Performance Analysis of MODIS 500-m Spatial Resolution Products for Estimating Chlorophyll-a Concentrations in Oligo- to Meso-Trophic Waters Case Study: Itumbiara Reservoir, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
2.3. MODIS Data
2.4. Algorithm Development
2.5. Algorithm Calibration and Validation
2.6. Time Series of Estimated Chl-a
2.7. HANTS Filtering Method
3. Results and Discussions
3.1. Environmental Characteristics
3.2. Algorithm Development
3.3. Calibration and Validation
3.4. Time Series
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tundisi, J.G.; Matsumura-Tundisi, T.; Tundisi, J.E.M. Reservoirs and human well being: New challenges for evaluating impacts and benefits in the neotropics. Braz. J. Biol 2008, 68, 1133–1135. [Google Scholar]
- Mudroch, A. Planning and Management of Lakes and Reservoirs: An Integrated Approach to Eutrophication; UNEP International Environmental Technology Centre: Shiga, Japan, 1999. [Google Scholar]
- Reinart, A.; Kutser, T. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. Remote Sens. Environ 2006, 102, 74–85. [Google Scholar]
- Moses, W.K.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—Successes and challenges. Environ. Res. Lett 2009, 4, 1–8. [Google Scholar]
- Mendiondo, E.M. Global Review of Lake and Reservoir Eutrophication and Associated Management Challenges. Available online: http://wldb.ilec.or.jp/ILBMTrainingMaterials/resources/eutrophication_challenges.pdf (accessed on 14 of Januery 2014).
- Duan, H.; Ma, R.; Xu, J.; Zhang, Y.; Zhang, B. Comparison of different semi-empirical algorithms to estimate chlorophyll-a concentration in inland lake water. Environ. Monit. Assess 2010, 170, 231–244. [Google Scholar]
- Gons, H.J. Optical teledetection of chlorophyll-a in turbid inland waters. Environ. Sci. Technol 1999, 33, 1127–1132. [Google Scholar]
- El-Alem, A.; Chokmani, K.; Laurion, I.; El-Adlouni, S.E. Comparative analysis of four models to estimate chlorophyll-a concentration in case-2 waters using moderate resolution imaging spectroradiometer (MODIS) imagery. Remote Sens 2012, 4, 2373–2400. [Google Scholar]
- Morales, C.E.; Hormazabal, S.; Andrade, I.; Correa-Ramirez, M.A. Time-space variability of chlorophyll-a and associated physical variables within the region off Central-Southern Chile. Remote Sens 2013, 5, 5550–5571. [Google Scholar]
- Hadjimitsis, D.G.; Clayton, C. Field spectroscopy for assisting water quality monitoring and assessment in water treatment reservoirs using atmospheric corrected satellite remotely sensed imagery. Remote Sens 2011, 3, 362–377. [Google Scholar]
- Hadijimitsis, D.G.; Clayton, C. Assessment of temporal variations of water quality in inland water bodies using atmospheric corrected satellite remotely sensed image data. Environ. Monit. Assess 2009, 159, 281–292. [Google Scholar]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ 2012, 117, 394–406. [Google Scholar]
- Gordon, H.R.; Morel, A.Y. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review; Springer-Verlag: New York, NY, USA, 1983. [Google Scholar]
- Dall’Olmo, G.; Gitelson, A.A.; Rundquist, D.C.; Leavitt, B.; Barrow, T.; Holz, J.C. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and nearinfrared bands. Remote Sens. Environ 2005, 96, 176–187. [Google Scholar]
