Assessing the Robustness of Vegetation Indices to Estimate Wheat N in Mediterranean Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Description
2.2. Field Experiment in Foggia, Italy
2.3. Field Experiment in Horsham, Australia
2.4. Vegetation Indices
2.5. Statistical Analyses
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wiegand, C.L.; Gerbermann, A.H.; Gallo, K.P.; Blad, B.L.; Dusek, D. Multisite analyses of spectral-biophysical data for corn. Remote Sens. Environ 1990, 33, 1–16. [Google Scholar]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Applications of spectral remote sensing for agronomical decisions. Agron. J 2008, 100. [Google Scholar] [CrossRef]
- Lemaire, G.; Francois, C.; Dufrene, E. Towards universal broad leaf chlorophyll indices using prospect simulated database and hyperspectral reflectance measurements. Remote Sens. Environ 2004, 89, 1–28. [Google Scholar]
- Blackmer, T.M.; Schepers, J.S.; Varvel, G.E.; Walter-Shea, E.A. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron. J 1996, 88, 1–5. [Google Scholar]
- Datt, B. Visible/near infrared red reflectance and chlorophyll content in eucalyptus leaves. Int. J. Remote Sens 1999, 20, 2741–2759. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher crop leaves. Int. J. Remote Sens 1997, 18, 2691–2697. [Google Scholar]
- Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. N. Phytol 1999, 143, 105–117. [Google Scholar]
- Carter, G.A.; Spiering, B.A. Optical properties of intact leaves for estimating chlorophyll concentration. J. Environ. Qual 2002, 31, 1424–1432. [Google Scholar]
- Sims, D.A.; Gamon, J.A. Relationship between leaf pigment content and spectral reflectance across a wide range species, leaf structures and development stages. Remote Sens. Environ 2002, 81, 337–354. [Google Scholar]
- Huete, A.R.; Jackson, R.D.; Post, D.F. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ 1985, 17, 37–53. [Google Scholar]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ 1991, 35, 161–173. [Google Scholar]
- Yoder, B.J.; Pettigrew-Crosby, R.E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sens. Environ 1995, 53, 199–211. [Google Scholar]
- Fitzgerald, G.J.; Pinter, P.J.J.; Hunsaker, D.J.; Clarke, T.R. Multiple shadow fractions in spectral mixture analysis of a cotton canopy. Remote Sens. Environ 2005, 97, 526–539. [Google Scholar]
- Zhao, C.; Wang, J.; Huang, W.; Zhou, Q. Spectral indices sensitively discriminating wheat genotypes of different canopy architectures. Precis. Agric 2009, 11, 557–567. [Google Scholar]
- Zarco-Tejada, P.J.; Rueda, C.A.; Ustin, S.L. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens. Environ 2003, 85, 109–124. [Google Scholar]
- Fitzgerald, G.J.; Rodriguez, D.; Christensen, L.K.; Belford, R.; Sadras, V.O.; Clarke, T.R. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precis. Agric 2006, 7, 233–248. [Google Scholar]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ 1997, 62, 241–252. [Google Scholar]
- Asner, G.P.; Martin, R.E. Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels. Remote Sens. Environ 2008, 112, 3958–3970. [Google Scholar]
- Cammarano, D.; Fitzgerald, G.; Basso, B.; O’Leary, G.; Chen, D.; Grace, P.; Fiorentino, C. Use of the canopy chlorophyll content index (CCCI) for remote estimation of wheat nitrogen content in rainfed environments. Agron. J 2011, 103, 1597–1603. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res 1974, 14, 415–421. [Google Scholar]
- Analytical Spectral Devices, A. Fieldspec User’s Guide, Asd Part#600000. Available online: http://www.asdi.com/ (accessed on 14 March 2014).
- Labsphere. Reflectance Characteristics of Spectralon Panels; Labsphere Inc.: Sutton, NH, Canada, 1998. [Google Scholar]
- LI-COR Biosciences. Lai 2000 Plant Canopy Analyzer. Operating Manual; LI-COR Biosciences: Lincoln, NE, USA, 1992. [Google Scholar]
- Isbell, R.F. The Australian Soil Classification; CSIRO: Melbourne, VIC, Australia, 1966. [Google Scholar]
- Mollah, M.R.; Norton, R.M.; Huzzey, J. Australian grains free air carbon dioxide enrichment (AGFACE) facility: Design and performance. Crop Pasture Sci 2009, 60, 697–707. [Google Scholar]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ 2003, 86, 542–553. [Google Scholar]
- Smith, M.O.; Weeks, R.; Gillespie, A. A Strategy to Quantify Moisture and Roughness from SAR Images Using Finite Impulse Response Filters. In Proceedings of the International Symposium of Retrieval of Bio-Geophysical Parameters from SAR Data for Land, Tolouse, France, 10–13 October 1995.
