Open Access Data in Polar and Cryospheric Remote Sensing
Abstract
:1. Introduction
2. Historical Data
2.1. Aerial Photography in the Polar Regions
2.1.1. The Arctic
2.1.2. The Antarctic Peninsula
2.2. Satellite Photography and Multispectral Imaging
2.3. Synthetic Aperture Radar
2.4. Passive Microwave
2.5. Active Microwave Scatterometer
3. Current Data
3.1. Multispectral Imagery
3.2. Synthetic Aperture Radar
3.3. Passive Microwave
3.4. Active Microwave Scatterometer
4. Future Data
4.1. Multispectral Imagery
4.2. Synthetic Aperture Radar
4.3. Passive Microwave
4.4. Active Microwave Scatterometer
5. Polar Products
6. Earth Observation Tools
7. Access and Use of Polar Remote Sensing Data
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Polar Research Board. Lessons and Legacies of the International Polar Year 2007–2008; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Braithwaite, R.J. Glacier mass balance: The first 50 years of international monitoring. Prog. Phys. Geogr 2002, 26, 76–95. [Google Scholar] [CrossRef]
- Sewell, E.D. Distortion—Planigon versus metrogon. Photogramm. Eng. Remote Sens 1954, 20, 761–764. [Google Scholar]
- Spriggs, R.M. The Calibration of Military Cartographic Cameras, U.S. Army Engineer Geodesy, Intelligence and Mapping Research and Development Agency Technical Note; Book on Demand: Wright-Patterson Air Force Base, OH, USA. 1966.
- Fox, A.; Cziferszky, A. Unlocking the time capsule of historic aerial photography to measure changes in Antarctic Peninsula glaciers. Photogramm. Rec 2008, 23, 51–68. [Google Scholar] [CrossRef] [Green Version]
- Kunz, M.; Mills, J.P.; Miller, P.E.; King, M.A.; Fox, A.J.; Marsh, S. Application of surface matching for improved measurements of historic glacier volume change in the Antarctic Peninsula. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2012, XXXIX-B8, 579–584. [Google Scholar]
- Schenk, T.; Csatho, B.; van der Veen, C.J.; Brecher, H.; Ahn, Y.; Yoon, T. Registering imagery to ICESat data for measuring elevation changes on Byrd Glacier, Antarctica. Geophys. Res. Lett 2005, 32, L23S05. [Google Scholar] [CrossRef]
- Csatho, B.; Schenk, T.; Van Der Veen, C.J.; Krabill, W.B. Intermittent thinning of Jakobshavn Isbræ, West Greenland, since the Little Ice Age. J. Glaciol 2008, 54, 131–144. doi: http://dx.doi.org/10.3189/002214308784409035. [Google Scholar]
- Barrand, N.E.; Murray, T.; James, T.D.; Barr, S.L. Optimizing photogrammetric DEMs for glacier volume change assessment using laser-scanning derived ground-control point. J. Glaciol 2009, 55, 106–116. doi: http://dx.doi.org/10.3189/002214309788609001. [Google Scholar]
- Nuth, C.; Kohler, J.; Aas, H.F.; Brandt, O.; Hagen, J.O. Glacier geometry and elevation changes on Svalbard (1936–1990): A baseline dataset. Ann. Glaciol 2007, 46, 106–116. doi: http://dx.doi.org/10.3189/172756407782871440. [Google Scholar]
- Nuth, C.; Kohler, J.; König, M.; von Deschwanden, A.; Hagen, J.O.; Kääb, A.; Moholdt, G.; Pettersson, R. Decadal changes from a multi-temporal glacier inventory of Svalbard. The Cryosphere 2013, 7, 1603–1621. [Google Scholar] [CrossRef]
- Tómassen, H. The history of mapping in Iceland, with special reference to glaciers. Ann. Glaciol 1985, 8, 4–7. [Google Scholar]
- Pálsson, F.; Guðmundsson, S.; Björnsson, H.; Berthier, E.; Magnússon, E.; Guðmundsson, S.; Haraldsson, H.H. Mass and volume changes of Langjökull ice cap, Iceland, 1890 to 2009, deduced from old maps, satellite images and in situ mass balance measurements. Jökull 2012, 62, 81–95. [Google Scholar]
- Bengtsson, T. The mapping of Northern Greenland. Photogramm. Rec 1983, 11, 135–150. [Google Scholar] [CrossRef]
- Bjørk, A.A.; Kjær, K.H.; Korsgaard, N.J.; Khan, S.A.; Kjeldsen, K.K.; Andresen, C.S.; Box, J.E.; Larsen, N.K.; Funder, S. An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nat. Geosci 2012, 5, 427–432. [Google Scholar] [CrossRef]
- LaChapelle, E.R. Assessing glacier mass badgets by reconnaissance aerial photography. J. Glaciol 1962, 4, 290–297. [Google Scholar]
- Ommanney, C.S.L. The Inventory of Canadian Glaciers: Procedures, Techniques, Progress and Applications. In World Glacier Inventory; IAHS: Riederalp, Switzerland, 1980; Volume 126, pp. 35–44. [Google Scholar]
- Spencer, R.D.; Hall, R.J. Canadian large-scale aerial photographic systems (LSP). Photogramm. Eng. Remote Sens 1988, 54, 475–482. [Google Scholar]
- Post, A.; LaChapelle, E.R. Glacier Ice; University of Washington Press: Seattle, WA, USA, 2000. [Google Scholar]
- NSIDC/WDC for Glaciology, Boulder. Glacier Photograph Collection; National Snow and Ice Data Center/World Data Center for Glaciology: Boulder, CO, USA, 2002. [Google Scholar] [CrossRef]
- Mott, P.G. Wings over Ice: The Falkland Islands and Dependencies Aerial Survey Expedition; Peter Mott: Long Sutton, UK, 1986. [Google Scholar]
- McHugo, M.B. Topographical Survey and Mapping of British Antarctic Territory, South Georgia and the South Sandwich Islands 1944–1986; British Antarctic Survey, Natural Environment Research Council: Cambridge, UK, 2004. [Google Scholar]
- British Antarctic Survey Topographic Map; Series BAS 250; British Antarctic Survey: Cambridge, UK, 1974.