- Wu, M.; Zhang, W.; Wang, X.; Luo, D. Application of MODIS satellite data in monitoring water quality parameters of Chaohu Lake in China. Environ. Monit. Assess 2009, 148, 255–264. [Google Scholar]
- Zhang, Y.; Lin, S.; Qian, X.; Wang, Q.; Qian, Y.; Liu, J.; Ge, Y. Temporal and spatial variability of chlorophyll-a concentration in Lake Taihu using MODIS time-series data. Hydrobiologia 2011, 661, 235–250. [Google Scholar]
- Oliveira, M.T. O Fitoplancton Como Instrumento de Biomonitoramento da Qualidade da água do Reservatório de Cachoeira Dourada–Rio Paranaíba–GO/MG. 2010. [Google Scholar]
- Köppen, W. Grundriss der Klimakund; Walter de Gruyter: Berlin, Germany, 1931. [Google Scholar]
- Alcântara, E.H.; Bonnet, M.P.; Assireu, A.T.; Stech, J.L.; Novo, E.M.L.M.; Lorenzzetti, J.A. On the water thermal response to the passage of cold fronts: Initial results for Itumbiara reservoir (Brazil). Hydrol. Earth Syst. Sci 2010, 7, 9437–9465. [Google Scholar]
- Nascimento, R.F.F. Utilização de Dados MERIS e in situ Para a Caracterização Bio-óptica do Reservatório de Itumbiara, GO. 2009. [Google Scholar]
- Nush, E.A. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beiheft Ergebnisse der Limnol 1980, 14, 14–36. [Google Scholar]
- Lorenzen, C.J. Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr 1967, 12, 343–346. [Google Scholar]
- Wetzel, R.G.; Likins, G.E. Limnological Analyses; Springer: New York, NY, USA, 1991. [Google Scholar]
- Fougnie, B.; Frouin, R.; Lecomte, P.; Deschamps, P.Y. Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance. Appl. Opt 1999, 38, 3844–3856. [Google Scholar]
- Vermote, E.F.; Saleous, N.Z.E.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens. Environ 2002, 83, 97–111. [Google Scholar]
- Vermote, E.F.; Kotchenova, S.Y.; Ray, J.P. MODIS Surface Reflectance User’s Guide. Available online: http://modis-sr.ltdri.org/products/MOD09_UserGuide_v1_3.pdf (accessed on 17 January 2013).
- Sentlinger, G.I.; Hook, S.J.; Laval, B. Sub-pixel water temperature estimation from thermal-infrared imagery using vectorized lake features. Remote Sens. Environ 2008, 112, 1678–1688. [Google Scholar]
- Roerink, G.J.; Menenti, M.; Verhoef, W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. J. Remote Sens 2000, 21, 1911–1917. [Google Scholar]
- Alcântara, E.H.; Stech, J.L.; Lorenzzetti, J.A; Bonnet, M.P.; Casamitjana, X.; Assireu, A.T.; Novo, E.M.L.M. Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir. Remote Sens. Environ 2010, 144, 2651–2665. [Google Scholar]
- Alcântara, E.H. Accessing the potential of satellite and telemetric data to evaluate the influence of the heat flux exchange in the water column mixing and stratification. Int. J. Geosci 2012, 3, 899–907. [Google Scholar]
- Imboden, D.M. The Impact of Physical Processes on Algal Growth. In Eutrophication: Research and Application to Water Supply; Sutcliffe, D.W., Jone, J.G., Eds.; Freshwater Biological Association: Cumbria, UK, 1992; pp. 30–43. [Google Scholar]
- O’Reilly, J.E.; Maritorena, S.; Siegel, D.A.; O’Brien, M.C.; Toole, D.; Chavez, F.P.; Strutton, P.; Cota, G.F.; Hooker, S.B.; McClain, C.R.; et al. Ocean Chlorophyll a Algorithms for SeaWiFS, OC2, and OC4: Version 4. In SeaWiFS Postlaunch Calibration and Validation Analyses; O’Reilly, J.E., Maritorena, S., Eds.; Goddard Space Flight Center: Greenbelt, MD, USA, 2000; pp. 9–19. [Google Scholar]
