Prompt Proxy Mapping of Flood Damaged Rice Fields Using MODIS-Derived Indices
Abstract
:1. Introduction
2. Study Area and Data Used
2.1. Study Area
2.2. Data Used
2.2.1. MODIS Data
2.2.2. Land Cover Data
2.2.3. ALOS AVNIR-2
2.2.4. Water Level and Elevation Data
3. Methodology
3.1. Nationwide Risk Mapping Framework
- (a)
- Hazard (H) is defined as a potentially harmful situation that poses a level of threat to the environment and to humans. In this study, satellite images correlated with actual ground data are used to detect and identify floodwater and then to produce a hazard map focusing on inundation (see Section 3.2.1).
- (b)
- Exposure (E) is a condition of being affected by particular events with the possibility of loss, injury, or some real estates related to human activity. In this study, irrigated rice field areas (m2) are estimated as risk exposure areas within the hazard area before the 2007 flood of Bangladesh (see Section 3.2.3).
- (c)
- Risk (R) is the probability of harmful consequences, i.e., casualties, damaged property, lost livelihoods, disrupted economic activity, and damage to the environment [49]. Risk is considered in relation to regional vulnerability (V); that is subject to potential factors which cause exacerbation of the risk. For producing the rice field damage proxy map by identifying pixels which were directly exposed to the 2007 flood, risk is calculated by using exposed areas and stage-damage curves to represent regional vulnerability (see Section 3.2.4).
3.2. Data Processing
3.2.1. Floodwater Detection
3.2.2. Verification of Floodwater
3.2.3. Floodwater Depth and Duration
3.2.4. Exposed Rice Field
3.2.5. Risk Area Estimation
4. Results
4.1. Nationwide Hazard Mapping
4.1.1. Inundated Areas
4.1.2. Cross-Validation of Flood Areas
4.2. Nationwide Exposure Mapping
4.2.1. Temporal Vegetation Profiles
4.2.2. Hybrid Rice Field Mapping
4.3. Nationwide Risk Proxy Mapping
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations Office for Disaster Risk Reduction (UNISDR). Living with Risk: A Global Review of Disaster Reduction; UNISDR: New York, NY, USA; Geneva, Switzerland, 2004. [Google Scholar]
- International Federation of Red Cross (IFRC). World Disaster Report 2014-Data: Focus on Culture and Risk; IFRC: Geneva, Switzerland, 2014. [Google Scholar]
- World Bank. World Development Report 2014: Risk and Opportunity, Managing Risk for Development; World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water; Technical Paper of the Intergovernmental Panel on Climate Change; IPCC Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- UN General Assembly. Report of the Open Working Group of the General Assembly on Sustainable Development Goals. A/68/970. 12 August 2014. Available online: http://undocs.org/A/68/970/ (accessed on 10 January 2015).
- UN General Assembly. United Nations Millennium Declaration, Resolution Adopted by the General Assembly. A/55/L.2. 18 September 2000. Available online: http://www.un.org/millennium/declaration/ares552e.htm (accessed on 2 November 2014).
- World Water Assessment Programme (WWAP). The United Nations World Water Development Report 3: Water in a Changing World; UNESCO Publishing: Paris, France; Earth Scan: London, UK, 2009; Available online: http://www.unesco.org/water/wwap/wwdr/wwdr3/ (accessed on 20 October 2014).
- Kwak, Y.; Takeuchi, K.; Fukami, J.; Magome, J. A new approach to flood risk assessment in Asia-Pacific region based on MRI-AGCM outputs. Hydrol. Res. Lett. 2012, 6, 55–60. [Google Scholar] [CrossRef]
- Hofer, T.; Messerli, B. Floods in Bangladesh: History, Dynamics and Rethinking the Role of the Himalayas; United Nations University Press: Tokyo, Japan, 2006. [Google Scholar]
- Bangladesh Water Development Board (BWDB). Observed River Data and Reports of 1988, 1998, and 2004 Floods; BWDB: Dhaka, Bangladesh, 2014. Available online: http://www.bwdb.gov.bd (accessed on 1 September 2014).
- Bangladesh Water Development Board (BWDB), Flood Forecasting & Warning Centre (FFWC), 2014. Available online: http://www.ffwc.gov.bd (accessed on 20 September 2011).