- Wrobel, B.P.; Walter, H.; Friehl, M.; Hoppe, U.; Schlüter, M.; Steineck, D. A topographical data set of the Glacier region at San Martin, Marguerite Bay, Antarctic Peninsula. Polarforschung 2000, 67, 53–63. [Google Scholar]
- Rees, W.G. Remote Sensing of Snow and Ice; Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Tedesco, M. Remote Sensing of the Cryosphere; John Wiley & Sons, Ltd: New York, NY, USA, 2014. [Google Scholar]
- Bindschadler, R. Monitoring ice sheet behavior from space. Rev. Geophys 1998, 36, 79–104. [Google Scholar] [CrossRef]
- Dozier, J.; Painter, T.H. Multispectral and hyperspectral remote sensing of alpine snow properties. Annu. Rev. Earth Planet. Sci 2004, 32, 465–494. [Google Scholar] [CrossRef]
- Quincey, D.J.; Lucas, R.M.; Richardson, S.D.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. Optical remote sensing techniques in high-mountain environments: Application to glacial hazards. Prog. Phys. Geogr 2005, 29, 475–505. [Google Scholar] [CrossRef]
- König, M.; Winther, J.-G.; Isaksson, E. Measuring snow and glacier ice properties from satellite. Rev. Geophys 2001, 39, 1–27. [Google Scholar] [CrossRef]
- Bolch, T.; Pieczonka, T.; Benn, D.I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Buchroithner, M.; Pieczonka, T.; Kunert, A. Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J. Glaciol 2008, 54, 592–600. doi: http://dx.doi.org/10.3189/002214308786570782. [Google Scholar]
- Kwok, R. Declassified high-resolution visible imagery for Arctic sea ice investigations: An overview. Remote Sens. Environ 2014, 142, 44–56. [Google Scholar] [CrossRef]
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a strong future. Remote Sens. Environ 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Williams, R.S.; Ferrigno, J.G. Satellite Image Atlas of Glaciers of the World; USGS: Denver, CO, USA, 2013. [Google Scholar]
- Markham, B.L.; Helder, D.L. Forty-year calibrated record of earth-reflected radiance from Landsat: A review. Remote Sens. Environ 2012, 122, 30–40. [Google Scholar] [CrossRef]
- Box, J.E.; Fettweis, X.; Stroeve, J.C.; Tedesco, M.; Hall, D.K.; Steffen, K. Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers. Cryosphere Discuss 2012, 6, 593–634. [Google Scholar] [CrossRef]
- Rösel, A.; Kaleschke, L.; Birnbaum, G. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network. The Cryosphere 2012, 6, 431–446. [Google Scholar] [CrossRef] [Green Version]
- Haug, T.; Kääb, A.; Skvarca, P. Monitoring ice shelf velocities from repeat MODIS and Landsat data—A method study on the Larsen C ice shelf, Antarctic Peninsula, and 10 other ice shelves around Antarctica. The Cryosphere 2010, 4, 161–178. [Google Scholar] [CrossRef]
- Haran, T.; Bohlander, J.; Scambos, T.; Fahnestock, M. MODIS Mosaic of Antarctica (MOA) Image Map; National Snow and Ice Data Center: Boulder, CO, USA, 2005; doi: http://dx.doi.org/10.7265/N5ZK5DM5.
- Scambos, T.A.; Haran, T.M.; Fahnestock, M.A.; Painter, T.H.; Bohlander, J. MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size. Remote Sens. Environ 2007, 111, 242–257. [Google Scholar] [CrossRef]
- Haran, T.; Bohlander, J.; Scambos, T.; Fahnestock, M. MODIS Mosaic of Greenland (MOG) Image Map; National Snow and Ice Data Center: Boulder, CO, USA, 2013; doi: http://dx.doi.org/10.7265/N5ZK5DM5.
- Logan, T.; Holt, B.; Drew, L. The newest oldest data from Seasat’s Synthetic Aperture Radar. Eos Trans. AGU 2014, 95, 93–94. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume 1—Microwave Remote Sensing Fundamentals and Radiometry; Artech House: London, UK, 1981. [Google Scholar]
- Chang, A.T.C.; Foster, J.L.; Hall, D.K. Nimbus-7 SMMR derived global snow cover parameters. Ann. Glaciol 1987, 9, 39–44. [Google Scholar]
- Wentz, F.J.; Gentemann, C.; Smith, D.; Chelton, D. Satellite measurements of sea surface temperature through clouds. Science 2000, 288, 847–850. [Google Scholar] [CrossRef]
- Dash, P.; Göttsche, F.M.; Olesen, F.S.; Fischer, H. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. Int. J. Remote Sens 2002, 23, 2563–2594. [Google Scholar]
- Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P.; Comiso, J.C.; Zwally, H.J. Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res.: Oceans 1999, 104, 15803–15814. [Google Scholar] [CrossRef]
- Goïta, K.; Walker, A.E.; Goodison, B.E. Algorithm development for the estimation of snow water equivalent in the boreal forest using passive microwave data. Int. J. Remote Sens 2003, 24, 1097–1102. [Google Scholar]
- Gloersen, P.; Campbell, W.J.; Cavalieri, D.J.; Comiso, J.C.; Parkinson, C.L.; Zwally, H.J. Arctic and Antarctic Sea Ice, 1978–1987: Satellite Passive-Microwave Observations and Analysis; NASA: Washington. DC, USA, 1992. [Google Scholar]
- Anderson, M.; Bliss, A. C.; Tschudi, M. MEaSUREs Arctic Sea Ice Characterization Daily 25 km EASE-Grid 2.0; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2014; doi: http://dx.doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0532.001.
- Njoku, E.G. Passive microwave remote sensing of the earth from space #8212; A review. Proc. IEEE 1982, 70, 728–750. [Google Scholar]
- Cavalieri, D.J.; Parkinson, C.L.; Gloerson, P.; Zwally, H.J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 1996. [Google Scholar]
- Parkinson, C.L.; Comiso, J.C.; Zwally, H.J. Nimbus-5 ESMR Polar Gridded Brightness Temperatures. Version 2; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 1999. [Google Scholar]
- Gloerson, P. Nimbus-7 SMMR Polar Gridded Radiances and Sea Ice Concentrations; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2006. [Google Scholar]
- Comiso, J.C. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 2; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2014. [Google Scholar]
- Armstrong, R.; Brodzik, M.J.; Knowles, K.; Savoie, M. Global Monthly EASE-Grid Snow Water Equivalent Climatology; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2005. [Google Scholar]
- Draper, D.W.; Long, D.G. An assessment of SeaWinds on QuikSCAT wind retrieval. J. Geophys. Res. Oceans 2002, 107, 3212. [Google Scholar] [CrossRef]
- Trusel, L.D.; Frey, K.E.; Das, S.B. Antarctic surface melting dynamics: Enhanced perspectives from radar scatterometer data. J. Geophys. Res 2012, 117, F02023. [Google Scholar] [CrossRef]
- Ashcraft, I.S.; Long, D.G. Differentiation between melt and freeze stages of the melt cycle using SSM/I channel ratios. IEEE Trans. Geosci. Remote Sens 2005, 43, 1317–1323. [Google Scholar] [CrossRef]
- Mortin, J.; Howell, S.E.L.; Wang, L.; Derksen, C.; Svensson, G.; Graversen, R.G.; Schrøder, T.M. Extending the QuikSCAT record of seasonal melt–freeze transitions over Arctic sea ice using ASCAT. Remote Sens. Environ 2014, 141, 214–230. [Google Scholar] [CrossRef]
- Ashcraft, I.S.; Long, D.G. Observation and characterization of radar backscatter over Greenland. IEEE Trans. Geosci. Remote Sens 2005, 43, 225–237. [Google Scholar] [CrossRef]
- Swan, A.M.; Long, D.G. Multiyear Arctic sea ice classification using QuikSCAT. IEEE Trans. Geosci. Remote Sens 2012, 50, 3317–3326. [Google Scholar]
- Long, D.G.; Drinkwater, M.R.; Holt, B.; Saatchi, S.; Bertoia, C. Global ice and land climate studies using scatterometer image data. Eos Trans. AGU 2001, 82, 503–503. [Google Scholar] [CrossRef]
- Bindschadler, R.; Vornberger, P.; Fleming, A.; Fox, A.; Mullins, J.; Binnie, D.; Paulsen, S.J.; Granneman, B.; Gorodetzky, D. The Landsat image mosaic of Antarctica. Remote Sens. Environ 2008, 112, 4214–4226. [Google Scholar] [CrossRef]
- NASA Landsat 7 Science Data Users Handbook; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2011.