- Blackburn, G.A.; Steele, C.M. Towards the remote sensing of matorral vegetation physiology: Relationships between spectral reflectance, pigment, and biophysical characteristics of semiarid bushland canopies. Remote Sens. Environ 1999, 70, 278–292. [Google Scholar]
- Huete, A.R.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ 2002, 83, 195–213. [Google Scholar]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ 2008, 112, 3833–3845. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ 2002, 80, 76–87. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modelling and validation in the context of precision agriculture. Remote Sens. Environ 2004, 90, 337–352. [Google Scholar]
- Kim, M.S.; Daughtry, C.S.T.; Chappelle, E.W.; McMurtrey, J.E., III; Walthall, C.L. The Use of High Spectral Resolution Bands for Estimating Absorbed Photosynthetically Active Radiation (APAR). In Proceedings of the 6th Symposium on Physical Measurements and Signatures in Remote Sensing, Val D’Isere, France, 17–21 January 1994; pp. 299–306.
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophill content for application to precision agriculture. Remote Sens. Environ 2002, 81, 416–426. [Google Scholar]
- Clevers, J.G.P.W. The application of a weighted infrared vegetation index for estimating LAI by correcting for soil moisture. Remote Sens. Environ 1989, 29, 25–38. [Google Scholar]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens 1977, 43, 1541–1552. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ 1994, 48, 119–126. [Google Scholar]
- Chappelle, E.W.; Kim, M.S.; McMurtrey, J.E. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sens. Environ 1992, 39, 239–247. [Google Scholar]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E., III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ 2000, 74, 229–239. [Google Scholar]
- Reusch, S. Development of a Reflectance Sensor to Detect the Nitrogen Status of Crops. Ph.D. Thesis, University of Kiel, Kiel, Germany,. 1997. [Google Scholar]
- Elvidge, C.D.; Chen, Z. Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens. Environ 1995, 54, 38–48. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem Photobiol B: Biol 1994, 22, 247–252. [Google Scholar]
- Gitelson, A.A.; Gritz, U.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher crop leaves. J. Plant Physiol 2003, 160, 271–282. [Google Scholar]
- Datt, B. Remote sensing of chlorophyll a, chlorophyll b,chlorophyll a + b, and total carotenoid content in eucalyptus leaves. Remote Sens. Environ 1998, 66, 111–121. [Google Scholar]
- Dyke, G. How to avoid bad statistics. Field Crop Res 1997, 51, 165–187. [Google Scholar]
- Harrell, F.E. Regression Modelling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis; Springer: New York, NY, USA, 2001. [Google Scholar]
- Trust, L.A. Genstat Tenth Edition for Windows Version 10.1; VSN International: Hemel Hempstead, UK, 2007. [Google Scholar]
- Maindonald, J.; Braun, J.W. Daag: Data Analysis and Graphics Data and Functions. R Package 1.12, 2012. Available online: http://cran.r-project.org/web/packages/DAAG/DAAG.pdf (accessed on 25 March 2013).