- Le, C.; Hu, C.; English, D.; Cannizzaro, J.; Chen, Z.; Feng, L.; Boler, R.; Kovach, C. Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations. Progr. Oceanogr 2012, 109, 90–103. [Google Scholar]
- McClain, C.R.; Feldman, G.C.; Hooker, S.B. An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep-Sea Res. II 2004, 51, 5–42. [Google Scholar]
- Ruddick, K.; Ovidio, F.; Rijkeboer, M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Appl. Opt 2000, 39, 897–912. [Google Scholar]
- Samanta, A.; Ganguly, S.; Vermote, E.; Nemani, R.R.; Myneni, R.B. Interpretation of variations in MODIS-measured greenness levels of Amazon forests during 2000 to 2009. Environ. Res. Lett 2012, 7, 1–12. [Google Scholar]
- Alcântara, E.H. Sensoriamento Remoto da Temperatura e dos Fluxos de Calor na Superfície da água do Reservatório de Itumbiara (GO). Ph.D. Thesis, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil. 2010. [Google Scholar]
- Imberger, J.; Patterson, J.C. Physical limnology. Adv. Appl. Mechan 1989, 27, 303–475. [Google Scholar]
- Tundisi, J.G.; Matsumura-Tundisi, T.; Arantes Junior, J.D.; Tundisi, J.E.M.; Manzini, N.F.; Ducrot, R. The response of Carlos Botelho (Lobo, Broa) reservoir to the passage of cold fronts as reflected by physical, chemical, and biological variables. Braz. J. Biol 2004, 64, 177–186. [Google Scholar]
- Tundisi, J.G.; Matsumura-Tundisi, T.; Pereira, K.C.; Luzia, A.P.; Passerini, M.D.; Chiba, W.A.C.; Morais, M.A.; Sebastien, N.Y. Cold fronts and reservoir limnology: An integrated approach towards the ecological dynamics of freshwater ecosystems. Braz. J. Biol 2010, 70, 815–824. [Google Scholar]
- Curtarelli, M.P.; Alcantara, E.H.; Rennó, C.D.; Stech, J.L. Modeling the effects of cold front passages on the heat fluxes and thermal structure of a tropical hydroelectric reservoir. Hydrol. Earth Syst. Sci. Discuss 2013, 10, 8467–8502. [Google Scholar]
- Ogashawara, I.; Zavattini, J.A.; Tundisi, J.G. The climatic rhythm and blooms of cyanobacteria in a tropical reservoir in São Paulo, Brazil. Braz. J. Biol 2014, in press. [Google Scholar]
- Stech, J.L.; Lima, I.B.T.; Novo, E.M.L.M.; Silva, C.M.; Assireu, A.T.; Lorenzzetti, J.A. Telemetric monitoring system for meteorological and limnological data acquisition. Verhandlungen Internationalen Verein Limnologie 2006, 29, 747–1750. [Google Scholar]
- Alcantara, E.H.; Curtarelli, M.P.; Ogashawara, I.; Stech, J.L.; Souza, A.F. A system for environmental monitoring of hydroelectric reservoirs in Brazil. Revista Ambiente Água-An Interdiscip. J. Appl. Sci 2013, 8, 6–17. [Google Scholar]
- Ganf, G.G. Diurnal mixing and the vertical distribution of phytoplankton in a shallow equatorial lake (Lake George, Uganda). J. Ecol 1974, 62, 611–629. [Google Scholar]
- Savtchenko, A.; Ouzounov, D.; Ahmad, S.; Acker, J.; Leptoukh, G.; Koziana, J.; Nickless, D. Terra and aqua MODIS products available from NASA GES DAAC. Adv. Space Res 2004, 34, 710–714. [Google Scholar]
Estimator | Formulas |
---|---|
Bias | |
MAE | |
MSE | |
RMSE | |
RMSE (%) |
May | September | |
---|---|---|
Mean ± SD (Min–Max) | Mean ± SD (Min–Max) | |
Chl-a (μg/L) | 1.54 ± 0.39 (0.68–2.70) | 3.93 ± 3.03 (0.25–10.02) |
TSS (mg/L) | 1.04 ± 0.25 (0.60–1.54) | 1.12 ± 0.40 (0.25–1.81) |
pH | 7.63 ± 0.13 (7.48–7.90) | 6.99 ± 0.47 (6.29–7.90) |