- Islam, A.S.; Bala, S.K.; Haque, M.A. Flood inundation map of Bangladesh using MODIS time-series image. J. Flood Risk Manag. 2010, 99, 333–339. [Google Scholar] [CrossRef]
- Pinheiro, A.C.T.; Descloitres, J.; Privette, J.L.; Susskind, J.; Iredell, L.; Schmaltz, J. Near-real time retrievals of land surface temperature within the MODIS rapid response system. Remote Sens. Environ. 2007, 106, 326–336. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). Near Real-Time (NRT) Global MODIS Flood Mapping. January 2015. Available online: http://oas.gsfc.nasa.gov/floodmap/ (accessed on 3 January 2015). [Google Scholar]
- National Aeronautics and Space Administration (NASA). Flooding in Bangladesh from the MODIS Rapid Response System. 2007. Available online: http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=18492&eocn=image&eoci=related_image (accessed on 10 January 2014). [Google Scholar]
- Alsdorf, D.; Lettenmaier, D.; Vorosmarty, C. The need for global, satellite based observations of terrestrial surface waters. Eos Trans. Am. Geophys. Union 2003, 84, 275–276. [Google Scholar] [CrossRef]
- Brakenridge, G.R.; Syvitski, J.P.M.; Overeem, I.; Stewart-Moore, J.A.; Kettner, A.J.; Westerhoff, R. Global mapping of storm surges, 2002-present and the assessment of coastal vulnerability. Nat. Hazards 2012, 66, 1295–1312. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Dartmouth Flood Observatory (DFO). Dartmouth Atlas of Global Flood Hazard. 2008. Available online: http://www.dartmouth.edu/~floods/index.html (accessed on 15 April 2012).
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Xiao, X.; Hollinger, D.; Aber, J.D.; Goltz, M.; Davidson, E.A.; Zhang, Q.Y. Satellite-based modeling of gross primary production in an evergreen needle leaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.; Roy, P.; Dwevedi, R. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Kwak, Y.J.; Park, K.; Fukami, J. Near real-time flood volume estimating from MODIS time-series imagery in the Indus River basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 578–586. [Google Scholar] [CrossRef]
- Merz, B.; Kreibich, H.; Thieken, A.H.; Schmidtke, R. Estimation uncertainty of direct monetary flood damage to buildings. Nat. Hazards Earth Syst. Sci. 2004, 4, 153–163. [Google Scholar] [CrossRef]
- Büchele, B.; Kreibich, H.; Kron, A.; Thieken, A.; Ihringer, J.; Oberle, P.; Merz, B.; Nestmann, F. Flood-risk mapping: Contributions towards an enhanced assessment of extreme events and associated risks. Nat. Hazards Earth Syst. Sci. 2006, 6, 485–503. [Google Scholar] [CrossRef]
- Brémond, B.P.; Grelot, F.; Agenais, A.L. Review Article: Economic evaluation of flood damage to agriculture-review and analysis of existing methods. Nat. Hazards Earth Syst. Sci. 2013, 13, 2493–2512. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, NASA SP-351 I, Washington, DC, USA, 10–14 December 1973; pp. 309–317.
- Gao, X.; Huete, A.R.; Ni, W.; Miura, T. Optical–biophysical relationships of vegetation spectra without background contamination. Remote Sens. Environ. 2000, 74, 609–620. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Guindin-Garcia, N.; Gitelson, A.A.; Arkebauer, T.J.; Shanahan, J.; Weiss, A. An evaluation of MODIS 8- and 16-day composite products for monitoring maize green leaf area index. Agric. For. Meteorol. 2012, 161, 15–25. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sens. 2010, 2, 562–578. [Google Scholar] [CrossRef]
- Peng, D.; Huete, A.R.; Huang, J.; Wang, F.; Sun, H. Detection and estimation of mixed paddy rice cropping patterns with MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 13–23. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics (BBS). Agriculture Wing; Annual Report; Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2011.
- Bangladesh Bureau of Statistics (BBS). Yearbook of Agricultural Statistics; Statistics and Informatics Division (SID), Ministry of Planning, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2012.