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ 2014, 145, 154–172. [Google Scholar] [CrossRef]
- GLIMS. GLIMS Glacier Database; National Snow and Ice Data Center: Boulder, CO, USA, 2005; doi: http://dx.doi.org/10.7265/N5V98602.
- Dominguez, R. IceBridge DMS L1B Geolocated and Orthorectified Images; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2010. [Google Scholar]
- Morena, L.C.; James, K.V.; Beck, J. An introduction to the RADARSAT-2 mission. Can. J. Remote Sens 2004, 30, 221–234. [Google Scholar] [CrossRef]
- Coletta, A.; Angino, G.; Battazza, F.; Caltagirone, F.; Impagnatiello, F.; Valentini, G.; Capuzi, A.; Fagioli, S.; Leonardi, R. COSMO-SkyMed Program: Utilization and Description of an Advanced Space EO Duel-Use Asset; IAF: Montreux, Switzerland, 2007. [Google Scholar]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens 2007, 45, 3317–3341. [Google Scholar]
- Anderson, M.; Bliss, A.; Drobot, S. Snow Melt Onset Over Arctic Sea Ice from SMMR and SSM/I-SSMIS Brightness Temperatures. Version 3; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2014. [Google Scholar]
- Armstrong, R.; Knowles, K.; Brodzik, M.J.; Hardman, M.A. DMSP SSM/I-SSMIS Pathfinder Daily EASE-Grid Brightness Temperatures. Version 2; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 1994. [Google Scholar]
- Brodzik, M.J.; Armstrong, R.; Savoie, M. Global EASE-Grid 8-Day Blended SSM/I and MODIS Snow Cover; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2007. [Google Scholar]
- Brodzik, M.J.; Armstrong, Rs. Near-Real-Time DMSP SSM/I-SSMIS Pathfinder Daily EASE-Grid Brightness Temperatures; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2008. [Google Scholar]
- Cavalieri, D.J.; Gloerson, P.; Zwally, H.J. Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 1999. [Google Scholar]
- Long, D.G.; Stroeve, J. Enhanced-Resolution SSM/I and AMSR-E Daily Polar Brightness Temperatures; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2011. [Google Scholar]
- Maslanik, J.; Stroeve, J.C. Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Sea Ice Concentrations; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 1999. [Google Scholar]
- Maslanik, J.; Stroeve, J. DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures. Version 4; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2004. [Google Scholar]
- Nolin, A.; Armstrong, R.; Maslanik, J. Near-Real-Time SSM/I-SSMIS EASE-Grid Daily Global Ice Concentration and Snow Extent. Version 4; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 1998. [Google Scholar]
- Cavalieri, D.J.; Markus, T.; Comiso, J.C. AMSR-E/Aqua Daily L3 12.5 km Brightness Temperature, Sea Ice Concentration, & Snow Depth Polar Grids. Version 2; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2003; doi: http://dx.doi.org/10.5067/AMSR-E/AE_SI12.002.
- Cavalieri, D.J.; Markus, T.; Comiso, J.C. AMSR-E/Aqua Daily L3 6.25 km 89 GHz Brightness Temperature Polar Grids. Version 2; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2004; doi: http://dx.doi.org/10.5067/AMSR-E/AE_SI6.002.
- Cavalieri, D.J.; Markus, T.; Comiso, J.C. AMSR-E/Aqua Daily L3 25 km Brightness Temperature & Sea Ice Concentration Polar Grids. Version 2; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2004. doi: http://dx.doi.org/10.5067/AMSR-E/AE_SI25.002.
- Knowles, K.; Savoie, M.; Armstrong, R.; Brodzik, M.J. AMSR-E/Aqua Daily EASE-Grid Brightness Temperatures; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2006. [Google Scholar]
- Tedesco, M.; Kelly, R.; Foster, J.L.; Chang, A.T.C. AMSR-E/Aqua Daily L3 Global Snow Water Equivalent EASE-Grids. Version 2; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2004; doi: http://dx.doi.org/10.5067/AMSR-E/AE_DYSNO.002.
- Tedesco, M.; Kelly, R.; Foster, J.L.; Chang, A.T.C. AMSR-E/Aqua 5-Day L3 Global Snow Water Equivalent EASE-Grids, Verson 2; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2004; doi: http://dx.doi.org/10.5067/AMSR-E/AE_5DSNO.002.
- Tedesco, M.; Kelly, R.; Foster, J.L.; Chang, A.T.C. AMSR-E/Aqua Monthly L3 Global Snow Water Equivalent EASE-Grids. Version 2; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2004; doi: http://dx.doi.org/10.5067/AMSR-E/AE_MOSNO.002.
- Berger, M.; Moreno, J.; Johannessen, J.A.; Levelt, P.F.; Hanssen, R.F. ESA’s sentinel missions in support of Earth system science. Remote Sens. Environ 2012, 120, 84–90. [Google Scholar] [CrossRef]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.-H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Whitehead, K.; Moorman, B.J.; Hugenholtz, C.H. Brief communication: Low-cost, on-demand aerial photogrammetry for glaciological measurement. The Cryosphere 2013, 7, 1879–1884. [Google Scholar]
- Lucieer, A.; Turner, D.; King, D.H.; Robinson, S.A. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds. Int. J. Appl. Earth Obs. Geoinf 2014, 27, 53–62. [Google Scholar]
- Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shea, J.M.; Shrestha, A.B.; Pellicciotti, F.; Bierkens, M.F.P.; de Jong, S.M. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens. Environ 2014, 150, 93–103. [Google Scholar]
- Butler, D. Many eyes on Earth. Nature 2014, 505, 143–144. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ 2012, 120, 9–24. [Google Scholar]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.; Oimoen, M.; Zhang, Z.; Danielson, J.; Krieger, T.; Curtis, B.; Haase, J.; et al. ASTER Global Digital Elevation Model Version 2—Summary of Validation Results; NASA Land Processes DAAC: Sioux Falls, SD, USA, 2011. [Google Scholar]
- Korona, J.; Berthier, E.; Bernard, M.; Rémy, F.; Thouvenot, E. SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007–2009). ISPRS J. Photogramm. Remote Sens 2009, 64, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Björnsson, H.; Pálsson, F.; Feigl, K.L.; Llubes, M.; Rémy, F. The level of the Grímsvötn subglacial lake, Vatnajökull, Iceland, monitored with SPOT5 images. Earth Planet. Sci. Lett 2006, 243, 293–302. [Google Scholar] [Green Version]
- Moratto, Z.M.; Broxton, M.J.; Beyer, R.A.; Lundy, M.; Husmann, K. Ames Stereo Pipeline, NASA’s Open Source Automated Stereogrammetry Software. Proceedings of the 41st Lunar and Planetary Science Conference, Woodlands, TX, USA, 1–5 March 2010; 41, p. 2364.