DO (mg/L) | 6.65 ± 0.41 (6.08–7.41) | 8.66 ± 0.22 (8.19–8.99) |
Included Band | R2 | DF | F | Variation of R2 | p-Value | |
---|---|---|---|---|---|---|
Band: 4 | 4 | 0.18 | 1.45 | 1.519 | 3.27% | 0.222 |
Bands: 4, 1, | 1 | 0.35 | 2.44 | 3.167 | 9.32% | 0.051 |
Bands: 4, 1, 6, | 6 | 0.42 | 3.43 | 3.024 | 4.84% | 0.039 |
Bands: 4, 1, 6, 5, | 5 | 0.47 | 4.42 | 3.019 | 4.91% | 0.028 |
Bands: 4, 1, 6, 5, 3, | 3 | 0.47 | 5.41 | 2.358 | 0.00% | 0.056 |
Bands: 4, 1, 6, 5, 3, 2 | 2 | 0.48 | 6.40 | 2.016 | 0.88% | 0.086 |
Model | R2 | Adj. R2 | Intercept | Slope | p-Value | |
---|---|---|---|---|---|---|
First Campaign (n = 25) | ||||||
O14a | 0.206 | 0.171 | 1.105 | 0.216 | >0.001 | |
O14b | 0.157 | 0.121 | 2.767 | −0.712 | >0.001 | |
Second Campaign (n = 25) | ||||||
O14a | 0.065 | 0.019 | 0.729 | 0.948 | 0.802 | |
O14b | 0.004 | −0.046 | 5.897 | −1.209 | 0.882 | |
Mixed Dataset (n = 50) | ||||||
O14a | 0.223 | 0.206 | 2E-05 | 1.000 | >0.001 | |
O14b | 0.074 | 0.053 | 7.439 | −2.891 | 0.004 |
O14a | O14b | O14a | O14b | ||
---|---|---|---|---|---|
September Calibration | Mixed Calibration | ||||
1st Campaign | Bias | 0.214 | 0.065 | −0.480 | −0.922 |
MAE | 0.800 | 0.370 | 0.715 | 0.993 | |
MSE | 0.942 | 2.182 | 0.915 | 1.301 | |
RMSE | 0.971 | 1.477 | 0.956 | 1.141 | |
RMSE (%) | 47.973 | 72.998 | 47.262 | 56.372 | |
May Calibration | Mixed Calibration | ||||
2nd Campaign | Bias | 2.356 | 1.847 | 0.546 | 1.048 |
MAE | 3.183 | 2.694 | 2.380 | 2.466 | |
MSE | 16.876 | 12.380 | 8.612 | 10.025 | |
RMSE | 4.108 | 3.519 | 2.935 | 3.166 | |
RMSE (%) | 42.052 | 36.018 | 30.040 | 32.412 |
OC2 (n = 25) | OC3 (n = 25) | ||||
---|---|---|---|---|---|
R2 | p-Value | RMSE (%) | R2 | p-Value | RMSE (%) |
0.10 | 0.19 | 37.03 | 0.19 | 0.09 | 44.02 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ogashawara, I.; Alcântara, E.H.; Curtarelli, M.P.; Adami, M.; Nascimento, R.F.F.; Souza, A.F.; Stech, J.L.; Kampel, M. Performance Analysis of MODIS 500-m Spatial Resolution Products for Estimating Chlorophyll-a Concentrations in Oligo- to Meso-Trophic Waters Case Study: Itumbiara Reservoir, Brazil. Remote Sens. 2014, 6, 1634-1653. https://doi.org/10.3390/rs6021634
Ogashawara I, Alcântara EH, Curtarelli MP, Adami M, Nascimento RFF, Souza AF, Stech JL, Kampel M. Performance Analysis of MODIS 500-m Spatial Resolution Products for Estimating Chlorophyll-a Concentrations in Oligo- to Meso-Trophic Waters Case Study: Itumbiara Reservoir, Brazil. Remote Sensing. 2014; 6(2):1634-1653. https://doi.org/10.3390/rs6021634
Chicago/Turabian StyleOgashawara, Igor, Enner H. Alcântara, Marcelo P. Curtarelli, Marcos Adami, Renata F. F. Nascimento, Arley F. Souza, José L. Stech, and Milton Kampel. 2014. "Performance Analysis of MODIS 500-m Spatial Resolution Products for Estimating Chlorophyll-a Concentrations in Oligo- to Meso-Trophic Waters Case Study: Itumbiara Reservoir, Brazil" Remote Sensing 6, no. 2: 1634-1653. https://doi.org/10.3390/rs6021634
APA StyleOgashawara, I., Alcântara, E. H., Curtarelli, M. P., Adami, M., Nascimento, R. F. F., Souza, A. F., Stech, J. L., & Kampel, M. (2014). Performance Analysis of MODIS 500-m Spatial Resolution Products for Estimating Chlorophyll-a Concentrations in Oligo- to Meso-Trophic Waters Case Study: Itumbiara Reservoir, Brazil. Remote Sensing, 6(2), 1634-1653. https://doi.org/10.3390/rs6021634