Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Setting
2.2. CMORPH and Local Gauge Data
2.3. Bias Formulation and Estimation
2.4. Schemes for Bias Correction
- (i)
- The first one allows for correcting the bias at a pixel based (i.e., space variable) and at a daily scale (i.e., time varying), and is based on the using the BFTSV factor estimated from Equation (1). To apply a correction that accounts for spatial and temporal variability in the CMORPH bias, the pixel-based daily BFTSV factors were spatially interpolated using the inverse distance weight (IDW) method to yield a spatial and temporally varying field of BFs that cover the entire study area. We followed the approach of Haile et al. (2009) [38] in the same study area who showed good interpolation results by IWD. The CMOPRH daily rainfall fields were then multiplied by the BFTSV bias fields for the respective time windows to result in a new set of CMORPH estimates that as such are bias-corrected in a temporally and spatially varying scheme. This procedure is similar to the local-bias correction algorithm developed by Seo and Breidenbach [19], which is adopted in the operational version of the National Weather System-Multisensor Precipitation Estimation (NWS-MPE) system. The use of Equation (1) applies a bias correction factor that varies in space and time domains. We refer to this formulation as time and space variant (TSV) bias correction. To assess the implications for ignoring or for accounting of variability of bias, two more bias estimation and correction schemes were tested:
- (ii)
- Time and space fixed (TSF) bias correction: in this formulation the bias is obtained by using gauge and CMORPH estimates over the entire domain and over the total duration of the sample Equation (2):
- (iii)
- Time variable (TV) bias correction: in this formulation the BF is spatially lumped over the entire domain but is still estimated for each daily time step Equation (3):
2.5. Hydrologiska Byråns Vattenbalansavdelning (HBV-96) Hydrologic Model
2.6. Model Calibration and Evaluation
3. Results
3.1. Evaluation of CMORPH Estimates
3.2. Results on Rainfall Bias Correction
3.3. Model Parameter Optimization Using Different Rainfall Inputs
3.4. Effects of Rainfall Bias Corrections on Streamflow Simulations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Haile, A.T.; Habib, E.; Rientjes, T.H.M. Evaluation of the Climate Prediction Center (CPC) morphing technique (CMORPH) rainfall product on hourly time scales over the source of the Blue Nile River. Hydrol. Process 2013, 27, 1829–1839. [Google Scholar]
- Kondragunta, C.; Shrestha, K. Automated real-time operational rain gauge quality controls in NWS hydrologic operations. In Proceedings of the 20th AMS Conference on Hydrology, Atlanta, GA, USA, 29 January–2 February 2006.
- AghaKouchak, A.; Mehran, A.; Norouzi, H.; Behrangi, A. Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett 2012, 39. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens 2007, 28, 1503–1526. [Google Scholar]
- Habib, E.; Haile, A.T.; Tian, Y.; Joyce, R. Evaluation of the high-resolution CMORPH satellite-rainfall product using dense rain gauge observations and radar-based estimates. J. Hydrometeorol 2012, 13, 1784–1798. [Google Scholar]
- Yilmaz, K.K.; Hogue, T.S.; Hsu, K.; Sorooshian, S.; Gupta, H.V.; Wagener, T. Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeorol 2005, 6, 497–517. [Google Scholar]
- Zhang, Y.; Seo, D-J.; Kitzmiller, D.; Lee, H.; Kuligowski, R.J.; Kim, D.; Kondragunta, C.R. Comparative strengths of SCaMPR satellite QPEs with and without TRMM ingest vs. gridded gauge-only analyses. J. Hydrometeorol 2013, 14, 153–170. [Google Scholar]
- Bitew, M.M.; Gebremichael, M. Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrol. Earth Syst. Sci 2011, 15, 1147–1155. [Google Scholar]
- Bitew, M.M.; Gebremichael, M. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour. Res 2011, 47. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P.P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol 2004, 5, 487–503. [Google Scholar]
- Habib, E.; ElSaadani, M.; Haile, A.T. Climatology-focused evaluation of CMORPH and TMPA satellite rainfall products over the Nile Basin. J. Appl. Meteorol. Climatol 2012, 51, 2105–2121. [Google Scholar]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time rainfall estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc 2007, 88, 47–64. [Google Scholar]
- Pereira, F.A.J.; Carbone, R.E.; Janowiak, J.E.; Arkin, P.; Joyce, R.; Hallak, R.; Ramos, C.G.M. Satellite rainfall estimates over South America—Possible applicability to the water management of large watersheds. J. Am. Water Resour. Assoc 2010, 46, 344–360. [Google Scholar]
- Anagnostou, E.N.; Maggioni, V.; Nikolopoulos, E.I.; Meskele, T.; Hossain, F.; Papadopoulos, A. Benchmarking high-resolution global satellite rainfall products to radar and rain-gauge rainfall estimates. IEEE Trans. Geosci. Remote. Sens 2010, 48, 1667–1683. [Google Scholar]
- Sapiano, M.R.P.; Arkin, P.A. An Intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeorol 2009, 10, 149–166. [Google Scholar]
- Smith, T.M.; Arkin, P.A.; Bates, J.J.; Huffman, G.J. Estimating bias of satellite-based precipitation estimates. J. Hydrometeorol 2006, 7, 841–856. [Google Scholar]
- CMORPH Improvements: A Kalman Filter Approach to Blend Various Satellite Rainfall Estimate Inputs and Rain Gauge Data Integration. Available online: http://adsabs.harvard.edu/abs/2009EGUGA..11.9810J (accessed on 25 September 2013).