- Shean, D.E.; Joughin, I.; Smith, B.; Moratto, Z.M.; Porter, C.; Morin, P. Quantifying Ice-Sheet/Ice-Shelf Dynamics and Variability with Meter-Scale DEM and Velocity Timeseries. Proceedings of 2012 American Geophysical Union Fall Meeting, San Francisco, CA, USA, 3–7 December 2012.
- Noh, M.-J.; Howat, I. Surface Extraction with TIN-Based Search-Space Minimization (SETSM): Fully Automatic Stereo-Photogrammetric Digital Elevation Model (DEM) Extraction from Pushbroom Satellite Imagery; 1 October 2013. Available online: http://www.pgc.umn.edu/system/files/SETSM_Product_Sheet_v1.1.pdf (accessed on 26 June 2014).
- Howat, I.M.; Negrete, A.; Smith, B.E. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation datasets. Cryosphere Discuss 2014, 8, 453–478. [Google Scholar]
- Bernhard Rabus, M.E. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Jarivs, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4. CGIAR-CSI SRTM 90 m Database. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 5 June 2014).
- Rignot, E.; Echelmeyer, K.; Krabill, W. Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett 2001, 28, 3501–3504. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol 2012, 58, 419–422. [Google Scholar]
- Arendt, A.A.; Echelmeyer, K.A.; Harrison, W.D.; Lingle, C.S.; Valentine, V.B. Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science 2002, 297, 382–386. [Google Scholar] [CrossRef]
- Rees, W.G.; Arnold, N.S. Mass balance and dynamics of a valley glacier measured by high-resolution LiDAR. Polar Rec 2007, 43, 311–319. doi: http://dx.doi.org/10.1017/S0032247407006419. [Google Scholar]
- Barrand, N.E.; James, T.D.; Murray, T. Spatio-temporal variability in elevation changes of two high-Arctic valley glaciers. J. Glaciol 2010, 56, 771. [Google Scholar]
- Jóhannesson, T.; Björnsson, H.; Magnússon, E.; Guðmundsson, S.; Pálsson, F.; Sigurðsson, O.; Thorsteinsson, T.; Berthier, E. Ice-volume changes, bias estimation of mass-balance measurements and changes in subglacial lakes derived by lidar mapping of the surface of Icelandic glaciers. Ann. Glaciol 2013, 54, 63–74. [Google Scholar]
- Abdalati, W.; Zwally, H.J.; Bindschadler, R.A.; Csathó, B.; Farrell, S.L.; Fricker, H.A.; Harding, D.; Kwok, R.; Lefsky, M.; Markus, T.; et al. The ICESat-2 Laser Altimetry mission. Proc. IEEE 2010, 98, 735–751. [Google Scholar]
- Pritchard, H.D.; Luthcke, S.B.; Fleming, A.H. Understanding ice-sheet mass balance: Progress in satellite altimetry and gravimetry. J. Glaciol 2010, 56, 1151–1161. [Google Scholar]
- Fricker, H.A.; Padman, L. Thirty years of elevation change on Antarctic Peninsula ice shelves from multi-mission satellite radar altimetry. J. Geophys. Res 2012. [Google Scholar] [CrossRef]
- Pope, A.; Willis, I.C.; Rees, W.G.; Arnold, N.S.; Pálsson, F. Combining airborne lidar and Landsat ETM+ data with photoclinometry to produce a digital elevation model for Langjökull, Iceland. Int. J. Remote Sens 2013, 34, 1005–1025. [Google Scholar]
- Cook, A.J.; Murray, T.; Luckman, A.; Vaughan, D.G.; Barrand, N.E. A new 100-m Digital Elevation Model of the Antarctic Peninsula derived from ASTER Global DEM: Methods and accuracy assessment. Earth Syst. Sci. Data 2012, 4, 129–142. [Google Scholar]
- Cook, A.J.; Murray, T.; Luckman, A.; Vaughan, D.G.; Barrand, N.E. Antarctic Peninsula 100 m Digital Elevation Model Derived from ASTER GDEM; National Snow and Ice Data Center: Boulder, CO, USA, 2012; doi: http://dx.doi.org/10.7265/N58K7711.
