Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions
Abstract
:1. Introduction
A | B | C | D | E | F | G | H | I | J | K | L | M |
Spatial Resolution | Spectral Range | Effective observ. frequency (cloud free) | Extent | Field Size | Target Products | |||||||
Req# | Crop Mask | Crop Type Area and Growing Calendar | Crop Condition Indicators | Crop Yield | Crop Biophys. Variables | Environ. Variables | Ag Practices/Cropping Systems | |||||
Coarse Resolution Sampling (>100 m) | ||||||||||||
1 | 500–2000 m | optical | Daily | Wall-to-Wall | All | X | L | |||||
2 | 100–500 m | optical | 2 to 5 per week | Cropland extent | All | X | X | X | L | L | X | L |
3 | 5–50 km | microwave | Daily | Cropland extent | All | X | X | X | X | |||
Moderate Resolution Sampling (10 to 100 m) | ||||||||||||
4 | 10–70 m | optical | Monthly (min 3 in season + 2 out of season); Required every 1–3 years | Cropland extent (if #5 = sample, else skip) | All | X | L/M | X | ||||
5 | 10–70 m | optical | 8 days; 1 min per 16 days | Sample (pref. Cropland extent) | All | X | X | X | X | X | X | X |
6 | 10–100 m | SAR | 8 days; 1 min per 16 days | Cropland extent of persistantly cloudy and rice areas | All | X | X | X | X | X | X | X |
Fine Resolution Sampling (5 to 10 m) | ||||||||||||
7 | 5–10 m | VIS NIR + SWIR | Monthly (3 min in season) | Cropland extent | M/S | M/S | M/S | |||||
8 | 5–10 m | VIS NIR + SWIR | Approx. weekly; 5 min per season | Sample | All | M/S | X | X | X | X | ||
9 | 5–10 m | SAR | Monthly | Cropland extent of persistantly cloudy and rice areas | M/S | M/S | M/S | M/S | ||||
Very Fine Resolution Sampling (<5 m) | ||||||||||||
10 | <5 m | VIS NIR | 3 per year (2 in season + 1 out of season); Every 3 years | Cropland extent of small fields | S | S | S | |||||
11 | <5 m | VIS NIR | 1 to 2 per month | Refined Sample (Demo) | All | X | X | X |
Identifying Candidate Missions
2. Methods
2.1. Overpass Analysis
Constellation # | Satellites Included | Scenario Period—Days |
---|---|---|
1 | L8, S2A, S2B, R2 | 160 |
2 | L7, L8, S2A, R2 | 120 |
3 | L7, L8, R2 | 72 |
4 | L7, L8, S2A, S2B | 80 |
5 | L8, S2A, S2B | 80 |
6 | L7, L8, S2A | 80 |
7 | L7, L8 | 80 |
2.2. Comparing Overpass Capabilities with EO Requirements
3. Results
3.1. Meeting the Requirement for a Reasonably Clear View Every 8 Days
3.2. Persistently Cloudy Areas: Where Requirements Are Unmet
4. Discussion
Considerations and Limitations
5. Conclusions and Future Research
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Whitcraft, A.K.; Becker-Reshef, I.; Justice, C. A Framework for Defining Spatially Explicit Earth Observation Requirements for a Global Agricultural Monitoring Initiative (GEOGLAM). Remote Sens. 2015, 7, 1461–1481. [Google Scholar] [CrossRef]
- Justice, C.O.; Vermote, E.; Privette, J.; Sei, A. The evolution of US moderate resolution optical land remote sensing from AVHRR to VIIRS. In Land Remote Sensing and Global Environmental Change; Springer: Berlin, Germany, 2011; pp. 781–806. [Google Scholar]
- Justice, C.O.; Vermote, E.; Townshend, J.R.G.; DeFries, R.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef]
- Goward, S.N.; Arvidson, T.; Williams, D.L.; Irish, R.; Irons, J.R. Moderate Spatial Resolution Optical Sensors; SAGE Publications Ltd.: London, UK, 2009. [Google Scholar]
- Goward, S.; Williams, D.; Arvidson, T.; Irons, J. The future of landsat-class remote sensing. In Land Remote Sensing and Global Environmental Change; Springer: Berlin, Germany, 2011; pp. 807–834. [Google Scholar]
