The Delineation of Paleo-Shorelines in the Lake Manyara Basin Using TerraSAR-X Data
Abstract
:1. Introduction
2. Study Area and Paleolake Evidence
3. Methodology
3.1. SAR Processing
3.2. Filtering and Further Image Processing
3.3. Lake Level
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bergner, A.G.N.; Strecker, M.R.; Trauth, M.H.; Deino, A.; Gasse, F.; Blisniuk, P.; Dühnforth, M. Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa. Quatern. Sci. Rev 2009, 28, 2804–2816. [Google Scholar]
- Washbourn, C.K. Lake levels and quaternary climates in the Eastern Rift valley of Kenya. Nature 1967, 216, 672–673. [Google Scholar]
- Casanova, J. Stromatolites from the East African Rift: A synopsis. In Phanerozoic Stromatolites II; Bertrand-Sarfati, J., Monty, C., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 193–226. [Google Scholar]
- Burrough, S.L.; Thomas, D.S.G.; Bailey, R.M. Mega-lake in the Kalahari: A late Pleistocene record of the Palaeolake Makgadikgadi system. Quatern. Sci. Rev 2009, 28, 1392–1411. [Google Scholar]
- Olaka, L.; Odada, E.; Trauth, M.; Olago, D. The sensitivity of East African Rift lakes to climate fluctuations. J. Paleolimnol 2010, 44, 629–644. [Google Scholar]
- Bergner, A.G.N.; Trauth, M.H. Comparison of the hydrological and hydrochemical evolution of Lake Naivasha (Kenya) during three highstands between 175 and 60 kyr BP. Palaeogeogr. Palaeoclimatol. Palaeoecol 2004, 215, 17–36. [Google Scholar]
- Trauth, M.H.; Deino, A.L.; Bergner, A.G.N.; Strecker, M.R. East African climate change and orbital forcing during the last 175 kyr BP. Earth Planet. Sci. Lett 2003, 206, 297–313. [Google Scholar]
- Barker, P.; Gasse, F. New evidence for a reduced water balance in East Africa during the Last Glacial Maximum: Implication for model-data comparison. Quatern. Sci. Rev 2003, 22, 823–837. [Google Scholar]
- Schüler, L.; Hemp, A.; Zech, W.; Behling, H. Vegetation, climate and fire-dynamics in East Africa inferred from the Maundi Crater pollen record from Mt Kilimanjaro during the last glacial-interglacial cycle. Quatern. Sci. Rev 2012, 39, 1–13. [Google Scholar]
- Trauth, M.H.; Maslin, M.A.; Deino, A.L.; Junginger, A.; Lesoloyia, M.; Odada, E.O.; Olago, D.O.; Olaka, L.A.; Strecker, M.R.; Tiedemann, R. Human evolution in a variable environment: The amplifier lakes of Eastern Africa. Quatern. Sci. Rev 2010, 29, 2981–2988. [Google Scholar]
- Frost, S.R.; Schwartz, H.L.; Giemsch, L.; Morgan, L.E.; Renne, P.R.; Wildgoose, M.; Saanane, C.; Schrenk, F.; Harvati, K. Refined age estimates and Paleoanthropological investigation of the Manyara Beds, Tanzania. J. Anthropol. Sci 2012, 90, 1–12. [Google Scholar]
- Kaiser, T.M.; Seiffert, C.; Hertler, C.; Fiedler, L.; Schwartz, H.L.; Frost, S.R.; Giemsch, L.; Bernor, R.L.; Wolf, D.; Semprebon, G.; et al. Makuyuni, a new lower Palaeolithic hominid site in Tanzania. Mitteilungen Hamburgisches Zool. Museum Inst 2010, 106, 69–110. [Google Scholar]
- Wolf, D.; Nelson, S.V.; Schwartz, H.L.; Semprebon, G.M.; Kaiser, T.M.; Bernor, R.L. Taxonomy and paleoecology of the Pleistocene Equidae from Makuyuni, Northern Tanzania. Palaeodiversity 2010, 3, 249–269. [Google Scholar]
- Seitsonen, O. Archaeological research in the Northern Lake Manyara Basin, Tanzania, 2003–2004. Azania: J. Br. Inst. Eastern Afr 2006, 41, 41–67. [Google Scholar]
- Holdship, S.A. The Paleolimnology of Lake Manyara, Tanzania: A Diatom Analysis of a 56 m Sediment Core; Duke University: Durham, NC, USA, 1976. [Google Scholar]
- Barker, P.A. Diatoms as Palaeolimnological Indicators: A Reconstruction of Late Quaternary Environments in Two East African Salt Lakes; Loughborough University of Technology: Loughborough, UK, 1990. [Google Scholar]
