Definitions and Mapping of East African Wetlands: A Review
Abstract
:1. The Wise Use of East African Wetlands and the Need for Spatial Data
- ▪
- Cross-border alignment to avoid discontinuities within the East African region,
- ▪
- Comprehensiveness (within the constraints of the spatial resolution in reference to the pixel size of the sensor used),
- ▪
- A thoroughly documented methodology, and
- ▪
- Quality assessment based on ground truth or very high-resolution data.
- ▪
- “How are wetlands defined?” and
- ▪
- “Do wetland maps of the East African region exist and can they be improved by means of remote sensing?” This second question is addressed within the contexts of global, continental (African) and national maps.
2. Literature Review
2.1. Our Methodological Approach
2.2. Review of Wetlands Definitions
Term Group | Term | Term Description |
---|---|---|
Term that groups wetlands globally | wetland | Internationally used term for wet areas. |
Terms frequently used synonymously with wetlands | swamp | Used similarly to wetlands, but in the U.S. is dominated by trees or shrubs and in Europe refers to forested fens or wetlands dominated by reeds. |
marsh | Continually inundated wetland. In Europe, with a mineral soil substrate without accumulated peat-soil. | |
Terms related to wetlands at seashore lines | delta | A wetland-river-upland system where rivers merge with the sea (not the case in inland deltas). |
lagoon | Term used frequently in Europe for delta-like systems. | |
Terms related to wetlands at seashore lines with saline-tolerant vegetation dominant | mangrove | (Sub) tropical ecosystems developing in coastal areas, related to saltwater; also used as a term for plants developing in saline wet systems. |
mangal | Similar to mangroves. | |
Terms referring to wetlands accumulating peat | mire | European term for peat-accumulating wetlands. |
mose | Danish and Swedish version of mires. | |
moor | European term for peatlands. Highmoor = raised bog; lowmoor = peatland in a depression. | |
peatland | Term for wetlands accumulating peat. | |
fen | Peat-accumulating wetlands, marsh-like vegetation. | |
bog | Peat-accumulating wetlands with sphagnum-dominated vegetation. | |
Terms related to wetlands without pronounced stream in-/out-flow | dambo | Seasonally waterlogged, stream-like grass-covered linear depression. |
vleis | Southern African term for dambo. |
“(W)etlands are areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres.”.[41]
Matrix Attribution | Exemplary Description of Wetland Definition |
---|---|
AX | One specific subtype of a wetland; e.g., Taieri River catchment upland bogs [43]. |
AY | A specific wetland subtype is considered in a region; e.g., Amazon floodplains [44]. |
AZ | A specific wetland subtype is considered, e.g., dambos [45]. |
BX | A specific wetland on a local case study, e.g., wetlands in Poyang Lake National Nature Reserve [46]. |
BY | Wetlands of a region, e.g., Canadian wetland classification [47]. |
BZ | Wetlands in general are discussed, e.g., [41]. |
CZ | A legally-binding wetland definition, ideally applicable in wetland protection measures, e.g., potential jurisdictional wetlands [40]. |
DX | A specific wetland characteristic is identified via its surface properties, e.g., inundated area [48]. |
DY | Wetlands in a region are defined via their surface properties, e.g., surface water in the Soudan-Sahel region [49]. |
DZ | Wetlands are defined via surface properties, e.g., plant stress signs [50]. |
EX | One wetland is studied, and the results of the analysis enable delineation of wetland and upland classes, e.g., shallow marine water and irrigated land in the Pearl River estuary [51]. |
EY | Land cover classes of wetlands in a region are classified and later separated from uplands, e.g., seasonally-inundated forests and savannahs in the Amazon Basin [52]. |
EZ | Wetland land cover classes are separated from upland land cover classes, e.g., [31]. |
2.3. From Land Use/Land Cover Classification to Class-Specific Inventory: The Rationale of Wetland Mapping
Publication (LUC Name) | Input Data | Coverage | Spatial Resolution/Scale | Wetland Class(es) Available? | Remark | |