- Liu, H.; Jezek, K.; Li, B.; Zhao, Z. Radarsat Antarctic Mapping Project Digital Elevation Model Version 2; National Snow and Ice Data Center: Boulder, CO, USA, 2001. [Google Scholar]
- DiMarzio, J.; Brenner, A.; Schutz, R.; Shuman, C.A.; Zwally, H.J. GLAS/ICESat 500 m Laser Altimetry Digital Elevation Model of Antarctica; National Snow and Ice Data Center: Boulder, CO, USA, 2007. [Google Scholar]
- DiMarzio, J.; Brenner, A.; Schutz, R.; Shuman, C.A.; Zwally, H.J. GLAS/ICESat 1 km Laser Altimetry Digital Elevation Model of Greenland; National Snow and Ice Data Center: Boulder, CO, USA, 2007. [Google Scholar]
- Bamber, J.L.; Gomez-Dans, J.L.; Griggs, J.A. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data—Part 1: Data and methods. The Cryosphere 2009, 3, 101–111. [Google Scholar]
- Griggs, J.A.; Bamber, J.L. A new 1 km digital elevation model of Antarctica derived from combined radar and laser data—Part 2: Validation and error estimates. The Cryosphere 2009, 3, 113–123. [Google Scholar]
- Bamber, J.L.; Gomez-Dans, J.L.; Griggs, J.A. Antarctic 1 km Digital Elevation Model (DEM) from Combined ERS-1 Radar and ICESat Laser Satellite Altimetry; National Snow and Ice Data Center: Boulder, CO, USA, 2009. [Google Scholar]
- Blair, J.B.; Hofton, M.A. IceBridge LVIS L2 Geolocated Surface Elevation Product; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2012. [Google Scholar]
- Larsen, C.F. IceBridge UAF Lidar Scanner L1B Geolocated Surface Elevation Triplets; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2013. [Google Scholar]
- Krabill, W. IceBridge ATM L2 Icessn Elevation, Slope, and Roughness. Version 2; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2014. [Google Scholar]
- Lythe, M.B.; Vaughan, D.G. BEDMAP: A new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res 2001, 106, 351. [Google Scholar]
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere 2013, 7, 375–393. [Google Scholar]
- Bamber, J.L.; Griggs, J.A.; Hurkmans, R.T.W.L.; Dowdeswell, J.A.; Gogineni, S.P.; Howat, I.; Mouginot, J.; Paden, J.; Palmer, S.; Rignot, E.; et al. A new bed elevation dataset for Greenland. The Cryosphere 2013, 7, 499–510. [Google Scholar]
- Stuart, K.M.; Long, D.G. Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer. Deep Sea Res. Part II Top. Stud. Ocean 2011, 58, 1285–1300. [Google Scholar] [CrossRef]
- Walker, D.A. An integrated vegetation mapping approach for northern Alaska (1:4 M scale). Int. J. Remote Sens 1999, 20, 2895–2920. [Google Scholar]
- Brown, J.; Ferrians, O.; Heginbottom, J.A.; Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions; National Snow and Ice Data Center: Boulder, CO, USA, 2014. [Google Scholar]
- Allen, C. IceBridge MCoRDS L3 Gridded Ice Thickness, Surface, and Bottom, Version 2; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2014. [Google Scholar]
- Leuschen, C. IceBridge Snow Radar L1B Geolocated Radar Echo Strength Profiles; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2013. [Google Scholar]
- Kurtz, N.; Studinger, M.; Harbeck, J.P.; Onana, V.D.; Farrell, S. IceBridge Sea Ice Freeboard, Snow Depth, and Thickness; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2014. [Google Scholar]
- Cochran, J.R.; Bell, R.E. IceBridge Sander AIRGrav L1B Geolocated Free Air Gravity Anomalies; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2013. [Google Scholar]
- Tinto, K.J.; Bell, R.E. IceBridge Sander AIRGrav L3 Bathymetry; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2011. [Google Scholar]
- Cochran, J.R.; Burton, B.; Frearson, N.; Tinto, K.J. IceBridge Scintrex CS-3 Cesium Magnetometer L1B Geolocated Magnetic Anomalies; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2012. [Google Scholar]
- Joughin, I.; Smith, B.; Howat, I.; Scambos, T.; Moon, T. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol 2010, 56, 415–430. [Google Scholar]
- Joughin, I.; Smith, B.; Howat, I.; Scambos, T. MEaSUREs Greenland Ice Sheet Velocity Map from InSAR Data; National Snow and Ice Data Center: Boulder, CO, USA, 2010; doi: http://dx.doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0478.001.
- Joughin, I.; Smith, B.; Howat, I.; Scambos, T. MEaSUREs Greenland Ice Velocity: Selected Glacier Site Velocity Maps from InSAR; National Snow and Ice Data Center: Boulder, CO, USA, 2013; doi: http://dx.doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0481.001.
- Scheuchl, B.; Mouginot, J.; Rignot, E. Ice velocity changes in the Ross and Ronne sectors observed using satellite radar data from 1997 and 2009. The Cryosphere 2012, 6, 1019–1030. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Scheuchl, B. MEaSUREs InSAR-Based Ice Velocity Maps of Central Antarctica: 1997 and 2009; National Snow and Ice Data Center: Boulder, CO, USA, 2012. doi: http://dx.doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0525.001.
- Rignot, E.; Mouginot, J.; Scheuchl, B. Ice flow of the Antarctic ice sheet. Science 2011, 333, 1427–1430. [Google Scholar]
- Rignot, E.; Mouginot, J.; Scheuchl, B. MEaSUREs InSAR-Based Antarctica Ice Velocity Map; National Snow and Ice Data Center: Boulder, CO, USA, 2011; doi: http://dx.doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0484.001.
- Rignot, E.; Mouginot, J.; Scheuchl, B. Antarctic grounding line mapping from differential satellite radar interferometry. Geophys. Res. Lett 2011, 38, L10504. [Google Scholar]
- Rignot, E.; Mouginot, J.; Scheuchl, B. MEaSUREs Antarctic Grounding Line from Differential Satellite Radar Interferometry; National Snow and Ice Data Center: Boulder, CO, USA, 2011; doi: http://dx.doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0498.001.
- Kim, Y.; Kimball, J.S.; Zhang, K.; McDonald, K.C. Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth. Remote Sens. Environ 2012, 121, 472–487. [Google Scholar]
- Kim, Y.; Kimball, J.S.; Glassy, J.; McDonald, K.C. MEaSUREs Global Record of Daily Landscape Freeze/Thaw Status. Version 2; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2013; doi: http://dx.doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0477.002.
- Zhao, Y.; Liu, A.K.; Long, D.G. Validation of sea ice motion from QuikSCAT with those from SSM/I and buoy. IEEE Trans. Geosci. Remote Sens 2002, 40, 1241–1246. [Google Scholar]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.O.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Consortium The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol 2014, 60, 537–552. [Google Scholar]
- Remund, Q.P.; Long, D.G. Sea ice extent mapping using Ku band scatterometer data. J. Geophys. Res. Oceans 1999, 104, 11515–11527. [Google Scholar]
- Meier, W.N.; Fetterer, F.; Savoie, M.; Mallory, S.; Duerr, R.; Stroeve, J.C. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration. Version 2; National Snow and Ice Data Center: Boulder, CO, USA, 2013; doi: http://dx.doi.org/10.7265/N55M63M1.
- Hall, D.K.; Salmonson, V.V.; Riggs, G.A. MODIS/Aqua Sea Ice Extent Daily L3 Global 1km EASE-Grid Day.Version 5; National Snow and Ice Data Center: Boulder, CO, USA, 2006. [Google Scholar]
- Hall, D.K.; Salmonson, V.V.; Riggs, G.A. MODIS/Terra Sea Ice Extent Daily L3 Global 1 km EASE-Grid Day.Version 5; National Snow and Ice Data Center: Boulder, CO, USA, 2006. [Google Scholar]
- National Ice Center (NIC) and NSIDC Multisensor Analyzed Sea Ice Extent—Northern Hemisphere; Developed by F. Fetterer, M. Savoie, S. Helfrich, and P. Clemente-Colón; National Snow Ice Data Center: Boulder, CO, USA, 2010; doi: http://dx.doi.org/10.7265/N5GT5K3K.
- Fetterer, F.; Knowles, K.; Meier, W.N.; Savoie, M. Sea Ice Index; National Snow and Ice Data Center: Boulder, CO, USA, 2002; doi: http://dx.doi.org/10.7265/N5QJ7F7W.