- Goward, S.; Chander, G.; Pagnutti, M.; Marx, A.; Ryan, R.; Thomas, N.; Tetrault, R. Complementarity of ResourceSat-1 AWiFS and Landsat TM/ETM+ sensors. Remote Sens. Environ. 2012, 123, 41–56. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; Scambos, T.A. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-Resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.M.; Mueller, R. The 2009 cropland data layer. Photogramm. Eng. Remote Sens. 2010, 76, 1201–1205. [Google Scholar]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.; Loveland, T.R.; Vermote, E.; Zhang, C. Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Yu, L.; Wang, J.; Clinton, N.; Xin, Q.; Zhong, L.; Chen, Y.; Gong, P. FROM-GC: 30 m global cropland extent derived through multisource data integration. Int. J. Digit. Earth 2013, 6, 521–533. [Google Scholar] [CrossRef]
- Justice, C.O.; Román, M.O.; Csiszar, I.; Vermote, E.F.; Wolfe, R.E.; Hook, S.J.; Friedl, M.; Wang, Z.; Schaaf, C.B.; Miura, T. Land and cryosphere products from Suomi NPP VIIRS: Overview and status. J. Geophys. Res.: Atmos. 2013, 118, 9753–9765. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; VanDriel, J.N.; Wickham, J. Completion of the 2001 national land cover database for the counterminous United States. Photogramm. Eng. Remote Sens. 2007, 73, 337–341. [Google Scholar]
- Skole, D.; Tucker, C. Tropical deforestation and habitat fragmentation in the Amazon. Satellite data from 1978 to 1988. Science 1993, 260, 1905–1910. [Google Scholar] [CrossRef] [PubMed]
- Vogelmann, J.E.; Howard, S.M.; Yang, L.; Larson, C.R.; Wylie, B.K.; Van Driel, N. Completion of the 1990s national land cover data set for the conterminous United States from Landsat thematic mapper data and ancillary data sources. Photogramm. Eng. Remote Sens. 2001, 67, 650–662. [Google Scholar]
- Wulder, M.A.; White, J.C.; Goward, S.N.; Masek, J.G.; Irons, J.R.; Herold, M.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sens. Environ. 2008, 112, 955–969. [Google Scholar] [CrossRef]
- Li, Q.; Wu, B. Accuracy assessment of planted area proportion using Landsat TM imagery. J. Remote Sens. 2004, 8, 581–587. [Google Scholar]
- Underwood, C.; Machin, S.; Stephens, P.; Hodgson, D.; da Silva Curiel, A.; Sweeting, M. Evaluation of the utility of the disaster monitoring constellation in support of earth observation applications. In Proceedings of Small Satellites for Earth Observation: Selected Proceedings of the 5th International Symposium of the International Academy of Astronautics, Berlin, Germany, 4–8 April 2005.
- GEO-GEOGLAM (Global Agirculture Monitoring Initiative). Available online: http://www.earthobservations.org/geoglam_cop.php (accessed on 4 November 2014).
- Parihar, J.S.; Oza, M.P. FASAL: An integrated approach for crop assessment and production forecasting. Proc. SPIE 2006, 6411. [Google Scholar] [CrossRef]
- Wu, B.; Meng, J.; Li, Q.; Yan, N.; Du, X.; Zhang, M. Remote sensing-based global crop monitoring: experiences with China’s Crop Watch system. Int. J. Digit. Earth 2014, 7, 113–137. [Google Scholar] [CrossRef]
- Baruth, B.; Royer, A.; Klisch, A.; Genovese, G. The use of remote sensing within the MARS crop yield monitoring system of the European commission. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 935–940. [Google Scholar]
- Genovese, G.; Vignolles, C.; Nègre, T.; Passera, G. A methodology for a combined use of normalised difference vegetation index and CORINE land cover data for crop yield monitoring and forecasting. A case study on Spain. Agronomie 2001, 21, 91–111. [Google Scholar] [CrossRef]
- Allen, R.; Hanuschak, G.; Craig, M. History of remote Sensing for crop acreage in USDA’s National Agricultural Statistics Service; NASS: Washington, DC, USA, 2002. [Google Scholar]
- Duveiller, G.; Defourny, P.; Gérard, B. A method to determine the appropriate spatial resolution required for monitoring crop growth in a given agricultural landscape. In Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008, Boston, MA, USA, 7–11 July 2008; pp. 562–565.