- Keller, C.M.; Hansen, C.; Alexander, C.S. Archaeology and paleoenvironments in the Manyara and Engaruka Basins, Northern Tanzania. Geogr. Rev 1975, 65, 364–376. [Google Scholar]
- Casanova, J.; Hillaire-Marcel, C. Chronology and paleohydrology of late Quaternary high lake levels in the Manyara Basin (Tanzania) from isotopic data (18O, 13C, 14C, ThU) on fossil stromatolites. Quatern. Res 1992, 38, 205–226. [Google Scholar]
- Somi, E.J. Paleoenvironmental Changes in Central and Coastal Tanzania During the Upper Cenozoic: Magnetostratigraphy, Sedimentary Records and Shorelevel Changes; Paleogeophysics & Geodynamics, Department of Geology and Geochemistry, University of Stockholm: Stockholm, Sweden, 1993. [Google Scholar]
- Gaber, A.; Ghoneim, E.; Khalaf, F.; El-Baz, F. Delineation of paleolakes in the Sinai Peninsula, Egypt, using remote sensing and GIS. J. Arid Environ 2009, 73, 127–134. [Google Scholar]
- Elmahdy, S.I. Hydromorphological mapping and analysis for characterizing darfur paleolake, NW Sudan using remote sensing and GIS. Int. J. Geosci 2012, 2012, 25–36. [Google Scholar]
- Ghoneim, E.; El-Baz, F. The application of radar topographic data to mapping of a mega-paleodrainage in the Eastern Sahara. J. Arid Environ 2007, 69, 658–675. [Google Scholar]
- Dabbagh, A.E.; Al-Hinai, K.G.; Asif Khan, M. Detection of sand-covered geologic features in the Arabian Peninsula using SIR-C/X-SAR data. Remote Sens. Environ 1997, 59, 375–382. [Google Scholar]
- Schaber, G.G.; McCauley, J.F.; Breed, C.S. The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt. Remote Sens. Environ 1997, 59, 337–363. [Google Scholar]
- Abdelsalam, M.G.; Robinson, C.; El-Baz, F.; Stern, R.J. Application of orbital imaging radar for geologic studies in arid regions: The Saharan Testimony. Photogram. Eng. Remote Sens 2000, 66, 717–726. [Google Scholar]
- Ghoneim, E.; El-Baz, F. DEM-optical-radar data integration for palaeohydrological mapping in the northern Darfur, Sudan: Implication for groundwater exploration. Int. J. Remote Sens 2007, 28, 5001–5018. [Google Scholar]
- Rahman, M.M.; Tetuko Sri Sumantyo, J.; Sadek, M.F. Microwave and optical image fusion for surface and sub-surface feature mapping in Eastern Sahara. Int. J. Remote Sens 2010, 31, 5465–5480. [Google Scholar]
- Ghoneim, E.; Benedetti, M.; El-Baz, F. An integrated remote sensing and GIS analysis of the Kufrah Paleoriver, Eastern Sahara. Geomorphology 2012, 139–140, 242–257. [Google Scholar]
- Zribi, M.; Kotti, F.; Lili-Chabaane, Z.; Baghdadi, N.; Ben Issa, N.; Amri, R.; Duchemin, B.; Chehbouni, A. Soil texture estimation over a semiarid area using TerraSAR-X radar data. IEEE Geosci. Remote Sens. Lett 2012, 9, 353–357. [Google Scholar]
- Aubert, M.; Baghdadi, N.; Zribi, M.; Douaoui, A.; Loumagne, C.; Baup, F.; El Hajj, M.; Garrigues, S. Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust. Remote Sens. Environ 2011, 115, 1801–1810. [Google Scholar] [Green Version]
- Quackenbush, L.J. A review of techniques for extracting linear features from imagery. Photogram. Eng. Remote Sens 2004, 70, 1383–1392. [Google Scholar]
- Hellwich, O.; Laptev, I.; Mayer, H. Extraction of linear objects from interferometric SAR data. Int. J. Remote Sen 2002, 23, 461–475. [Google Scholar]
- Chanussot, J.; Mauris, G.; Lambert, P. Fuzzy fusion techniques for linear features detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens 1999, 37, 1292–1305. [Google Scholar]
