An Unmanned Airship Thermal Infrared Remote Sensing System for Low-Altitude and High Spatial Resolution Monitoring of Urban Thermal Environments: Integration and an Experiment
Abstract
:1. Introduction
2. Integration of UALTIRSS
2.1. Unmanned Airship
2.2. Onboard Control and Navigation Subsystem
2.3. Task Subsystem
2.4. Communication subsystem
2.5. Ground Base Station
3. Experimental Method
3.1. Outdoor Data Acquisition
3.2. Image Matching and Mosaic
3.3. LST Retrieval
Surface Types | Ambient T (°C) | Transmission | Emissivity | True T (°C) | Retrieved T (°C) | Deviation (°C) |
---|---|---|---|---|---|---|
Water body 1 | 0.99 | 35.78 | 37.7 | 1.92 | ||
Water body 2 | 0.99 | 33.1 | 32.8 | −0.3 | ||
Lawn 1 | 0.97 | 39.68 | 40.0 | 0.32 | ||
Lawn 2 | 0.97 | 34.8 | 35.7 | 0.9 | ||
Asphalt pavement 1 | 36 | 0.78 | 0.95 | 57.41 | 58.9 | 1.49 |
Asphalt pavement 2 | 0.95 | 66 | 68.1 | 2.1 | ||
Concrete pavement 1 | 0.92 | 55.42 | 57.3 | 1.88 | ||
Concrete pavement 2 | 0.92 | 48.1 | 51.7 | 3.6 | ||
Mean of T deviation | 1.56 | |||||
RMSE | 2.63 |
4. Results and Discussion
4.1. Analysis of LST Retrieval Accuracy
4.2. Analysis of LST Distribution
4.3. Analysis of LST Profile
5. Conclusions and Outlook
- UALTIRSS possesses some excellent features, such as low-cost, flexibility, and high spatial resolution. Particularly, its thermal infrared spatial resolution of up to 0.8 m in this experiment is an important supplement to satellite data for multi-scale urban thermal environment evaluations.
- Since there are no mixed pixels involved, it is a convenient way to retrieve LST using reliable emissivity sources. Considering the difference of reference and actual emissivity, the deviation between the retrieved temperatures and the ground measured temperatures is within an acceptable scope in this study.
- The LST map can reveal overall trends and characteristics of urban thermal environment. A decrease of surface temperature was recorded with impervious surfaces, and followed by vegetation and water bodies. This result indicates that impervious surfaces contribute most to SUHI, whereas water bodies and vegetation cover cools urban thermal environments significantly.
- Profiles can illustrate the detailed thermal patterns on specific directions more visually, and profiles with high thermal resolution can show more details and temperature fluctuations, which are conducive to classify fine urban material and discriminate urban land cover.
- A significant positive relationship between the average LST of profiles and ISA% with R2 of 0.917 and the slope amounts to 0.325 °C per ISA% proves that LST is sensitive to ISA%.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Weng, Q. A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int. J. Remote. Sens. 2001, 22, 1999–2014. [Google Scholar]
- Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sens. 2012, 4, 2033–2056. [Google Scholar] [CrossRef]
- Priyadarsini, R.; Hien, W.N.; David, C.K.W. Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island. Sol. Energy 2008, 82, 727–745. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, M. B.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Weng, Q. Fractal analysis of satellite-detected urban heat island effect. Photogramm. Eng. Remote Sens. 2003, 69, 555–566. [Google Scholar] [CrossRef]
- Xiao, R.; Weng, Q.; Ouyang, Z.; Li, W.; Schienke, E.W.; Zhang, Z. Land surface temperature variation and major factors in Beijing, China. Photogramm. Eng. Remote Sens. 2008, 74, 451–461. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, J.; Li, X. Analysis of heat field influenced by the structure of road system based on thermal infrared remote sensing. Remote Sens. Inf. 2003, 3, 31–34. [Google Scholar]
- Pan, J.; Feng, Z.; Xiang, D.; Zhang, Q. Analysis on thermal environment effect of land use type and pattern in valley city—A case study of Lanzhou city. Remote Sens. Technol. Appl. 2008, 23, 202–207. [Google Scholar]