---|---|---|---|---|---|---|
UNESCO Ecology and Conservation, 1973 [55] (UNESCO Land Cover) | n/a | Global | -- | Yes | Classification system for maps scaled 1:1,000,000 or smaller | |
Matthews, 1983 [56] (Matthews Land Cover) | various | Global | 1° | No | ||
Tucker et al., 1985 [57] | NOAA AVHRR | Africa | 4 km | No | ||
Townshend et al., 1987 [58] | NOAA AVHRR | South America | 4 km | No | ||
Loveland et al., 1991 [59] | NOAA AVHRR | United States | 1 km | Yes | ||
Stone et al., 1994 [60] | NOAA AVHRR | South America | 1 km | Yes | ||
DeFries et al, 1994 [61] | NOAA AVHRR | Global | 1° | No | ||
De Fries et al., 1995 [62] | NOAA AVHRR | Global | 8 km | No | ||
DeFries et al. 1998 [63] | NOAA AVHRR | Global | 8 km | No | ||
Loveland et al., 1999 [64] Global Land-Cover Characterization (GLCC) | NOAA AVHRR | Global | 1 km | -- | Synoptic map product for the following 7 sub-products (classifications) | |
Sub-products (GLCC) | Anderson et al., 1976 [65] (USGS Land Use/Land Cover) | Global | 1 km | Yes | These classification schemes are applied to the GLCC maps [64] | |
Sellers et al., 1986 [66] (Simple Biosphere) | Yes | |||||
Olson, 1994 [67] (Global Ecosystems) | Yes | |||||
Running et al., 1994 [68] (Vegetation Lifeforms) | No | |||||
Sellers et al., 1996 [69] (Simple Biosphere 2) | Yes | |||||
Dickinson et al., 1986 [70] (Biosphere Atmosphere Transfer Scheme) | Yes | |||||
Loveland et al., 2000 [71] (International Geosphere-Biosphere Programme, Data and Information Systems -IGBP DISCover) | Yes | |||||
Bossard et al., 2000 [72] (Corine) | Landsat, SPOT | Europe | 1:100,000 | Yes | ||
Hansen et al., 2000 [73] (University of Maryland—UMd land cover) | NOAA AVHRR | Global | 1 km | No | ||
Food and Agriculture Organization of the United Nations (FAO), 2001 [74] (Global Agro-Ecological Zones) | Existing global layers | Global | 30 arc seconds | No | ||
Olson et al., 2001 [75] (Terrestrial Ecoregions of the World) | Existing global layers | Global | -- | Yes | ||
Friedl et al., 2002 [76] (MODIS Land Cover) | MODIS | Global | 1 km | Yes | ||
Mayaux et al., 2003 [77] (GLC2000 Africa) | SPOT Vegetation | Africa (global also available) | 1 km | Yes | ||
Bontemps et al., 2011 [78] (GlobCover 2009) | Envisat MERIS | Global | 300 m | Yes | ||
FAO, 2012 [79] (Global Agro-Ecological Zones 2010) | Existing global layers | Global | 30 arc seconds | No | ||
FAO, 2014 [80] (AfriCover) | Landsat TM | East Africa | 1:100,000/1:200,000 | Yes | ||
Latham et al., 2014 [81] (Global Land Cover—GLC-SHARE) | Existing LUC layers and other information | Global | 30 arc seconds | No |
2.4. Wetland Maps of the East African Region
2.4.1. The Contribution of Global Maps
Publication (Map Title) | Knowledge Base | Content | Spatial Resolution | Wetland Classes | Estimated Global Wetland Area | ||
---|---|---|---|---|---|---|---|
Gore, 1983 [93] * | From various sources and approximate only | % of mire area in a map zone | n/a | None | No estimate given | ||
Matthews and Fung, 1987 [30] * and Matthews et al., 1991 [94] * | Digital global vegetation data, digital global soil properties, digital global fractional inundation + land use database, FAOstat, rice cropping calendars | Wetlands fraction per grid cell + annual rice harvest area per grid cell | 1° × 1° | 5 wetland classes + rice harvest areas | Approximately 526 M ha wetlands + approximately 148 M ha rice fields | ||
Aselmann and Crutzen, 1989 [31] * | Diverse literature and remote sensing data | Freshwater wetlands and rice paddies | 2.5° latitude × 5° longitude | 6 wetland classes + rice paddies | Approximately 570 M ha + 130 M ha | ||
Dugan, 1993 [27] * | Based on a series of regional wetland directories compiled by the International Union for Conservation of Nature (IUCN) | Wetland areas | n/a | Diverse, depending on regional classification | Approximately 560 M ha | ||
Mitsch, 1994 [32] * | Diverse, including [27,93] | Estimated global extent of wetlands | n/a | None | Approximately 700 M ha up to 800 M ha | ||