- Justes, E.; Mary, B.; Meynard, J.M.; Thelier-Huche, L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot 1994, 74, 397–407. [Google Scholar]
- Rodriguez, D.; Fitzgerald, G.J.; Belford, R.; Christensen, L.K. Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts. Aust. J. Agric. Res 2006, 57, 781–789. [Google Scholar]
- Cammarano, D.; Fitzgerald, G.; Basso, B.; Chen, D.; Grace, P.; O’Leary, G. Remote estimation of chlorophyll on two wheat cultivars in two rainfed environments. Crop Pasture Sci 2011, 62, 269–275. [Google Scholar]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground Based Multispectral Data. In Proceedings of the Fifth International Conference on Precision Agriculture, Madison, WI, USA, 16–19 July 2000; Robert, P.C., Rust, R.H., Larson, W.E., Eds.; American Society of Agronomy (CD-ROM): Madison, WI, USA, 2000. [Google Scholar]
- Fitzgerald, G.J.; Rodriguez, D.; O’Leary, G. Measuring and predicting canopy nitrogen concentration in wheat using a spectral index—The canopy chlorophyll content index (CCCI). Field Crop Res 2010, 116, 318–324. [Google Scholar]
- Li, F.; Mistele, B.; Hu, Y.; Yue, X.; Yue, S.; Miao, Y.; Chen, X.; Cui, Z.; Meng, Q.; Schmidhalter, U. Remotely estimating aerial n status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in china and germany. Field Crop Res 2012, 138, 21–32. [Google Scholar]
- Serrano, L.; Filella, I.; Penuelas, J. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Sci 2000, 40, 723–731. [Google Scholar]
- Demetriades-Shah, T.H.; Steven, M.D.; Clark, J.C. High resolution derivative spectra in remote sensing. Remote Sens. Environ 1990, 33, 55–64. [Google Scholar]
- Gastal, F.; Lemaire, G. N uptake and distribution in crops: An agronomical and ecophysiological perspective. J. Exp. Bot 2002, 53, 789–799. [Google Scholar]
- Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management. Eur. J. Agron 2008, 28, 614–624. [Google Scholar]
Index | Formula | Reference | Scale | Target variable |
---|---|---|---|---|
CCCI (Canopy Chlorophyll Content Index) i | [16] | Canopy | N Status/Chlorophyll | |
HS (Hansen and Schjoerring) | [26] | Canopy | Biomass/LAI/N/Chlorophyll | |
GI (Green Index) | [27] | Canopy | Chlorophyll | |
BS (Blackburn and Steel) | [28] | Canopy | Pigments/Biophysical Variables | |
EVI (Enhanced Vegetation Index) | [29] | Canopy/Regional | Biomass/Vegetation Cover | |
EVI 2 (Enhanced Vegetation Index 2) | [30] | Canopy/Regional | Biomass/Vegetation Cover | |
VARIgreen (Visible Atmospherically Resistant Index) | [31] | Canopy/Regional | Vegetation Fraction/LAI | |
MTVI 1 (Modified Triangular Vegetation Index 1) | [32] | Canopy | Chlorophyll | |
CARI (Chlorophyll Absorption Reflectance Index) | [33] | Canopy | Chlorophyll | |
TCARI (Transformed CARI) | [34] | Canopy | Chlorophyll/LAI/Soil Reflectance | |
WDVI (Weighted Difference Vegetation Index) | [35] | Canopy | LAI/Biophysical Variables | |
PVI (Perpendicular Vegetation Index) | [36] | Canopy | Biophysical Variables | |
MSAVI (Modified Soil-Adjusted Vegetation Index) | [37] | Canopy | Biophysical Variables | |
