Polarimetric Scattering Properties of Landslides in Forested Areas and the Dependence on the Local Incidence Angle
Abstract
:1. Introduction
2. Methodology and the Data Utilized
2.1. Methodology
2.1.1. Basic Concept of Surface Scattering and the Importance of Orientation Angle Compensation
2.1.2. Model-Based Scattering Power Decomposition
2.1.3. Correlation Coefficient in the Linear Polarization Basis
Scene ID | Acquisition Date | Azimuth Direction (°) | Range Direction (°) | Pixel Spacing Azimuth, Range (m) | |
---|---|---|---|---|---|
PALSAR-2 Descending (Dsc.) | ALOS2013902890 | 26 August 2014 | 195 | 105 | 3, 5 |
PALSAR-2 Ascending (Asc.) | ALOS2014120670 | 27 August 2014 | 354 | 79 | |
Pi-SAR-L2 Nara | L200501 | 18 June 2012 | 270 | 180 | 0.5, 1.7 |
Pi-SAR-L2 Yoshino | L204006 | 8 August 2014 | 225 | 135 |
2.2. Description of Polarimetric SAR Data and the Study Area
3. Polarimetric Scattering Properties of Landslides
3.1. Results for PALSAR-2 Data Analysis
3.1.1. Scattering Power Decomposition
PolSAR Data | Landslide No. 1 | Landslide No. 2 | Forest Adjacent to Landslide No. 1 | Forest Adjacent to Landslide No. 2 | ||||
---|---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |||||
PALSAR-2, Descending | 0.70 | (0.16) | 0.32 | (0.18) | 0.18 | (0.17) | 0.12 | (0.13) |
PALSAR-2, Ascending | 0.51 | (0.23) | 0.35 | (0.19) | 0.20 | (0.13) | 0.11 | (0.11) |
PolSAR Data | Landslide No. 1 | Landslide No. 2 | Forest Adjacent to Landslide No. 1 | Forest Adjacent to Landslide No. 2 | ||||
---|---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |||||
PALSAR-2, Descending | 0.24 | (0.14) | 0.47 | (0.18) | 0.66 | (0.19) | 0.70 | (0.17) |
PALSAR-2, Ascending | 0.39 | (0.19) | 0.46 | (0.20) | 0.63 | (0.15) | 0.71 | (0.15) |
3.1.2. Correlation Coefficient of HH and VV Polarizations
PolSAR Data | Landslide No. 1 | Landslide No. 2 | Forest Adjacent to Landslide No. 1 | Forest Adjacent to Landslide No. 2 |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
PALSAR-2, Descending | 0.74 (0.14) | 0.28 (0.21) | 0.24 (0.18) | 0.16 (0.14) |
PALSAR-2, Ascending | 0.55 (0.25) | 0.31 (0.21) | 0.25 (0.14) | 0.15 (0.14) |
3.1.3. Dependence on Local Incidence Angle
3.2. Results for Pi-SAR-L2 Data Analysis
4. Discussions
4.1. Polarimetric Scattering Properties of Landslides
4.2. Multiple Threshold Settings for Better Landslide Detection
Study Case | Range | Threshold |
---|---|---|
Case 1 [4] | N/A | ps > 0.6 |
Case 2a [2] | 0.349 to 0.463 | ps > 0.1, with pv < 0.65 and pd < 0.1 |
Case 2b [2] | 0.381 to 0.485 | N/A |
Case 3 [3] | 0.165 to 0.246 | N/A |
Case 4 [5] | N/A (0.4 to 0.7) | N/A |
Present case | 0.09 to 0.88 | (1) at LIA < 30° ps > 0.6 and ps > pv (2) at 30° < LIA < 60° ps > 0.4 and ps > pv (3) at 60° < LIA Not detectable (ps < pv) |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote sensing for landslide investigations: An overview of recent achievements and perspectives. Remote Sens. 2014, 6, 1–53. [Google Scholar] [CrossRef]
- Watanabe, M.; Yonezawa, C.; Iisaka, J.; Sato, M. ALOS/PALSAR full polarimetric observations of the Iwate-Miyagi Nairiku earthquake of 2008. Int. J. Remote Sens. 2012, 33, 1234–1245. [Google Scholar] [CrossRef]
- Yonezawa, C.; Watanabe, M.; Saito, G. Polarimetric decomposition analysis of ALOS-PALSAR observation data before and after a landslide event. Remote Sens. 2012, 4, 2314–2328. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Yajima, Y.; Yamada, H.; Uratsuka, S.; Umehara, T.; Moriyama, T. X- and L-band Pi-SAR observations to Chuetsu Earthquake region, Japan. In Proceedings of 6th European Conference on Synthetic Aperture Radar (EUSAR), Dresden, Germany, 16–18 May 2006.