Finlayson and Spiers, 1999 [13] (Global Review of Wetland Resources and Priorities for Wetland Inventory - GroWi) | Compiled from national inventories | Wetland area estimates of national inventories | n/a | Depending on region/country | Approximately 1.2 B ha | ||
Darras et al., 1999 [85] * (IGBP DISCover) | Existing global wetlands classes in land cover classifications | Gross estimation % wetland coverage of each grid cell | 1° | None | Approximately 954 M ha | ||
Kaplan, 2002 [35] * | Digital elevation model | Potential natural wetlands | n/a | None | Approximately 1.1 B ha | ||
Lehner and Döll, 2004 [29] * | Remotely-sensed data and other existing information | Wetlands of the world | n/a | 10 (including ‘river’ class) | Approximately 821 M ha up to 1 B ha | ||
Ramsar Convention Secretariat, 2014 [95] | List of wetlands of international importance | Wetland location and extent | n/a | 42 wetland classes [96] | Approximately 209 M ha (registered as designated Ramsar sites) |
2.4.2. The Contribution of Continental Maps
2.4.3. The Contribution of National Maps
Country (Extent, Global Administrative Areas—GADM, 2015 [88]) | Publication, Year | Area of Wetlands Coverage 1 | |
---|---|---|---|
Kenya (58.6 M ha total land surface area) | United Nations Environment Programme (UNEP) and Kenya Ministry of Environment and Natural Resources, 2012 [103] 2,3 | Approximately 2.7 M ha | |
FAO, 1998 [101] 2 | Approximately 1.1 M ha–1.8 M ha, 2%–3% of Kenya’s land surface area | ||
Rwanda (2.5 M ha total land surface area) | Rwanda Ministère des Resssources Naturelles and the Rwanda Environmental Management Agency, 2015 [104] 2 | 278,536 ha, 10.6% of Rwanda’s land surface area, 860 wetlands | |
Rwanda Environment Management Authority, 2009 [105] 2,4 | 278,536 ha, 10.6% of Rwanda’s land surface area, 860 wetlands | ||
Rwanda Environment Management Authority, 2011 [106] 2,4 | 278,536 ha, 10.6% of Rwanda’s land surface area, 860 wetlands | ||
Tanzania (94.4 M ha total land surface area) | Tanzania Ministry of Natural Resources et al., 2003 [107] 2 | Approximately 9.4 M ha, 10% of Tanzania’s land surface area 5 | |
FAO, 1998 [101] 2 | n/a | ||
Kamukala and Crafter, 1993 [108] 2 | Approximately 2.7 M ha, 10% of Tanzania’s land surface area 5 | ||
Uganda (24.2 M ha total land surface area ) | Iyango et al., 2009 [12] 2 | 3.1 M ha, 15% of Uganda’s land surface area | |
Huising, n/a [109] | Approximately 3.1 M ha, 13% of Uganda’s land surface area | ||
Uganda Ministry of Water, Lands and Environment, 2015 [110] | Almost approximately 3 M ha, about 13% of Uganda’s land surface area |
2.4.4. Synthesis: The Need for a Regional Wetland Map
3. Conclusions
4. Research Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Millenium Ecosystem Assessment. In Ecosystems and Human Well-Being: Wetlands and Water-Synthesis; World Resources Institute: Washington, DC, USA, 2005.
- Zomer, R.J.; Trabucco, A.; Ustin, S.L. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. J. Environ. Manag. 2009, 90, 2170–2177. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neil, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Thenya, T. Challenges of conservation of dryland shallow waters, Ewaso Narok swamp, Laikipia District, Kenya. Hydrobiologia 2001, 458, 107–119. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). An Introduction to the Basic Concepts of Food Security; FAO: Rome, Italy, 2008. [Google Scholar]
- Turyahabwe, N.; Kakuru, W.; Tweheyo, M.; Tumusiime, D.M. Contribution of wetland resources to household food security in Uganda. Agric. Food Secur. 2013, 2. [Google Scholar] [CrossRef]
- Von Grebmer, K.; Saltzman, A.; Birol, E.; Wiesmann, D.; Prasai, N.; Yin, S.; Yohannes, Y.; Menon, P.; Thompson, J.; Sonntag, A. Global Hunger Index 2014-The Challenge of Hidden Hunger; International Food Policy Research Institute/Welthungerhilfe/Concern Worldwide: Washington, DC, USA; Bonn, Germany; Dublin, Ireland, 2014. [Google Scholar]
- GIEWS Update—Greater Horn of Africa: Late and Erratic Rains Raise Serious Concern for Crop and Livestock Production. Available online: http://www.fao.org/giews/english/shortnews/hof03062014.htm (accessed on 27 October 2014).