- Joyce, R.J.; Xie, P.; Janowiak, J.E. Kalman filter based CMORPH. J. Hydrometeorol 2011, 12, 1547–1563. [Google Scholar]
- Seo, D.-J.; Breidenbach, J. Real-time correction of spatially nonuniform bias in radar rainfall data using rain gauge measurements. J. Hydrometeorol 2002, 3, 93–111. [Google Scholar]
- Seo, D.-J.; Briedenbach, J.P.; Johnson, E.R. Real-time estimation of mean field bias in radar rainfall data. J. Hydrol 1999, 223, 131–147. [Google Scholar]
- Zhang, J.; NOAA/NSSL; Norman, O.K.; Howard, K.; Vasiloff, S.; Langston, C.; Kaney, B.; Arthur, A.; van Cooten, S.; Kelleher, K.; et al. National Mosaic and QPE (NMQ) system—Description, results and future plan. In Proceedings of the 34th Conference on Radar Meteor, Williamsburg, VA, USA, 6 October 2009.
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.J.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM multisatellite precipitation analysis (TMPA).Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol 2007, 8, 38–55. [Google Scholar]
- Boushaki, F.I.; Hsu, K.-L.; Sorooshian, S.; Park, G.-H.; Mahani, S.; Shi, W. Bias adjustment of satellite precipitation estimation using ground-based measurement: A case study evaluation over the southwestern United States. J. Hydrometeorol 2009, 10, 1231–1242. [Google Scholar]
- Li, M.; Shao, Q. An improved statistical approach to merge satellite rainfall estimates and raingauge data. J. Hydrol 2010, 385, 51–64. [Google Scholar]
- Vila, D.A.; de Goncalves, L.G.G.; Toll, D.L.; Rozante, J. Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. J. Hydrometeorol 2009, 10, 533–543. [Google Scholar]
- Hong, Y.; Hsu, K.; Moradkhani, H.; Sorooshian, S. Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour. Res 2006, 42. [Google Scholar] [CrossRef]
- Chiang, Y.-M.; Hsu, K.-L.; Chang, F.-J.; Hong, Y.; Sorooshian, S. Merging multiple precipitation sources for flash flood forecasting. J. Hydrol 2007, 340, 183–196. [Google Scholar]
- Tobin, K.J.; Bennett, M.E. Adjusting satellite precipitation data to facilitate hydrologic modeling. J. Hydrometeorol 2010, 11, 966–978. [Google Scholar]
- Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B. Real-time bias reduction for satellite-based precipitation estimates. J. Hydrometeorol 2010, 11, 1275–1285. [Google Scholar]
- Krakauer, N.Y.; Pradhanang, S.M.; Lakhankar, T.; Jha, A.K. Evaluating satellite products for precipitation estimation in mountain regions: A case study for Nepal. Remote Sens 2013, 5, 4107–4123. [Google Scholar]
- Artan, G.; Gadain, H.; Smith, J.L.; Asante, K.; Bandaragoda, C.J.; Verdin, J.P. Adequacy of satellite derived rainfall data for stream flow modeling. Nat. Hazards 2007, 43, 167–185. [Google Scholar]
- Zeweldi, D.A.; Gebremichael, M.; Downer, C.W. On CMORPH rainfall for stream flow simulation in a small, Hortonian watershed. J. Hydrometeorol 2011, 12, 456–466. [Google Scholar]
- Behrangi, A.; Khakbaz, B.; Jaw, T.C.; AghaKouchak, A.; Hsu, K.; Sorooshian, S. Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol 2011, 397, 225–237. [Google Scholar]