- Developing a Strategy for Global Agricultural Monitoring in the framework of Group on Earth Observations (GEO) Workshop Report. Available online: http://www.fao.org/gtos/igol/docs/meeting-reports/07-geo-ag0703-workshop-report-nov07.pdf (accessed on 27 January 2015).
- Committee on Earth Observation Satellites. CEOS Acquisition Strategy for GEOGLAM Phase 1. Available online: http://ceos.org/images/Plenary2013/25-CEOS_Acquisition_Strategy_for_GEOGLAM_Phase-1_v1-0.pdf (accessed on 14 November 2014).
- Landsat. Available online: http://landsat.usgs.gov/index.php (accessed on 14 November 2014).
- Fosnight, E.; USGS/EROS Data Center, Sioux Falls, SD, USA. Personal Communication regarding Landsat 7&8 Acquisitions, 2014.
- Arvidson, T.; Gasch, J.; Goward, S.N. Pleasing all of the people most of the time: Planning Landsat 7 acquisitions for the US archive. In Proceedings of Pecora 14 - Land Satellite Information III: Demonstrating the Value of Satellite Imagery, ASPRS, Denver, CO, USA, 6–10 December 1999; pp. 154–162.
- Arvidson, T.; Gasch, J.; Goward, S.N. Landsat 7’s long-term acquisition plan—An innovative approach to building a global imagery archive. Remote Sens. Environ. 2001, 78, 13–26. [Google Scholar] [CrossRef]
- Arvidson, T.; Goward, S.; Gasch, J.; Williams, D. Landsat-7 long-term acquisition plan: Development and validation. Photogramm. Eng. Remote Sens. 2006, 72, 1137–1146. [Google Scholar] [CrossRef]
- Welcome to ISRO : Satellites : Earth Observation Satellite : RESOURCESAT-2. Available online: http://www.isro.org/satellites/resourcesat-2.aspx (accessed on 4 November 2014).
- Boryan, C.; Craig, M. Multiresolution Landsat TM and AWiFS sensor assessment for crop area estimation in Nebraska. In Proceedings of Pecora 16 “Global Priorities in Land Remote Sensing”, Sioux Falls, SD, USA, 23–27 October 2005; pp. 22–27.
- Sentinel-2 / Copernicus / Observing the Earth / Our Activities / ESA. Available online: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2 (accessed on 4 November 2014).
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- ESA–NASA collaboration fosters comparable land imagery. Available online: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/ESA_NASA_collaboration_fosters_comparable_land_imagery (accessed on 10 September 2014).
- Anderson, M.C.; Hain, C.; Wardlow, B.; Pimstein, A.; Mecikalski, J.R.; Kustas, W.P. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J. Clim. 2011, 24, 2025–2044. [Google Scholar] [CrossRef]
- Hain, C.R.; Crow, W.T.; Mecikalski, J.R.; Anderson, M.C.; Holmes, T. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling. J. Geophys. Res.: Atmos. 2011, 116, 1–18. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar]
- Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Frey, R.A.; Ackerman, S.A.; Liu, Y.; Strabala, K.I.; Zhang, H.; Key, J.R.; Wang, X. Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for Collection 5. J. Atmos. Ocean. Technol. 2008, 25, 1057–1072. [Google Scholar] [CrossRef]
- Johnson, D.M. An assessment of pre-and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 2014, 141, 116–128. [Google Scholar] [CrossRef]
- Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, M. CEOS Visualization Environment (COVE) Tool for Intercalibration of Satellite Instruments. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1081–1087. [Google Scholar] [CrossRef]
- Chander, G.; Killough, B.; Gowda, S. An overview of the web-based Google Earth coincident imaging tool. In proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 25–30 July 2010; pp. 1679–1682.
- Whitcraft, A.K.; Becker-Reshef, I.; Justice, C.O. Agricultural growing season calendars derived from MODIS surface reflectance. Int. J. Digit. Earth 2014. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; McCallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecht, F.; Schill, C.; Perger, C.; et al. Mapping global cropland and field size. Glob. Change Biol. 2015. [Google Scholar] [CrossRef] [Green Version]
- Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sens. Environ. 2015, 156, 438–447. [Google Scholar] [CrossRef]
- Takashima, S.; Oyoshi, K.; Fukuda, T.; Okumura, T.; Tomiyama, N.; Nagano, T. Asia rice crop monitoring in GEO GLAM. In Proceedings of 2013 IEEE Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013; pp. 398–401.