- Un-Water/Africa. African Water Development Report 2006; UNECA: Addis Ababa, Ethiopia, 2006. [Google Scholar]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. IPCC WGII AR5 (Final Draft), Chapter 22–Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability-IPCC Working Group II Contribution to AR 5; Barros, F., Mach, D., Bilir, M., Ebi, C., Genova, E., Kissel, G., MacCracken, L., White, M., Eds.; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Ramsar Convention Secretariat. The wise use of wetlands. Available online: http://www.ramsar.org/about/the-wise-use-of-wetlands (accessed on 7 January 2015).
- Iyango, L.; Mafabi, P.; Musinguzi, M.; Namakambo, N.; Emwanu, T.; Muhwezi, B.J.; Okwi, P.; Owuor, J.; Henninger, N.; Landsberg, F. Mapping a Better Future-How Spatial Analysis can Benefit Wetlands and Reduce Poverty in Uganda; Kampala, Wetlands Management Department (Uganda); Ministry of Water and Environment (Uganda); Uganda Bureau of Statistics; International Livestock Research Institute; World Resources Institute: Kampala, Uganda; Washington, DC, USA, 2009. [Google Scholar]
- Australian Government, Department of the Environment. Global Review of Wetland Resources and Priorities for Wetland Inventory; Supervising Scientist Report 144; Finlayson, C.M., Spiers, N.C., Eds.; Supervising Scientist: Canberra, Australia, 1999.
- Australian Government, Department of the Environment. Techniques for Enhanced Wetland Inventory and Monitoring; Supervising Scientist Report 147; Finlayson, C.M., Spiers, N.C., Eds.; Supervising Scientist: Canberra, Australia, 1999.
- MacKay, H.; Finlayson, C.M.; Fernández-Prieto, D.; Davidson, N.; Pritchard, D.; Rebelo, L.-M. The role of Earth Observation technologies in supporting implementation of the Ramsar Convention on Wetlands. J. Environ. Manag. 2009, 90, 2234–2242. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007, 45, 1–24. [Google Scholar] [CrossRef]
- Kiene, E. GlobE Wetlands in East Africa. Available online: http://www.wetlands-africa.de/ (accessed on 9 April 2015).
- Ozesmi, S.L.; Bauer, M.E. Satellite Remote Sensing of Wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Combal, B.; Haas, E.; Bartholomé, E. Detection of Surface Water with SPOT/VEGETATION-Monitoring and Assessing CILSS Countries Surface Water Availability; European Comission JRC-IES: Ispra, Italy, 2009. [Google Scholar]
- Bates, P.D.; Horritt, M.S.; Smith, C.N.; Mason, D. Integrating remote sensing observations of flood hydrology and hydraulic modelling. Hydrol. Process. 1997, 11, 1777–1795. [Google Scholar]
- Mercier, F.; Cazenave, A.; Maheu, C. Interannual lake level fluctuations (1993–1999) in Africa from Topex/Poseidon: Connections with ocean–atmosphere interactions over the Indian Ocean. Glob. Planet. Change 2002, 32, 141–163. [Google Scholar] [CrossRef]
- Varni, M.R.; Entraigas, I.; Migueltorena, V.; Comas, R. Evaluation of flooded areas with satellite imagery using an objective hydrologic criterion. Water Environ. J. 2013, 27, 396–401. [Google Scholar]
- Cowardin, L.M.; Carter, V.; Golet, F.C.; LaRoe, E.T. Classification of Wetlands and Deepwater Habitats of the United States; US Department of the Interior Fish and Wildlife Service: Washington, DC, USA, 1979. [Google Scholar]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 4th ed.; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Pressey, R.L.; Adam, P. A review of wetland inventory and classification in Australia. Vegetatio 1995, 118, 81–101. [Google Scholar] [CrossRef]
- Maltby, E.; Barker, T. The Wetlands Handbook; Maltby, E., Barker, T., Eds.; Blackwell Publishing Ltd.: West Sussex, UK, 2009. [Google Scholar]