- Stroeve, J. Sea Ice Trends and Climatologies from SMMR and SSM/I-SSMIS; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2003. [Google Scholar]
- National Ice Center; Fetterer, F.; Fowler, C. National Ice Center Arctic Sea Ice Charts and Climatologies in Gridded Format; National Snow and Ice Data Center: Boulder, CO, USA, 2009; doi: http://dx.doi.org/10.7265/N5X34VDB.
- Brodzik, M.J.; Armstrong, R. Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent. Version 4; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2013. [Google Scholar]
- Bindlish, R.; Jackson, T. Aquarius L3 Gridded 1-Degree Annual Soil Moisture. Version 2; NASA DAAC National Snow and Ice Data Center: Boulder, CO, USA, 2013. doi: http://dx.doi.org/10.5067/Aquarius/AQ3_ANSM.002.
- Salvatore, M.R.; Mustard, J.F.; Head, J.W.I.; Marchant, D.R.; Wyatt, M.B. Characterization of spectral and geochemical variability within the Ferrar Dolerite of the McMurdo Dry Valleys, Antarctica: Weathering, alteration, and magmatic processes. Antarct. Sci 2014, 26, 49–68. [Google Scholar]
- Rolstad, C.; Haug, T.; Denby, D. Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: Application to the western Svartisen ice cap, Norway. J. Glaciol 2009, 55, 666–680. [Google Scholar]
- Kääb, A.; Vollmer, M. Surface geometry, thickness changes and flow fields on creeping mountain permafrost: Automatic extraction by digital image analysis. Permafr. Periglac. Process 2000, 11, 315–326. [Google Scholar]
- AGU. AGU Publications Data Policy. Available online: http://publications.agu.org/author-resource-center/publication-policies/data-policy/ (accessed on 23 February 2014).
- Heid, T.; Kääb, A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sens. Environ 2012, 118, 339–355. [Google Scholar]
- Cooper, A.K. Future progress in Antarctic science: Improving data care, sharing and collaboration. Earth Environ. Sci. Trans. R. Soc. Edinb 2013, 104, 69–80. [Google Scholar]
- Fretwell, P.T.; LaRue, M.A.; Morin, P.; Kooyman, G.L.; Wienecke, B.; Ratcliffe, N.; Fox, A.J.; Fleming, A.H.; Porter, C.; Trathan, P.N. An emperor penguin population estimate: The first global, synoptic survey of a species from space. PLoS One 2012, 7, e33751. [Google Scholar]
- Fretwell, P.T.; Trathan, P.N. Penguins from space: Faecal stains reveal the location of emperor penguin colonies. Glob. Ecol. Biogeogr 2009, 18, 543–552. [Google Scholar]
- Turner, W. Satellites: Make data freely accessible. Nature 2013, 498, 37. [Google Scholar] [CrossRef]
- Meier, W.N.; Gallaher, D.; Campbell, G.G. New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery. The Cryosphere 2013, 7, 699–705. [Google Scholar]
- Carlson, D. A lesson in sharing. Nature 2011, 469, 293. [Google Scholar] [CrossRef]
Year | Aerial Photography Type |
---|---|
1947 | Ronne Antarctic Research Expedition (vertical and oblique) |
1956–1957 | FIDASE (vertical 1:27,000) |
1964–1969 | U.S. Navy TMA Trimetrogon (vertical 1:38,000 and oblique) |
1972–1979, 1986, 1989, 1990–2002 | British Royal Navy (vertical 1:12,000; 1:24,000) |
1962, 1986, 1989–2005 | BAS (vertical 1:20,000 to 1:30,000), some medium format vertical |
1989 | IfAG (vertical 1:70,000) |
Product Name | Description | URL |
---|---|---|
Antarctic Digital Database (ADD) | The SCAR (Scientific Committee on Antarctic Research) ADD is a compilation of spatial information for the continent of the Antarctic from 60°S to 90°S. The SCAR ADD consists of geographic information layers, including coastline, ice-shelf grounding line, rock outcrop, elevation data and human presence features, such as research station locations. The ADD is managed for SCAR by the British Antarctic Survey. | http://www.add.scar.org/ |
Antarctic Peninsula DEM | Derived from ASTER GDEM and posted to 100-m spacing, this DEM has been significantly improved for snow and ice covered regions. Using a new smoothing method [119], this DEM achieves a mean elevation difference of −4 ± 25 m when compared to ICESat. | http://nsidc.org/data/nsidc-0516 [120] |
Antarctic 1-km DEM from Combined ERS-1 Radar and ICESat Laser Altimetry | This data set provides a 1-km resolution DEM) of Antarctica by combining measurements from the ERS-1 Satellite Radar Altimeter from 1994 and the ICESat Geosciences Laser Altimeter System from 2003 to 2008 [124,125]. Data are provided as two gridded binary files and two ENVI header files viewable using ENVI or other similar software packages. | http://nsidc.org/data/nsidc-0422 [126] |
Bedmap2 | Bedmap2 is a suite of gridded products describing surface elevation, ice-thickness and the sea floor and subglacial bed elevation of the Antarctic south of 60°S. | http://www.antarctica.ac.uk//bas_research/our_research/az/bedmap2/ [131] |
BYU Antarctic Iceberg Database | Using data from six different active microwave scatterometers for 1978 and 1992–present, this database brings together latitude and longitude coordinates for icebergs initially identified by the National Ice Center [133]. | http://www.scp.byu.edu/data/iceberg/database1.html |
Circumpolar Arctic Vegetation Map (CAVM) | The CAVM defines the spatial extent of dominant vegetation in terms of the dominant plant growth forms and physiognomy. Mapped vegetation extends south to the tree line, which varies with longitude. Spatial coverage is approximately 60°N to 90°N. | http://nsidc.org/data/ggd639 (e.g., [134]) |
Cryosat-2 Elevation Data | Elevation profiles derived from radar altimetry, in “Level 2” products, as well as more complex raw data. See the ESA website and the appropriate literature for specific applications (i.e., sea ice, ice sheets, etc.). | https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/cryosat |
Frozen Ground Maps | Various permafrost extent, soil temperature and ground ice maps are available for regions, such as China, Russia, Mongolia, Canada, Alaska and the Circumarctic region. | http://nsidc.org/fgdc/maps/ (e.g., [135]) |
Glacier Photograph Collection | An online collection of more than 12,000 photographs of glaciers. Largely comprised of images from the Rocky Mountains, the Pacific Northwest, Alaska and Greenland, it also includes select images from Europe and South America. Updates to the dataset are ongoing, and the photos are searchable via a web interface. | https://nsidc.org/data/docs/noaa/g00472_glacier_photos/ [21] |
GLAS/ICESat Ice Sheet DEMs | These DEMs of Antarctica (500-m posting) and Greenland (1-km posting) are derived from GLAS/ICESat laser altimetry profile data collected February 2003, to June 2005, providing greater latitudinal extent and fewer slope-related effects than radar altimetry alone. Both DEMs are in polar stereographic grids; the grids cover all of Antarctica north of 86° S and all of Greenland south of 83°N. Elevations for both ice sheets are reported as centimeters above the datums, relative to both the WGS84 Ellipsoid and the EGM96 Geoid. Ancillary files include data quality maps of interpolation distance, as well as ENVI header files. | http://nsidc.org/data/docs/daac/nsidc0304_0305_glas_dems.gd.html; Antarctica: http://nsidc.org/data/nsidc-0304.html [122] and Greenland: http://nsidc.org/data/nsidc-0305.html [123] |