- Marghany, M.; Hashim, M. Developing adaptive algorithm for automatic detection of geological linear features using RADARSAT-1 SAR data. Int. J. Phys. Sci 2010, 5, 2223–2229. [Google Scholar]
- Marghany, M.; Sabu, Z.; Hashim, M. Mapping coastal geomorphology changes using synthetic aperture radar data. Int. J. Phys. Sci 2010, 5, 1890–1896. [Google Scholar]
- Marghany, M. Operational of Canny Algorithm on SAR data for modelling shoreline change. Photogram. Fernerkundung Geoinf 2002, 2, 93–102. [Google Scholar]
- Ring, U.; Schwartz, H.L.; Bromage, T.G.; Sanaane, C. Kinematic and sedimentological evolution of the Manyara Rift in northern Tanzania, East Africa. Geol. Mag 2005, 142, 355–368. [Google Scholar]
- Macheyeki, A.S.; Delvaux, D.; Batist, M.D.; Mruma, A. Fault kinematics and tectonic stress in the seismically active Manyara-Dodoma Rift segment in Central Tanzania—Implications for the East African Rift. J. Afr. Earth Sci 2008, 51, 163–188. [Google Scholar]
- Dawson, J.B. Neogene tectonics and volcanicity in the North Tanzania sector of the Gregory Rift Valley: Contrasts with the Kenya sector. Tectonophysics 1992, 204, 81–92. [Google Scholar]
- Deus, D.; Gloaguen, R.; Krause, P. Water balance modeling in a semi-arid environment with limited in situ data using remote sensing in Lake Manyara, East African Rift, Tanzania. Remote Sens 2013, 5, 1651–1680. [Google Scholar]
- GES DISC (Goddard Earth Sciences (GES) Data and Information Services Center (DISC)). Available online: http://disc.sci.gsfc.nasa.gov/services (accessed on 23 December 2013).
- Kent, P.E. A note on pleistocene deposits near lake Manyara, Tanganyika. Geol. Mag 1942, 79, 72–77. [Google Scholar]
- Schwartz, H.; Renne, P.R.; Morgan, L.E.; Wildgoose, M.M.; Lippert, P.C.; Frost, S.R.; Harvati, K.; Schrenk, F.; Saanane, C. Geochronology of the Manyara Beds, northern Tanzania: New tephrostratigraphy, magnetostratigraphy and 40Ar/39Ar ages. Quatern. Geochronol 2012, 7, 48–66. [Google Scholar]
- Uhlig, C.; Jaeger, F. Die Ostafrikanische Bruchstufe und die angrenzenden Gebiete zwischen den Seen Magad und Lawa ja Mweri sowie dem Westfuß des Meru; Mittler: Leipzig, Germany, 1909; p. 63. [Google Scholar]
- Jaeger, F. Das Hochland der Riesenkrater und die umliegenden Hochländer Deutsch-Ostafrikas; 2 Länderkundliche Beschreibung- Band 2; Mittler: Berlin, Germany, 1913; p. 213. [Google Scholar]
- Leakey, L.S.B. East African lakes. Geogr. J 1931, 77, 497–508. [Google Scholar]
- Dixit, P.C. Pleistocene lacustrine ridged oncolites from the Lake Manyara area, Tanzania, East Africa. Sediment. Geol 1984, 39, 53–62. [Google Scholar]
- Hillaire-Marcel, C.; Carro, O.; Casanova, J. 14C and ThU dating of Pleistocene and Holocene stromatolites from East African paleolakes. Quatern. Res 1986, 25, 312–329. [Google Scholar]
- Damnati, B. Sedimentology and geochemistry of lacustrine sequences of the upper Pleistocene and Holocene in intertropical area (Lake Magadi and Green Crater Lake): Paleoclimatic implications. J. Afr. Earth Sci 1993, 16, 519–521. [Google Scholar]
- Garcin, Y.; Junginger, A.; Melnick, D.; Olago, D.O.; Strecker, M.R.; Trauth, M.H. Late Pleistocene–Holocene rise and collapse of Lake Suguta, northern Kenya Rift. Quatern. Sci. Rev 2009, 28, 911–925. [Google Scholar]
- Small, D.; Miranda, N.; Meier, E. A Revised Radiometric Normalisation Standard for SAR. Proceedings of the 2009 IEEE International on Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa, 12–17 July 2009; pp. 566–569.
- Infoterra. Radiometric Calibration of TerraSAR-X Data. Available online: http://www.astrium-geo.com/files/pmedia/public/r465_9_tsxx-itd-tn-0049-radiometric_calculations_i1.00.pdf (accessed on 23 December 2013).