- Dugan, P. Wetlands in Danger: A World Conservation Atlas; Dugan, P., Ed.; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Semeniuk, C.A.; Semeniuk, V. A geomorphic approach to global classification for inland wetlands. Vegetatio 1995, 118, 103–124. [Google Scholar] [CrossRef]
- Lehner, B.; Döll, P. Development and Validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Matthews, E.; Fung, I. Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Glob. Biogeochem. Cycles 1987, 1, 61–86. [Google Scholar] [CrossRef]
- Aselmann, I.; Crutzen, P.J. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 1989, 8, 307–358. [Google Scholar] [CrossRef]
- Mitsch, W.J. Global Wetlands Old World and New; Mitsch, W.J., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Lewis, W.M. Wetlands Explained; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Blume, H.-P.; Brümmer, G.W.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M. Scheffer/Schachtschabel: Lehrbuch der Bodenkunde, 16th ed.; Spektrum Akademischer Verlag (Springer): Heidelberg, Germany, 2010. [Google Scholar]
- Kaplan, J.O. Wetlands at the Last Glacial Maximum: Distribution and methane emissions. Geophys. Res. Lett. 2002, 29, 31–34. [Google Scholar]
- Bwangoy, J.-R.B.; Hansen, M.C.; Roy, D.P.; de Grandi, G.; Justice, C.O. Wetland mapping in the Congo basin using optical and remotely sensed data and derived topographical indices. Remote Sens. Environ. 2010, 114, 73–86. [Google Scholar] [CrossRef]
- Macfarlane, D.M.; Kotze, D.C.; Ellery, W.N.; Walters, D.; Koopman, V.; Goodman, P.; Goge, C. WET-Health: A technique for Rapidly Assessing Wetland Health; Wetland Management Series 340/08; Water Resources Comission: Gezina, South Africa, 2008. [Google Scholar]
- Brock, M.A. Aquatic vegetation of inland wetlands. In Australian Vegetation, 2nd ed.; Groves, R.H., Ed.; Cambridge University Press: Cambridge, UK, 1994; pp. 437–466. [Google Scholar]
- Roshier, D.A.; Rumbachs, R.M. Broad-scale mapping of temporary wetlands in arid Australia. J. Arid Environ. 2004, 56, 249–263. [Google Scholar] [CrossRef]
- Lyon, J.G.; McCarthy, J. Wetland and Environmental Applications of GIS; Lyon, J.G., McCarthy, J., Eds.; CRC Press LLC: Boca Raton, FL, USA, 1995. [Google Scholar]
- Convention on Wetlands of International Importance Especially as Waterfowl Habitat 1971. Available online: http://portal.unesco.org/en/ev.php-URL_ID=15398&URL_DO=DO_TOPIC&URL_SECTION=201.html (accessed on 18 November 2014).
- Sakané, N.; Alvarez, M.; Becker, M.; Böhme, B.; Handa, C.; Kamiri, H.W.; Langensiepen, M.; Menz, G.; Misana, S.; Mogha, N.G.; et al. Classification, Characterization and Use of small Wetlands in East Africa. Wetlands 2011, 31, 1103–1116. [Google Scholar] [CrossRef]
- Arbuckle, C.J.; Huryn, A.D.; Israel, S.A. Applications of Remote Sensing and GIS to Wetland Inventory: Upland bogs. In Proceedings of the Spatial Information Research Centre’s 10th Colloquium; University of Otago: Dunedin, New Zealand, 1998; pp. 15–24. [Google Scholar]
- Novo, E.M.; Shimabukuro, Y.E. Identification and mapping of the Amazon habitats using a mixing model. Int. J. Remote Sens. 1997, 18, 663–670. [Google Scholar] [CrossRef]
- Von der Heyden, C.J. The hydrology and hydrogeology of dambos: A review. Prog. Phys. Geogr. 2004, 28, 544–564. [Google Scholar] [CrossRef]
- Zhao, X.; Stein, A.; Chen, X.-L. Monitoring the dynamics of wetland inundation by random sets on multi-temporal images. Remote Sens. Environ. 2011, 115, 2390–2401. [Google Scholar] [CrossRef]