Global Land Ice Measurements from Space (GLIMS) Glacier Database | The GLIMS project is a large, collaborative endeavor to digitize the world’s glaciers using satellite imagery. While the Randolph Glacier Inventory (see below) is a comprehensive snapshot, the GLIMS glacier database offers the ability to study change over time. Provided in multiple vector formats. | http://glims.org/ [69] |
GlobICE | The GlobICE project provides measures of sea ice motion, deformation and flux through selected gateways for use in climate modeling and research. Products are derived from radar images taken by ESA’s ASAR Wide-Swath on-board ENVISAT and available from 2004 to 2011. The product is available for the Arctic and as a prototype for the Antarctic. | http://www.globice.info |
Greenland Bed DEM | A bed elevation dataset for Greenland derived from a combination of multiple airborne ice thickness surveys undertaken between the 1970s and 2012, as well as satellite-derived elevations for non-glaciated terrain to produce a consistent surface over the entire island including across the glaciated-ice-free boundary. The DEM was extended to the continental margin with the aid of bathymetric data. The DEM is interpolated to 1-km postings; errors in bed elevation range from a minimum of ±10 m to about ±300 m, as a function of distance from an observation and local topographic variability. | https://docs.google.com/file/d/0BylqEEvDu_qtWWdIYTFVcVpkd2s/edit?usp=sharing (NetCDF) and https://docs.google.com/file/d/0BylqEEvDu_qtWVpsaG1XUkw3eW8/edit?usp=sharing (GeoTIFF) [132] |
Greenland Ice Mapping Project (GIMP) DEM and ice mask | The GIMP DEM is constructed from a combination of ASTER and SPOT-5 DEM’s for the ice sheet periphery and margin (i.e., below the equilibrium line elevation) south of approximately 82.5°N and AVHRR photoclinometry in the ice sheet interior and far north. The DEM is posted to 30 m, although the “true” resolution of the DEM will vary from 40 m in areas of SPOT-5 coverage to 500 m in areas of photoclinometry. In addition, a raster binary land mask classification for Greenland’s ice area is available, mapped from Landsat and RADARSAT imagery. Both the DEM and the ice mask are on the same grid posting, broken into tiles across the continent; ice mask data are also available at 15-m posting. | http://bprc.osu.edu/GDG/gimpdem.php and http://bprc.osu.edu/GDG/icemask.php [105] |
IceBridge | Products derived from aircraft missions using multiple instruments to map ice surface topography [127–129], bedrock topography beneath the ice sheets [136], ice and snow thickness [137] and sea ice distribution and freeboard [138]. Data from laser altimeters and radar sounders are paired with a gravimeter [139,140], magnetometer [141], mapping camera [70] and other data to provide repeat measurements of rapidly-changing portions of land and sea ice. | http://nsidc.org/data/icebridge/ |
Icelandic Glacier DEMs | Airborne LiDAR DEMs were produced for over 90% of the ice-covered area of Iceland (including Vatnajökull, Hofsjökull, Mýrdalsjoökull, Drangajökull, Eyjafjallajökull and several smaller glaciers) as an International Polar Year deliverable. The DEMs also include a 500 m- to 1 km-wide buffer of proglacial geomorphological features. LiDAR point clouds were averaged and interpolated to produced DEMs gridded at 5-m postings; both the horizontal and vertical accuracy are under 0.5 m [114]. | Data are available on request from Tómas Jóhanesson at the Icelandic Meteorological Office ([email protected]). HTTP and FTP download services are in development. |
Landsat Image Mosaic of Antarctica (LIMA) | Covering the entire Antarctic continent at latitudes lower than 82.5°S, LIMA rigorously combines over 1000 Landsat scenes to visualize the continent in unprecedented quantitative detail [66]. Image mosaics of Antarctica and Greenland using Landsat 8 imagery are in planning stages. | http://lima.usgs.gov/ |
MODIS Ice Sheet Mosaics | A MODIS Mosaic of Antarctica (MOA, 2003–2004) is available through the NSIDC, imaging the ice sheet, ice shelves and surrounding land area at a grid scale of 125 m and estimated spatial resolution of 150 m. For Greenland, a similar product (MOG, 2005) is available at 100-m grid resolution and an estimated spatial resolution of 100 m to 200 m. MOA includes a corresponding grain size map. There are plans for future MODIS mosaics of both continents. | MOA: https://nsidc.org/data/moa/ [41,42] MOG: http://nsidc.org/data/nsidc-0547 [43] |
MODIS Rapid Response Mosaics and the Rapid Ice Sheet Change Observatory (RISCO) | Daily Arctic and Antarctic mosaic images are available in photo-like, true color from both the Terra and Aqua satellites at 4-km, 2-km and 1-km resolutions. The mosaic is composed of smaller image tiles, which are available individually at 250-m, 500-m, 1-km, 2-km and 4-km resolutions. Smaller, cropped areas of interest in the Antarctic are also generated upon request, beginning 4 December 2008, throughout austral late spring, summer and early fall as long as enough visible light is present to generate an image of the region. | http://rapidfire.sci.gsfc.nasa.gov/imagery/subsets/?project=antarctica_regions,...?project=antarctica_risco_areas,...?project=antarctica_usap_ops...?mosaic=Antarctica,and...?mosaic=Arctic |
NASA MEaSUREs (Making Earth System data records for Use in Research Environments program) | The MEaSUREs projects function in effect as additional processing facilities for NASA and are subject to rigorous standards, developing consistent global- and continental-scale Earth System Data Records by supporting projects that produce data using proven algorithms and input. Data sets produced include Greenland ice velocity [142–144], Antarctic ice velocity [145–148], Antarctic grounding line position [149,150] and global freeze/thaw maps [151,152]. | http://nsidc.org/data/measures/ |
Polar Geospatial Center DEMs | Stereo DEMs from WorldView imagery are available for areas in Greenland (with coverage soon to expand in both the Arctic and Antarctic) based upon two different processing algorithms (i.e., SETSM [104] and Ames Stereo Pipeline (ASP) [102]). In addition, airborne LiDAR DEMs are available for selected areas in Antarctica’s McMurdo Dry Valleys and Ross Island. | http://www.pgc.umn.edu/elevation |