- Shibayama, T.; Yamaguchi, Y. A landslide detection based on the change of scattering power components between multi-temporal POLSAR data. In Proceedings of 2014 IEEE International Conference on Geoscience and Remote Sensing Symposium, Quebec, QC, Canada, 13–18 July 2014.
- Shimada, M.; Watanabe, M.; Kawano, N.; Ohki, M.; Motooka, T. Detecting mountainous landslides by SAR polarimetry: A comparative study using Pi-SAR-L2 and X-band SARs. Trans. JSASS Aerosp. Tech. Japan 2014, 12, 9–15. [Google Scholar] [CrossRef]
- Mattia, F.; Toan, T. L.; Souyris, J.-C.; De Carolis, G.; Floury, N.; Posa, F.; Pasquariello, G. The effect of surface roughness on multifrequency polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 954–966. [Google Scholar] [CrossRef]
- Mott, H. Remote Sensing with Polarimetric. Radar; Wiley-IEEE Press: New York, NY, USA, 2007; p. 62. [Google Scholar]
- Yamaguchi, Y. Radar Polarimetry from Basics to Applications; IEICE Japan: Tokyo, Japan, 2007; p. 56. [Google Scholar]
- Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging from Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009; p. 60. [Google Scholar]
- van Zyl, J.J.; Kim, Y.-J. Synthetic Aperture Radar Polarimetry; Wiley: New York, NY, USA, 2011; p. 28. [Google Scholar]
- Yamaguchi, Y. Disaster monitoring by fully polarimetric SAR data acquired with ALOS-PALSAR. Proc. IEEE 2012, 100, 2851–2860. [Google Scholar] [CrossRef]
- van Zyl, J.J. Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans. Geosci. Remote Sens. 1989, 27, 36–44. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Lee, J.-S.; Schuler, D.L.; Ainsworth, T.L. Polarimetric SAR data compensation for terrain azimuth slope variation. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2153–2163. [Google Scholar] [CrossRef]
- Lee, J.-S.; Schuler, D.L.; Ainsworth, T.L.; Kroggager, E.; Kasilingam, D.; Boerner, W.-M. On the estimation of radar polarization orientation shifts induced by terrain slope. IEEE Trans. Geosci. Remote Sens. 2002, 40, 30–40. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Sato, A.; Boerner, W.-M.; Sato, R.; Yamada, H. Four-component scattering power decomposition with rotation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2251–2258. [Google Scholar] [CrossRef]
- Chigira, M.; Tsou, C.-Y.; Matsushi, Y.; Hiraishi, N.; Matsuzawa, M. Topographic precursors and geological structures of deep-seated catastrophic landslides caused by Typhoon Talas. Geomorphology 2013, 201, 479–493. [Google Scholar] [CrossRef]
- Suzuki, S.; Kankaku, Y.; Shimada, M. ALOS-2 acquisition strategy. In Proceedings of 2013 IEEE International Conference on Geoscience and Remote Sensing Symposium, Melbourne, Australia, 21–26 July 2013.
- Shimada, M.; Kawano, N.; Watanabe, M.; Motooka, T.; Ohki, M. Calibration and validation of the Pi-SAR-L2. In Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar, Tsukuba, Japan, 23–27 September 2013.
- Geospatial Information Authority of Japan. Available online: http://www.gsi.go.jp/kiban/index.html (accessed on 28 October 2015).
- Park, S.-E. The effect of topography on target decomposition of polarimetric SAR data. Remote Sens. 2015, 7, 4997–5011. [Google Scholar] [CrossRef]
- Park, S.-E.; Moon, W.M.; Pottier, E. Assessment of scattering mechanism of polarimetric SAR signal from mountainous forest areas. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4711–4719. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shibayama, T.; Yamaguchi, Y.; Yamada, H. Polarimetric Scattering Properties of Landslides in Forested Areas and the Dependence on the Local Incidence Angle. Remote Sens. 2015, 7, 15424-15442. https://doi.org/10.3390/rs71115424
Shibayama T, Yamaguchi Y, Yamada H. Polarimetric Scattering Properties of Landslides in Forested Areas and the Dependence on the Local Incidence Angle. Remote Sensing. 2015; 7(11):15424-15442. https://doi.org/10.3390/rs71115424
Chicago/Turabian StyleShibayama, Takashi, Yoshio Yamaguchi, and Hiroyoshi Yamada. 2015. "Polarimetric Scattering Properties of Landslides in Forested Areas and the Dependence on the Local Incidence Angle" Remote Sensing 7, no. 11: 15424-15442. https://doi.org/10.3390/rs71115424
APA StyleShibayama, T., Yamaguchi, Y., & Yamada, H. (2015). Polarimetric Scattering Properties of Landslides in Forested Areas and the Dependence on the Local Incidence Angle. Remote Sensing, 7(11), 15424-15442. https://doi.org/10.3390/rs71115424