- Zoltai, S.C.; Pollett, F.C. Wetlands in Canada: Their classification, distribution and use. In Mires: Swamp, Bog, Fen and Moor; Gore, A.J.P., Ed.; Elsevier: Amsterdam, Netherlands, 1983. [Google Scholar]
- Frazier, P.; Page, K.; Louis, J.; Briggs, S.; Robertson, A.I. Relating wetland inundation to river flow using Landsat TM data. Int. J. Remote Sens. 2003, 24, 3755–3770. [Google Scholar] [CrossRef]
- Kaptué, A.T.; Hanan, N.P.; Prihodko, L. Characterization of the spatial and temporal variability of surface water in the Soudan-Sahel region of Africa. J. Geophys. Res.: Biogeosci. 2013, 118, 1472–1483. [Google Scholar] [CrossRef]
- Anderson, J.E. Spectral Reflectance Properties of Wetlands Plants; US Army Topographic Engineering Center: Alexandria, VA, USA, 1994. [Google Scholar]
- Zhao, H.; Cui, B.; Zhang, H.; Fan, X.; Zhang, Z.; Lei, X. A landscape approach for wetland change detection (1979–2009) in the Pearl River Estuary. Procedia Environ. Sci. 2010, 2, 1265–1278. [Google Scholar] [CrossRef]
- Melack, J.M.; Hess, L.L. Remote Sensing of the Distribution and Extent of Wetlands in the Amazon Basin. In Amazonian Floodplain Forests; Junk, W.J., Piedade, M.T.F., Wittmann, F., Schöngart, J., Parolin, P., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 43–59. [Google Scholar]
- Mwita, E. Remote Sensing Based Assessment of Small Wetlands in East Africa. PhD Thesis, University of Bonn, Bonn, Germany, 2010. [Google Scholar]
- Carter, V. Applications of remote sensing to wetlands. In Remote Sensing for Resource Management; Johannsen, C.J., Sanders, J.L., Eds.; Soil Conservation Society of America: Ankeny, IA, USA, 1982; pp. 284–300. [Google Scholar]
- Unesco Ecology and Conservation. In International Classification and Mapping of Vegetation; Unesco: Paris, France, 1973.
- Matthews, E. Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies. J. Clim. Appl. Meteorol. 1983, 22, 474–487. [Google Scholar]
- Tucker, C.J.; Townshend, J.R.G.; Goff, T.E. African Land-Cover Classification using Satellite Data. Science 1985, 227, 369–375. [Google Scholar] [CrossRef]
- Townshend, J.R.G.; Justice, C.O.; Kalb, V. Characterization and classification of South American land cover types using satellite data. Int. J. Remote Sens. 1987, 8, 1189–1207. [Google Scholar] [CrossRef]
- Loveland, T.R.; Merchant, J.W.; Ohlen, D.O.; Brown, J.F. Development of a Land-Cover Characteristics Database for the Conterminous U.S. Photogramm. Eng. Remote Sens. 1991, 57, 1453–1463. [Google Scholar]
- Stone, T.A.; Schlesinger, P.; Houghton, R.A.; Woodwell, G.M. A Map of the Vegetation of South America Based on Satellite Imagery. Photogramm. Eng. Remote Sens. 1994, 60, 541–551. [Google Scholar]
- DeFries, R.S.; Townshend, J.R.G. NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens. 1994, 15, 3567–3586. [Google Scholar] [CrossRef]
- DeFries, R.; Hansen, M.; Townshend, J. Global Discrimination of Land Cover Types from Metrics Derived from AVHRR Pathfinder Data. Remote Sens. Environ. 1995, 54, 209–222. [Google Scholar] [CrossRef]
- DeFries, R.S.; Hansen, M.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 8 km spatial resolution: The use of training data derived from Landsat imagery and decision tree classifiers. Int. J. Remote Sens. 1998, 19, 3141–3168. [Google Scholar] [CrossRef]
- Loveland, T.R.; Zhu, Z.; Ohlen, D.O.; Brown, J.F.; Reed, B.C.; Yang, L. An Analysis of the IGBP Global Land-Cover Characterization Process. Photogramm. Eng. Remote Sens. 1999, 65, 1021–1032. [Google Scholar]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; Geological Survey Professional Paper; United States Department of the Interior: Washington, DC, USA, 1976.