- Yong, B.; Ren, L.-L.; Hong, Y.; Wang, J.-H.; Gourley, J.J.; Jiang, S.-H.; Chen, X.; Wang, W. Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res 2010, 46. [Google Scholar] [CrossRef]
- Sorooshian, S.; AghaKouchak, A.; Arkin, P.; Eylander, J.; Foufoula-Georgiou, E.; Harmon, R.; Hendrickx, J.; Imam, B.; Kuligowski, R.; Skahill, B.; et al. Advanced concepts of remote sensing of precipitation at multiple scales. Bull. Am. Meteorol. Soc 2011, 92, 1353–1357. [Google Scholar]
- Gebremichael, M.; Anagnostou, E.N.; Bitew, M. Critical steps for continuing advancement of satellite rainfall applications for surface hydrology in the Nile River basin. J. Am. Water Resour. Assoc 2010, 46, 361–366. [Google Scholar]
- Rientjes, T.H.M.; Perera, B.U.J.; Haile, A.T.; Reggiani, P.; Muthuwatta, L.P. Regionalisation for lake level simulation—The case of Lake Tana in the Upper Blue Nile, Ethiopia. Hydrol. Earth Syst. Sci 2011, 15, 1167–1183. [Google Scholar]
- Haile, A.T.; Rientjes, T.H.M.; Gieske, A.S.M.; Gebremichael, M. Rainfall variability over mountainous and adjacent lake areas: The case of Lake Tana basin at the source of the Blue Nile River. J. Appl. Meteorol. Climatol 2009, 48, 1696–1717. [Google Scholar]
- Rientjes, T.H.M.; Haile, A.T.; Ayele, A.F. Diurnal rainfall variability over the Upper Blue Nile: A remote sensing based approach. Int. J. Appl. Earth Obs. Geoinf 2013, 21, 311–325. [Google Scholar]
- Haile, A.T.; Rientjes, T.H.M.; Habib, E.; Jetten, V.; Gebremichael, M. Rain event properties at the source of the Blue Nile River. Hydrol. Earth Syst. Sci 2011, 15, 1023–1034. [Google Scholar]
- Abdo, K.S.; Fiseha, B.M.; Rientjes, T.H.M.; Gieske, A.S.M.; Haile, A.T. Assessment of climate change impacts on the hydrology of Gilgel Abbay catchment in Lake Tana basin, Ethiopia. Hydrol. Process 2009, 23, 3661–3669. [Google Scholar]
- Rientjes, T.H.M.; Haile, A.T.; Mannaerts, C.M.M.; Kebede, E.; Habib, E. Changes in land cover and stream flows in Gilgel Abbay catchment, Upper Blue Nile basin—Ethiopia. Hydrol. Earth Syst. Sci. Discuss 2011, 7, 9567–9598. [Google Scholar]
- Wale, A.; Rientjes, T.H.M.; Gieske, A.S.M.; Getachew, H.A. Ungauged catchment contributions to Lake Tana’s water balance. Hydrol. Process 2009, 23, 3682–3693. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper; United Nations Food and Agriculture Organization: Rome, Italy, 1998; p. 300. [Google Scholar]
- Lindström, G.; Johansson, B.; Persson, M.; Gardelin, M.; Bergström, S. Development and test of the distributed HBV-96 hydrological model. J. Hydrol 1997, 201, 272–288. [Google Scholar]
- Booij, M.J. Impact of climate change on river flooding assessed with different spatial model resolutions. J. Hydrol 2005, 303, 176–198. [Google Scholar]
- Deckers, D.L.E.H.; Booij, M.J.; Rientjes, T.H.M.; Krol, M.S. Catchment variability and parameter estimation in multi-objective regionalisation of a rainfall-runoff model. Water Resour. Manag 2010, 24, 3961–3985. [Google Scholar]
- Merz, R.; Blöschl, G. Regionalisation of catchment model parameters. J. Hydrol 2004, 287, 95–123. [Google Scholar]