TCI (Triangular Chlorophyll Index) | [32] | Leaf/Canopy | Chlorophyll | |
RARSb (Ratio Analysis of Reflectance Spectra) | [38] | Leaf | Chlorophyll/Pigments | |
MCARI (Modified CARI) | [39] | Leaf/Canopy | Chlorophyll/LAI/Soil reflectance | |
GR (Green Ratio) | [40] | Leaf/Canopy | Biomass/Nitrogen | |
1 DL_DGVI (First Oder Derivative of the Green Vegetation Index using local baseline) | [41] | Leaf/Canopy | LAI/Green Cover | |
1 DZ_DGVI (First Oder Derivative of the Green Vegetation Index using zero baseline) | [41] | Leaf/Canopy | LAI/Green Cover | |
GIT 1(Gitelson 1) | [42] | Leaf | Chlorophyll | |
GIT 2(Gitelson 2) | [43] | Leaf | Chlorophyll | |
GIT 3(Gitelson 3) | [43] | Leaf | Chlorophyll | |
Datt 1 | [44] | Leaf | Pigments/Chlorophyll | |
Datt 2 | [44] | Leaf | Pigments/Chlorophyll | |
Datt 3 | [44] | Leaf | Pigments/Chlorophyll |
Treatment | Zadoks Growth Stage | Biomass | LAI | Crop N | Crop N |
---|---|---|---|---|---|
(g·m−2) | (m2·m−2) | (%) | (g·m−2) | ||
0 N | Z30 | 104.5 a (3.14) b | 1.1 a (0.04) b | 3.0 (0.24) | 3.1 (0.10) |
0 N | Z65 | 287.0 (11.20) | 1.7 (0.11) | 1.8 (0.07) | 5.3 (0.30) |
90 N | Z30 | 191.2 (5.41) | 2.7 (0.17) | 2.7 (0.02) | 5.2 (0.13) |
90 N | Z65 | 487.0 (4.00) | 3.1 (0.14) | 2.3 (0.12) | 11.5 (0.50) |
Treatment | Zadoks Growth Stage | Biomass | LAI | Crop N | Crop N |
---|---|---|---|---|---|
(g·m−2) | (m2·m−2) | (%) | (g·m−2) | ||
No CO2 Irrigation 0 N | Z30 | 50.2 a (8.34) b | 0.6 (0.13) | 5.0 (0.05) | 2.5 (0.43) |
No CO2 Irrigation 0 N | Z65 | 573.0 a (49.34) b | 1.7 (0.04) | 1.6 (0.27) | 9.4 (1.45) |
No CO2 Irrigation + N | Z30 | 45.5 (10.90) | 0.5 (0.13) | 5.1 (0.06) | 2.3 (0.53) |
No CO2 Irrigation + N | Z65 | 721.0 (56.56) | 2.1 (0.08) | 1.9 (0.09) | 13.7 (1.5) |
CO2 Irrigation 0 N | Z30 | 49.5 (5.54) | 0.5 (0.087) | 2.3 (0.33) | 4.6 (0.18) |
CO2 Irrigation 0 N | Z65 | 781.0 (49.42) | 1.8 (0.11) | 1.7 (0.15) | 13.1 (1.30) |
CO2 Irrigation + N | Z30 | 53.5 (5.95) | 0.6 (0.097) | 4.7 (0.11) | 2.5 (0.33) |
CO2 Irrigation + N | Z65 | 823.0 (61.04) | 2.4 (0.49) | 1.9 (0.15) | 15.3 (2.60) |
CO2 No Irrigation 0 N | Z30 | 51.7 (5.51) | 0.5 (0.068) | 4.4 (0.21) | 2.3 (0.32) |
CO2 No Irrigation 0 N | Z65 | 602.2 (18.44) | 1.1 (0.14) | 1.6 (0.08) | 9.7 (0.33) |
CO2 No Irrigation + N | Z30 | 58.5 (8.74) | 0.6 (0.089) | 4.8 (0.10) | 2.8 (0.46) |
CO2 No Irrigation + N | Z65 | 759.5 (119.10) | 1.3 (0.31) | 1.7 (0.18) | 13.4 (3.70) |
No CO2 No Irrigation 0 N | Z30 | 56.2 (10.00) | 0.6 (0.10) | 4.9 (0.10) | 2.8 (0.51) |
No CO2 No Irrigation 0 N | Z65 | 631.5 (110.80) | 1.4 (0.27) | 2.2 (0.38) | 14.2 (4.11) |
No CO2 No Irrigation + N | Z30 | 53.0 (5.00) | 0.6 (0.075) | 5.1 (0.13) | 2.7 (0.30) |
No CO2 No Irrigation + N | Z65 | 566.2 (12.40) | 1.1 (0.10) | 2.1 (0.19) | 11.7 (1.20) |
Index Name | |||||
---|---|---|---|---|---|
Calibration | Cross-validation | ||||
r2 a | SE b | b c | CV r2 d | MS e | |
Indices Developed at the Canopy Level | |||||
PVI | 0.81 | 0.42 | 25.1 | 0.80 | 0.17 |
VARIgreen | 0.78 | 0.44 | −4.9 | 0.78 | 0.20 |
CARI | 0.73 | 0.49 | −14.7 | 0.72 | 0.24 |
CCCI | 0.71 | 0.51 | −6.3 | 0.70 | 0.26 |
TCARI | 0.7 | 0.52 | −20.9 | 0.69 | 0.28 |