- Takashima, S.S.; Oyoshi, K.; Okumura, T.; Tomiyama, N.; Rakwatin, P. Rice crop yield monitoring system prototyping and its evaluation result. In Proceedings of the 2012 IEEE First International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2–4 August 2012; pp. 1–4.
- McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. 2009, 64, 434–449. [Google Scholar] [CrossRef]
- Duveiller, G.; López-Lozano, R.; Seguini, L.; Bojanowski, J.S.; Baruth, B. Optical remote sensing requirements for operational crop monitoring and yield forecasting in Europe. In Proceedings of Sentinel-3 OLCI/SLSTR and MERIS/(A) ATSR Workshop, ESA SP-711, Frascati, Italy, 15–19 October 2012.
- Verma, N.; Garg, P.; Garg, R. Evaluation of geometric properties of AWiFS images: A comparative study. Geomat. Eng. 2009. Available online: http://www.csre.iitb.ac.in/~csre/conf/wp-content/uploads/fullpapers/OS1/OS1_1.pdf (accessed on 28 January 2015).
- Roy, D.P.; Lewis, P.; Schaaf, C.B.; Devadiga, S.; Boschetti, L. The global impact of clouds on the production of MODIS bidirectional reflectance model-based composites for terrestrial monitoring. Geosci. Remote Sens. Lett. 2006, 3, 452–456. [Google Scholar] [CrossRef]
- Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- Scaramuzza, P.; Micijevic, E.; Chander, G. SLC gap-filled products phase one methodology. In Landsat Tech. Notes; 2004; pp. 1–5. Available online: http://landsat.usgs.gov/documents/SLC_Gap_Fill_Methodology.pdf (accessed on 28 January 2015). [Google Scholar]
- Maxwell, S.K.; Schmidt, G.L.; Storey, J.C. A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLC-off images. Int. J. Remote Sens. 2007, 28, 5339–5356. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Hong, G.; Zhang, A.; Zhou, F.; Brisco, B. Integration of optical and Synthetic Aperture Radar (SAR) images to differentiate grassland and alfalfa in Prairie area. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 12–19. [Google Scholar] [CrossRef]
- Kussul, N.; Skakun, S.; Shelestov, A.; Kravchenko, O.; Kussul, O. Crop classification in Ukraine using satellite optical and SAR images. Inf. Models Anal. 2012, 2, 118–122. [Google Scholar]
- Leichtle, T.; Schmitt, A.; Roth, A.; Schardt, M. On the capability of different SAR polarization combinations for agricultural monitoring. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 3752–3755.
- McNairn, H.; Shang, J.; Champagne, C.; Jiao, X. TerraSAR-X and RADARSAT-2 for crop classification and acreage estimation. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2009, Cape Town, South Africa, 12–17 July 2009; pp. II-898–II-901.
- McNairn, H.; Shang, J.; Jiao, X.; Champagne, C. The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3981–3992. [Google Scholar] [CrossRef]
- Torbick, N.; Salas, W.; Xiao, X.; Ingraham, P.; Fearon, M.; Biradar, C.; Zhao, D.; Liu, Y.; Li, P.; Zhao, Y. Integrating SAR and optical imagery for regional mapping of paddy rice attributes in the Poyang Lake Watershed, China. Can. J. Remote Sens. 2011, 37, 17–26. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitcraft, A.K.; Becker-Reshef, I.; Killough, B.D.; Justice, C.O. Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions. Remote Sens. 2015, 7, 1482-1503. https://doi.org/10.3390/rs70201482
Whitcraft AK, Becker-Reshef I, Killough BD, Justice CO. Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions. Remote Sensing. 2015; 7(2):1482-1503. https://doi.org/10.3390/rs70201482
Chicago/Turabian StyleWhitcraft, Alyssa K., Inbal Becker-Reshef, Brian D. Killough, and Christopher O. Justice. 2015. "Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions" Remote Sensing 7, no. 2: 1482-1503. https://doi.org/10.3390/rs70201482
APA StyleWhitcraft, A. K., Becker-Reshef, I., Killough, B. D., & Justice, C. O. (2015). Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions. Remote Sensing, 7(2), 1482-1503. https://doi.org/10.3390/rs70201482