- Lee, J.S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell 1980, 2, 165–168. [Google Scholar]
- Jehle, M.; Perler, D.; Small, D.; Schubert, A.; Meier, E. Estimation of atmospheric path delays in TerraSAR-X data using models vs. measurements. Sensors 2008, 8, 8479–8491. [Google Scholar]
- The Scikit-Image Development Team. Scikit-Image-Image Processing in Python, v0.7.2. Available online: http://scikit-image.org/ (accessed on 23 December 2013).
- Canny, J. A Computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell 1986, PAMI-8, 679–698. [Google Scholar]
- Gonzalez, J.H.; Bachmann, M.; Scheiber, R.; Krieger, G. Definition of ICESat selection criteria for their use as height references for TanDEM-X. IEEE Trans. Geosci. Remote Sens 2010, 48, 2750–2757. [Google Scholar]
- DLR SRTM X-SAR Digital Elevation Models. Status: 2012-09-28. Available online: http://eoweb.dlr.de:8080/eoweb-ng/licenseAgreements/DLR_SRTM_Readme.pdf (accessed on 23 December 2013).
- Ludwig, R.; Schneider, P. Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling. ISPRS J. Photogram. Remote Sens 2006, 60, 339–358. [Google Scholar]
- Schlüter, T.; Kohring, R. Palaeopathological fish bones from phosphorites of the Lake Manyara area, Northern Tanzania—Fossil evidence of a physiological response to survival in an extreme biocenosis. Environ. Geochem. Health 2002, 24, 131–140. [Google Scholar]
Nr. | Sensor | Mode | Date | Time (UTC) | Orbit | Inc. Ang. (deg.) | Pol. |
---|---|---|---|---|---|---|---|
1 | TSX1 | StripMap | 2011-09-08 | 15:46:08 | Asc. | 26.3° | HH |
2 | TSX1 | StripMap | 2011-08-28 | 15:46:08 | Asc. | 26.3° | HH |
3 | TSX1 | StripMap | 2011-09-13 | 15:54:39 | Asc. | 44.4° | HH |
4 | TSX1 | StripMap | 2011-09-02 | 15:54:39 | Asc. | 44.4° | HH |
5 | TSX1 | StripMap | 2012-12-24 | 15:46:10 | Asc. | 25.8° | HH/HV |
6 | TSX1 | StripMap | 2013-01-15 | 15:46:08 | Asc. | 24.5° | HH/HV |
7 | ALOS PALSAR | Fine Beam | 2008-05-24 | 20:22:03 | Asc. | 38.8° | HH/HV |
8 | ALOS PALSAR | Fine Beam | 2010-07-15 | 20:25:27 | Asc. | 38.8° | HH/HV |
Lake level | Lake Depth | Lake Volume | Surface Area |
---|---|---|---|
Today (954 m) | 1.18 m | ∼0.5 km3 * | 610 km2 (including Lake Burungi) |
978 m | 24 m (above today) | 20.0 km3 | 1152 km2 |
1005 m | 51 m (above today) | 59.6 km3 | 1757 km2 |
1018 m | 64 m (above today) | 83.6 km3 | 1932 km2 |
1030 m | 76 m (above today) | 107.6 km3 | 2062 km2 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bachofer, F.; Quénéhervé, G.; Märker, M. The Delineation of Paleo-Shorelines in the Lake Manyara Basin Using TerraSAR-X Data. Remote Sens. 2014, 6, 2195-2212. https://doi.org/10.3390/rs6032195
Bachofer F, Quénéhervé G, Märker M. The Delineation of Paleo-Shorelines in the Lake Manyara Basin Using TerraSAR-X Data. Remote Sensing. 2014; 6(3):2195-2212. https://doi.org/10.3390/rs6032195
Chicago/Turabian StyleBachofer, Felix, Geraldine Quénéhervé, and Michael Märker. 2014. "The Delineation of Paleo-Shorelines in the Lake Manyara Basin Using TerraSAR-X Data" Remote Sensing 6, no. 3: 2195-2212. https://doi.org/10.3390/rs6032195
APA StyleBachofer, F., Quénéhervé, G., & Märker, M. (2014). The Delineation of Paleo-Shorelines in the Lake Manyara Basin Using TerraSAR-X Data. Remote Sensing, 6(3), 2195-2212. https://doi.org/10.3390/rs6032195