HS | 0.68 | 0.53 | −16.8 | 0.65 | 0.29 |
BS | 0.50 | 0.66 | 13.8 | 0.48 | 0.45 |
GI | 0.49 | 0.67 | −1.9 | 0.47 | 0.46 |
MTVI 1 | 0.48 | 0.68 | −5.5 | 0.42 | 0.48 |
MSAVI | 0.42 | 0.72 | −18 | 0.40 | 0.52 |
EVI | 0.39 | 0.74 | −5.1 | 0.35 | 0.56 |
WDVI | 0.38 | 0.74 | −9.0 | 0.32 | 0.56 |
EVI 2 | 0.35 | 0.76 | −5.5 | 0.32 | 0.59 |
Indices Developed at the Leaf Level | |||||
TCI | 0.67 | 0.54 | −25.3 | 0.66 | 0.30 |
RARSb | 0.67 | 0.54 | 0.4 | 0.66 | 0.30 |
DATT 2 | 0.63 | 0.57 | −17 | 0.64 | 0.33 |
MCARI | 0.63 | 0.57 | −23.7 | 0.59 | 0.34 |
GIT 1 | 0.59 | 0.6 | 0.36 | 0.58 | 0.37 |
DATT 3 | 0.58 | 0.61 | 0.3 | 0.55 | 0.39 |
1 DL_DGVI | 0.47 | 0.68 | −8.4 | 0.43 | 0.48 |
1 DZ_DGVI | 0.43 | 0.71 | −9.0 | 0.39 | 0.52 |
GIT 3 | 0.50 | 0.66 | −26.6 | −0.06 | 0.91 |
GIT 2 | 0.73 | 0.49 | 0.1 | −0.13 | 0.92 |
DATT 1 | 0.36 | 0.75 | 3.7 | −0.05 | 0.92 |
Index Name | |||||
---|---|---|---|---|---|
Calibration | Cross-validation | ||||
r2 a | s.e. b | b c | CV r2 d | MS e | |
Indices Developed at Canopy Level | |||||
CCCI | 0.73 | 0.6 | 7.8 | 0.72 | 0.37 |
GI | 0.63 | 0.71 | 2.6 | 0.62 | 0.51 |
VARIgreen | 0.61 | 0.72 | 5.3 | 0.6 | 0.53 |
EVI | 0.6 | 0.73 | 7.8 | 0.57 | 0.54 |
MSAVI | 0.61 | 0.72 | 26.5 | 0.58 | 0.54 |
EVI 2 | 0.6 | 0.73 | 8.7 | 0.56 | 0.55 |
WDVI | 0.59 | 0.74 | 13.8 | 0.53 | 0.56 |
MTVI 1 | 0.59 | 0.74 | 7.6 | 0.56 | 0.59 |
PVI | 0.57 | 0.76 | −26.1 | 0.54 | 0.6 |
BS | 0.56 | 0.77 | −17.9 | 0.52 | 0.63 |
HS | 0.48 | 0.84 | 17.4 | 0.44 | 0.73 |
TCARI | 0.46 | 0.85 | 21 | 0.39 | 0.74 |
CARI | 0.29 | 0.97 | 11.6 | 0.25 | 0.98 |
Indices Developed at Leaf Level | |||||
GR | 0.63 | 0.7 | 2.6 | 0.62 | 0.51 |
1 DL_DGVI | 0.59 | 0.74 | 11.5 | 0.54 | 0.57 |
DATT 2 | 0.58 | 0.75 | 20 | 0.56 | 0.58 |
1 DZ_DGVI | 0.59 | 0.74 | 12.9 | 0.53 | 0.59 |
DATT 3 | 0.57 | 0.76 | −0.4 | 0.51 | 0.59 |
TCI | 0.48 | 0.84 | 26.4 | 0.45 | 0.76 |
MCARI | 0.47 | 0.84 | 25.3 | 0.44 | 0.78 |
GIT 2 | 0.48 | 0.84 | −0.1 | 0.31 | 0.86 |
DATT 1 | 0.58 | 0.75 | −5.8 | 0.16 | 1.06 |
GIT 3 | 0.08 | 1.11 | −0.2 | 0.15 | 1.08 |
RARSb | 0.15 | 1.07 | −0.2 | 0.11 | 1.16 |
GIT 1 | 0.08 | 1.1 | −0.2 | 0.05 | 1.27 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cammarano, D.; Fitzgerald, G.J.; Casa, R.; Basso, B. Assessing the Robustness of Vegetation Indices to Estimate Wheat N in Mediterranean Environments. Remote Sens. 2014, 6, 2827-2844. https://doi.org/10.3390/rs6042827
Cammarano D, Fitzgerald GJ, Casa R, Basso B. Assessing the Robustness of Vegetation Indices to Estimate Wheat N in Mediterranean Environments. Remote Sensing. 2014; 6(4):2827-2844. https://doi.org/10.3390/rs6042827
Chicago/Turabian StyleCammarano, Davide, Glenn J. Fitzgerald, Raffaele Casa, and Bruno Basso. 2014. "Assessing the Robustness of Vegetation Indices to Estimate Wheat N in Mediterranean Environments" Remote Sensing 6, no. 4: 2827-2844. https://doi.org/10.3390/rs6042827
APA StyleCammarano, D., Fitzgerald, G. J., Casa, R., & Basso, B. (2014). Assessing the Robustness of Vegetation Indices to Estimate Wheat N in Mediterranean Environments. Remote Sensing, 6(4), 2827-2844. https://doi.org/10.3390/rs6042827