- Rientjes, T.H.M.; Muthuwatta, L.P.; Bos, M.G.; Booij, M.J.; Bhatti, H.A. Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite based evapotranspiration. J. Hydrol 2013, 505, 276–290. [Google Scholar]
- Seibert, J. Estimation of parameter uncertainty in the HBV model. Nord. Hydrol 1997, 28, 4–5. [Google Scholar]
- Gebremichael, M.; Krajewski, W.F. Characterization of the temporal sampling error inspace-time-averaged rainfall estimates from satellites. J. Geophys. Res 2004, 109. [Google Scholar] [CrossRef]
Year | Rainfall Product | June | July | August | September | October |
---|---|---|---|---|---|---|
2003 | CMORPH | 0.69 | 0.63 | 0.88 | 1.25 | 0.74 |
CMORPH TSF | 0.71 | 0.64 | 0.9 | 1.28 | 0.76 | |
CMORPH TV | 0.74 | 0.82 | 0.94 | 0.9 | 0.63 | |
CMORPH TSV | 0.87 | 0.81 | 0.99 | 0.95 | 0.63 | |
2004 | CMORPH | 0.83 | 1.15 | 0.8 | 0.99 | 0.84 |
CMORPH TSF | 0.79 | 1.09 | 0.76 | 0.94 | 0.8 | |
CMORPH TV | 0.9 | 0.87 | 0.87 | 0.93 | 0.93 | |
CMORPH TSV | 0.95 | 0.86 | 0.87 | 0.96 | 0.98 |
Parameter | Unit | Minimum | Maximum | Gauge | CMORPH with Bias Correction | ||
---|---|---|---|---|---|---|---|
Time-Space Fixed (TSF) | Space Fixed and Time Variable (TV) | Time-Space Variable (TSV) | |||||
FC | mm | 100 | 800 | 373 | 186 (−68) | 177 (−72) | 185 (−69) |
BETA | -- | 1 | 4 | 1.351 | 1.599 (71) | 1.562 (60) | 1.625 (78) |
LP | -- | 0.1 | 1 | 0.544 | 0.888 (77) | 0.905 (81) | 0.775 (52) |
ALPHA | -- | 0.1 | 3 | 0.271 | 0.242 (−17) | 0.236 (−20) | 0.269 (−1) |
Kq | day−1 | 0.0005 | 0.15 | 0.073 | 0.035 (−52) | 0.050 (−32) | 0.038 (−48) |
Ks | day−1 | 0.0005 | 0.15 | 0.087 | 0.086 (−1) | 0.083 (−5) | 0.074 (−15) |
PERC | mm·day−1 | 0.1 | 2.5 | 1.348 | 1.422 (6) | 1.208 (−11) | 1.339 (−1) |
CFLUX | mm | 0.0005 | 2.0 | 0.886 | 0.898 (1) | 0.805 (−9) | 0.892 (1) |
NS | -- | -- | -- | 0.8256 | 0.703 | 0.8038 | 0.8177 |
QBias | -- | -- | -- | 0.995 | 0.982 | 0.988 | 0.982 |
Year | Performance Measure | CMORPH | CMORPH (TSF) | CMORPH (TV) | CMORPH (TSV) |
---|---|---|---|---|---|
June–October 2003 | Rainfall Ratio | 0.818 | 0.819 | 0.806 | 0.869 |
Streamflow QBias | 0.734 (0.19) | 0.762 (0.21) | 0.764 (0.71) | 0.831 (0.79) | |
June–October 2004 | Rainfall Ratio | 0.947 | 0.904 | 0.898 | 0.917 |
Streamflow QBias | 0.726 (0.73) | 0.727 (0.73) | 0.792 (0.79) | 0.804 (0.80) |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Habib, E.; Haile, A.T.; Sazib, N.; Zhang, Y.; Rientjes, T. Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile. Remote Sens. 2014, 6, 6688-6708. https://doi.org/10.3390/rs6076688
Habib E, Haile AT, Sazib N, Zhang Y, Rientjes T. Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile. Remote Sensing. 2014; 6(7):6688-6708. https://doi.org/10.3390/rs6076688
Chicago/Turabian StyleHabib, Emad, Alemseged Tamiru Haile, Nazmus Sazib, Yu Zhang, and Tom Rientjes. 2014. "Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile" Remote Sensing 6, no. 7: 6688-6708. https://doi.org/10.3390/rs6076688
APA StyleHabib, E., Haile, A. T., Sazib, N., Zhang, Y., & Rientjes, T. (2014). Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile. Remote Sensing, 6(7), 6688-6708. https://doi.org/10.3390/rs6076688