- Shankar, B.; Halls, A.; Barr, J. The effects of surface water abstraction for rice irrigation on floodplain fish production in Bangladesh. Int. J. Water 2005, 3, 61–83. [Google Scholar] [CrossRef]
- World Food Program (WFP). Bangladesh Food Security Monitoring Bulletin; Issue No. 2; WFP: Rome, Italy, 2010. [Google Scholar]
- Land Processes Distributed Active Archive Center. US Geological Survey Land Processes Distributed Active Archive Center. Available online: https://lpdaac.usgs.gov/ (accessed on 30 July 2012).
- Carroll, M.; Townshend, J.; DiMiceli, C.; Noojipady, P.; Sohlberg, R. A New Global Raster Water Mask at 250 Meter Resolution. Int. J. Digit. Earth 2009, 2, 291–308. [Google Scholar] [CrossRef]
- Tateishi, N.; Hoan, N.; Kobayashi, T.; Alsaaideh, B.; Tana, G.; Phong, D. Production of global land cover data—GLCNMO2008. J. Geogr. Geol. 2014, 6, 99–122. [Google Scholar] [CrossRef]
- Siebert, S.; Henrich, V.; Frenken, K.; Burke, J. Global Map of Irrigation Areas Version 5; Rheinische Friedrich-Wilhelms-University: Bonn, Germany; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 2013; Available online: http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm (accessed on 3 December 2014).
- Siebert, S.; Doll, P.; Hoogeveen, J.; Faures, J.; Frenken, K.; Feick, S. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 2005, 9, 535–547. [Google Scholar] [CrossRef]
- Japan Aerospace Exploration Agency (JAXA). The Advanced Land Observing Satellite “DAICHI” (ALOS). Tokyo, Japan, 2011. Available online: http://global.jaxa.jp/projects/sat/alos/ (accessed on 20 December 2014).
- Lehner, B.; Verdin, K.; Jarvis, A. HydroSHEDS, Technical Documentation V1.0, World Wildlife Fund US, 2006. Available online: http://hydrosheds.cr.usgs.gov/ (accessed on 15 December 2012).
- Wisner, B.; Blaikie, P.; Cannon, T.; Davis, I. At Risk: Natural Hazards, Peoples Vulnerability and Disasters; Routledge, Tayslor & Francis books: London, UK, 1994. [Google Scholar]
- Peduzzi, P.; Dao, H.; Herold, C.; Mouton, F. Assessing global exposure and vulnerability to-wards natural hazards: The disaster risk index. Nat. Hydrol. Earth Syst. Sci. 2009, 9, 1149–1159. [Google Scholar] [CrossRef]
- United Nations Development Programme (UNDP). Reducing Disaster Risk: A Challenge for Development; A Global Report; Bureau for Crisis Prevention and Recovery: New York, NY, USA, 2004. [Google Scholar]
- Landis, J.; Koch, G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO); World Food Program (WFP). Crop and Food Supply Assessemnt Mission to Bangladesh; Special Report; FAO: Rome, Italy, 2008. [Google Scholar]
- Sakamoto, T.; Nguyen, V.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens. Environ. 2006, 100, 1–16. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwak, Y.; Arifuzzanman, B.; Iwami, Y. Prompt Proxy Mapping of Flood Damaged Rice Fields Using MODIS-Derived Indices. Remote Sens. 2015, 7, 15969-15988. https://doi.org/10.3390/rs71215805
Kwak Y, Arifuzzanman B, Iwami Y. Prompt Proxy Mapping of Flood Damaged Rice Fields Using MODIS-Derived Indices. Remote Sensing. 2015; 7(12):15969-15988. https://doi.org/10.3390/rs71215805
Chicago/Turabian StyleKwak, Youngjoo, Bhuyan Arifuzzanman, and Yoichi Iwami. 2015. "Prompt Proxy Mapping of Flood Damaged Rice Fields Using MODIS-Derived Indices" Remote Sensing 7, no. 12: 15969-15988. https://doi.org/10.3390/rs71215805
APA StyleKwak, Y., Arifuzzanman, B., & Iwami, Y. (2015). Prompt Proxy Mapping of Flood Damaged Rice Fields Using MODIS-Derived Indices. Remote Sensing, 7(12), 15969-15988. https://doi.org/10.3390/rs71215805