QuikSCAT Sea Ice Age | Daily maps of Arctic sea ice age, produced in a standard polar stereographic grid. This product is primarily designed to study multi-year sea ice as opposed to the sea ice edge [64]. | http://www.scp.byu.edu/data/Quikscat/iceage/Quikscat_iceage.html |
QuikSCAT and SSM/I Merged Sea Ice Motion | Scatterometer and passive microwave sea ice motion vectors complement each other. This data product brings the two together using wavelet techniques [153]. | http://www.scp.byu.edu/data/Quikscat/IceMo/Quikscat_icemotion.html |
Radarsat Antarctic Mapping Project (RAMP) DEM | Created for (i.e., not by using) Radarsat data processing, this DEM incorporates data from satellite radar altimetry, airborne radar surveys, the Antarctic Digital Database (version 2) and large-scale topographic maps from the USGS and the Australian Antarctic Division. Data were collected between the 1940s and present, with most collected during the 1980s and 1990s. The 1-km, 400-m and 200-m DEM data are provided in ARC/INFO and binary grid formats, and the 1-km and 400-m DEMs are also available in ASCII format. | http://nsidc.org/data/nsidc-0082 [121] |
Randolph Glacier Inventory (RGI) | Global glacier inventory in vector format. While the RGI is a comprehensive snapshot, the GLIMS glacier database (see above) offers the ability to study change over time. | http://www.glims.org/RGI/randolph.html [154] |
Rutgers Global Snow Lab | Northern hemisphere snow cover absolute extent and anomalies at multiple temporal scales. Created using the Interactive Multisensor Snow and Ice Mapping System ( http://www.natice.noaa.gov/ims/ims_1.html). | http://climate.rutgers.edu/snowcover/ |
Scatterometer Ice Extent Products | Sea ice extent products derived from active microwave scatterometer data are available for both NSCAT and QuikSCAT in the Arctic and the Antarctic, provided in the appropriate polar stereographic grids on a near-real-time basis [155]. | http://www.scp.byu.edu/data/iceextent.html |
Sea Ice Products | A range of both in-depth and very easy-to-use sea ice products are available, including the passive microwave products (e.g., [52,156]), VIR products (e.g., [157,158]), field observations, Multisensor Analyzed Sea Ice Extent (MASIE) [159], Sea Ice Index [160], Sea Ice trends and Climatologies [161], National Ice Center Charts [162] and Northern Hemisphere Ice and Snow Extents [163]. | http://nsidc.org/data/seaice/data_summaries.html and http://nsidc.org/data/easytouse.html#seaice |
Shuttle Radar Topography Mission (SRTM) DEMs | A DEM gridded at 90-m spatial resolution for all areas on Earth between 60°S and 60°N. In addition to the raw products provided by NASA, some hole-filled versions are available. | http://www2.jpl.nasa.gov/srtm/ and http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1 [106–108] |
Soil Moisture | Derived from the Aquarius microwave radiometer, swath and gridded products are available at multiple temporal resolutions ranging from daily to annual. | http://nsidc.org/data/aquarius/index.html [164] |
SpecMap Web Viewer | These data, based on WorldView imagery, are spectral indices that highlight compositional variability throughout Antarctica’s Central Transantarctic Mountains (83–84°S, 160°W–170°E) [165]. At 5-m spatial resolution, this product has a significantly higher resolution than regional geological maps from the 1960s. | http://www.pgc.umn.edu/about/research/specmap/ |
Name | Description | Source | |
---|---|---|---|
ESA Toolboxes | A set of software packages developed by the European Space Agency specifically to handle data from ESA instruments, as well as a wide range of other remote sensing data. | https://earth.esa.int/web/guest/pi-community/toolboxes | |
CIAS | CIAS is an image cross-correlation tool built on top of the free IDL Virtual Machine. It can be used for feature tracking of surface displacement, for example to study sea ice movement, permafrost slump, or glacier flow [167]. Another extensively used tool in the glaciology community is COSI-Corr, a plugin within the commercial package ENVI [169]. | CIAS: http://www.mn.uio.no/geo/english/research/projects/icemass/cias/ and COSI-Corr: http://www.tectonics.caltech.edu/slip_history/spot_coseis/ | |
GDAL Libraries | A powerful translator library for raster and vector geospatial data formats. | http://www.gdal.org/ | |
Generic Mapping Tools (GMT) | An open source collection of about 80 command-line tools for manipulating geographic and Cartesian data sets. | http://gmt.soest.hawaii.edu/ | |
GNU Octave | A numerical computational language quite similar to MATLAB, so that most programs are easily portable. | http://www.gnu.org/software/octave/ | |
GRASS GIS | Software suite used for geospatial data management and analysis, image processing, graphics and maps production, spatial modeling and visualization. | http://grass.osgeo.org/ | |
ImageJ | Java-based generic raster editor with extensive plugin capabilities. | http://rsb.info.nih.gov/ij/ | |
Multispec | Simple, lightweight geographical/multispectral raster viewer and editor. | https://engineering.purdue.edu/~biehl/MultiSpec/ | |
PROJ.4 Cartographic Projections Library | A library (often implemented in other programs, such as MATLAB, R, QGIS, etc.) used for a wide variety of cartographic reprojection. | http://trac.osgeo.org/proj/ | |
Quantum GIS (QGIS) | A free and open source geographical information system to view and edit a range of raster and vector data; programmable with python; integrates with GRASS, GDAL and R. | http://www.qgis.org/ | |
Quantarctica | A collection of Antarctic geographical datasets that works within QGIS. | http://www.quantarctica.org/ | |
R project | A free software environment for statistical computing, data analysis and graphics. | http://www.r-project.org/ | |
SAGA-GIS (System for Automated Geoscientific Analyses) | An open framework for implementing and visualizing a wide variety of spatial algorithms. Running on Windows and Linux, SAGA-GIS integrates well with R, which can be used to execute SAGA commands. | http://www.saga-gis.org/en/index.html |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pope, A.; Rees, W.G.; Fox, A.J.; Fleming, A. Open Access Data in Polar and Cryospheric Remote Sensing. Remote Sens. 2014, 6, 6183-6220. https://doi.org/10.3390/rs6076183
Pope A, Rees WG, Fox AJ, Fleming A. Open Access Data in Polar and Cryospheric Remote Sensing. Remote Sensing. 2014; 6(7):6183-6220. https://doi.org/10.3390/rs6076183
Chicago/Turabian StylePope, Allen, W. Gareth Rees, Adrian J. Fox, and Andrew Fleming. 2014. "Open Access Data in Polar and Cryospheric Remote Sensing" Remote Sensing 6, no. 7: 6183-6220. https://doi.org/10.3390/rs6076183
APA StylePope, A., Rees, W. G., Fox, A. J., & Fleming, A. (2014). Open Access Data in Polar and Cryospheric Remote Sensing. Remote Sensing, 6(7), 6183-6220. https://doi.org/10.3390/rs6076183