.2240 × 106 |
Models | Height Adjustment (m) | V+ (×106 m3) | V − (×106 m3) | |
---|---|---|---|---|
HDM | 0 | 0 | 1.0807 | |
AHDM | meanID0 | 52.5265 | 1.2068 | 1.3645 |
meanID1 | 50.9075 | 1.3133 | 1.1330 | |
meanID2 | 53.0371 | 1.1759 | 1.4402 | |
meanID3 | 40.6712 | 2.4804 | 1.6327 | |
meanID4 | 30.3309 | 4.4775 | 1.7860 | |
meanIDAll | 45.4946 | 1.7977 | 4.8748 | |
MBM | 52.3524 | 1.2176 | 1.3389 |
Step (m) | 0.005 | 0.01 | 0.05 | 0.1 | 0.3 | 0.5 | 1 |
Hb (m) | 52.3524 | 52.3524 | 52.3524 | 52.3524 | 52.3524 | 52.3524 | 52.3526 |
V+ (×106 m3) | 1.3389 | 1.3389 | 1.3389 | 1.3389 | 1.3390 | 1.3391 | 1.3395 |
Number of loops | 10,471 | 5,236 | 1,048 | 524 | 175 | 105 | 53 |
Computation time (second) | 2,241 | 1,120 | 227 | 103 | 39 | 24 | 13 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chen, Z.; Zhang, B.; Han, Y.; Zuo, Z.; Zhang, X. Modeling Accumulated Volume of Landslides Using Remote Sensing and DTM Data. Remote Sens. 2014, 6, 1514-1537. https://doi.org/10.3390/rs6021514
Chen Z, Zhang B, Han Y, Zuo Z, Zhang X. Modeling Accumulated Volume of Landslides Using Remote Sensing and DTM Data. Remote Sensing. 2014; 6(2):1514-1537. https://doi.org/10.3390/rs6021514
Chicago/Turabian StyleChen, Zhengchao, Bing Zhang, Yongshun Han, Zhengli Zuo, and Xiaoyong Zhang. 2014. "Modeling Accumulated Volume of Landslides Using Remote Sensing and DTM Data" Remote Sensing 6, no. 2: 1514-1537. https://doi.org/10.3390/rs6021514
APA StyleChen, Z., Zhang, B., Han, Y., Zuo, Z., & Zhang, X. (2014). Modeling Accumulated Volume of Landslides Using Remote Sensing and DTM Data. Remote Sensing, 6(2), 1514-1537. https://doi.org/10.3390/rs6021514