- Zhang, X.; Wu, P.; Chen, B. Relationship between vegetation greenness and urban heat island effect in Beijing city of China. Procedia Environ. Sci. 2010, 2, 1438–1450. [Google Scholar] [CrossRef]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suárez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Cai, G.; Du, M.; Xue, Y. Monitoring of urban heat island effect in Beijing combining ASTER and TM data. Int. J. Remote. Sens. 2011, 32, 1213–1232. [Google Scholar] [CrossRef]
- Clinton, N.; Peng, G. MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Environ. 2013, 134, 294–304. [Google Scholar] [CrossRef]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of european cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C. Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Sol. Energy 2007, 81, 358–368. [Google Scholar] [CrossRef]
- Su, Y.; Foody, G.M.; Cheng, K. Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations. Landsc. Urban Plann. 2012, 107, 172–180. [Google Scholar] [CrossRef]
- Luan, Q.; Ye, C.; Liu, Y.; Li, S.; Gao, Y. Effect of urban green land on thermal environment of surroundings based on remote sensing: A case study in Beijing, China. Ecol. Environ. Sci. 2014, 23, 252–261. [Google Scholar]
- Gao, K.; Qin, J.; Hu, Y. Plant landscape patterns improvement of the thermal environment based on remote sensing in the urban residential areas. Ecol. Environ. Sci. 2012, 21, 464–469. [Google Scholar]
- Gluch, R.; Quattrochi, D.A.; Luvall, J.C. A multi-scale approach to urban thermal analysis. Remote Sens. Environ. 2006, 104, 123–132. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; .Sòria, G.; Bianchi, R.; Paganini, M. Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sens. Environ. 2012, 117, 50–56. [Google Scholar] [CrossRef]
- Watts, A.; Ambrosia, V.; Hinkley, E. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef]
- Liu, K.; Su, H.; Zhang, L.; Yang, H.; Zhang, R.; Li, X. Analysis of the urban heat island effect in Shijiazhuang, China using satellite and airborne data. Remote Sens. 2015, 7, 4804–4833. [Google Scholar] [CrossRef]
- Zhao, E.; Qian, Y.; Gao, C.; Huo, H.; Jiang, X.; Kong, X. Land surface temperature retrieval using airborne hyperspectral scanner daytime mid-infrared data. Remote Sens. 2014, 6, 12667–12685. [Google Scholar] [CrossRef]
- Cui, J.; Yan, B.; Dong, X.; Zhang, S.; Zhang, J.; Tian, F.; Wang, R. Temperature and emissivity separation and mineral mapping based on airborne TASI hyperspectral thermal infrared data. Int. J. Appl. Earth Obs. Geoinf. 2015, 40, 19–28. [Google Scholar] [CrossRef]
- Deng, S. ENVI Remote Sensing Image Processing Method; Science Press: Beijing, China, 2010; p. 305. [Google Scholar]
- Hulley, G.C.; Hook, S.J.; Baldridge, A.M. ASTER land surface emissivity database of California and Nevada. Geophys. Res. Lett. 2008, 35, 165–174. [Google Scholar] [CrossRef]
- MODIS UCSB Emissivity Library. Available online: http://www.icess.ucsb.edu/modis/EMIS/html/em.html (accessed on 10 November 1999).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, P.; Meng, Q.; Zhang, Y.; Zhao, L.; Yuan, X.; Feng, X. An Unmanned Airship Thermal Infrared Remote Sensing System for Low-Altitude and High Spatial Resolution Monitoring of Urban Thermal Environments: Integration and an Experiment. Remote Sens. 2015, 7, 14259-14275. https://doi.org/10.3390/rs71014259
Ren P, Meng Q, Zhang Y, Zhao L, Yuan X, Feng X. An Unmanned Airship Thermal Infrared Remote Sensing System for Low-Altitude and High Spatial Resolution Monitoring of Urban Thermal Environments: Integration and an Experiment. Remote Sensing. 2015; 7(10):14259-14275. https://doi.org/10.3390/rs71014259
Chicago/Turabian StyleRen, Peng, Qinglin Meng, Yufeng Zhang, Lihua Zhao, Xu Yuan, and Xiaoheng Feng. 2015. "An Unmanned Airship Thermal Infrared Remote Sensing System for Low-Altitude and High Spatial Resolution Monitoring of Urban Thermal Environments: Integration and an Experiment" Remote Sensing 7, no. 10: 14259-14275. https://doi.org/10.3390/rs71014259
APA StyleRen, P., Meng, Q., Zhang, Y., Zhao, L., Yuan, X., & Feng, X. (2015). An Unmanned Airship Thermal Infrared Remote Sensing System for Low-Altitude and High Spatial Resolution Monitoring of Urban Thermal Environments: Integration and an Experiment. Remote Sensing, 7(10), 14259-14275. https://doi.org/10.3390/rs71014259