- Sellers, P.J.; Mintz, Y.; Sud, Y.C.; Dalcher, A. A Simple Biosphere Model (SiB) for Use within General Circulation Models. J. Atmos. Sci. 1986, 43, 505–531. [Google Scholar]
- Olson, D.M. Global Ecosystem Framework-Definitions: USGS EROS Data Center Internal Report; USGS: Sioux Falls, SD, USA, 1994. [Google Scholar]
- Running, S.W.; Loveland, T.R.; Pierce, L.L. A Vegetation Classification Logic Based on Remote Sensing for Use in Global Biogeochemical Models. Ambio 1994, 23, 77–81. [Google Scholar]
- Sellers, P.J.; Los, S.O.; Tucker, C.J.; Justice, C.O.; Dazlich, D.A.; Collatz, G.J.; Randall, D.A. A Revised Land Surface Parametrization (SiB2) for Atmospheric GCMs. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data. J. Clim. 1996, 9, 706–737. [Google Scholar]
- Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J.; Wilson, M.F. Biosphere-Atmosphere Transfer Scheme (BATS) for the NACR Community Climate Model; NCAR Tech. Note: Boulder, CO, USA, 1986. [Google Scholar]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Bossard, M.; Feranec, J.; Otahel, J. CORINE Land Cover Technical Guide–Addendum 2000; European Environment Agency: Copenhagen, Denmark, 2000. [Google Scholar]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- FAO. FRA 2000 Global Ecological Zoning for the Global Forest Resources Assessment 2000—Final Report; FAO: Rome, Italy, 2001. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Mayaux, P.; Bartholomé, E.; Massart, M.; van Cutsem, C.; Cabral, A.; Nonguierma, A.; Diallo, O.; Pretorius, C.; Thompson, M.; Cherlet, M.; et al. A Land Cover Map of Africa; European Communities: Luxembourg, 2003. [Google Scholar]
- Bontemps, S.; Defourny, P.; van Bogaert, E.; Arino, O.; Kalogirou, V.; Perez, J.R. GLOBCOVER 2009: Products Description and Validation Report; UCLouvain & European Space Agency: Louvain, Belgium, 2011. [Google Scholar]
- FAO. FRA 2015 Global Ecological Zones for FAO Forest Reporting: 2010 Update; FAO: Rome, Italy, 2012. [Google Scholar]
- Food and Agriculture Organization (FAO). GLCN Global Land Cover Network-Africover; FAO: Rome, Italy, 2013. [Google Scholar]
- Latham, J.; Cumani, R.; Rosati, I.; Bloise, M. FAO Global Land Cover-SHARE Database Beta-Release V. 1.0; FAO: Rome, Italy, 2014. [Google Scholar]
- Hess, L.L.; Melack, J.M.; Novo, E.M.L.M.; Barbosa, C.C.F.; Gastil, M. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens. Environ. 2003, 87, 404–428. [Google Scholar] [CrossRef]
- Acreman, M.C.; Miller, F. Hydrological Impact assessment of wetlands. In Proceedings of the International Symposium on Groundwater Sustainability, Alicante, Spain, 24–27 January 2006; pp. 225–255.
- Palmer, S.; Kutser, T.; Hunter, P.D. Remote sensing of inland water: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Darras, S.; Michou, M.; Sarrat, C. IGBP-DIS Wetland Data Initiative: A First Step Towards Identifying a Global Delineation of Wetlands; IGBP-DIS Office: Toulouse, France, 1999. [Google Scholar]
- Di Gregorio, A.; Jansen, L.J.M. Land Cover Classification System-Classification Concepts and User Manual, Software Version 2; FAO: Rome, Italy, 2005. [Google Scholar]
- Mayaux, P.; Bartholomé, E.; Fritz, S.; Belward, A. A new land-cover map of Africa for the year 2000. J. Biogeogr. 2004, 31, 861–877. [Google Scholar] [CrossRef]
- Database of Global Administrative Areas (GADM). Available online: http://www.gadm.org/ (accessed on 7 January 2015).
- Downing, J.A. Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica 2010, 29, 9–24. [Google Scholar]
- Ordoyne, C.; Friedl, M.A. Using MODIS data to characterize seasonal inundation patterns in the Florida Everglades. Remote Sens. Environ. 2008, 112, 4107–4119. [Google Scholar] [CrossRef]
- Lemly, A.D.; Kingsford, R.T.; Thompson, J.R. Irrigated Agriculture and Wildlife Conservation: Conflict on a Global Scale. Environ. Manag. 2000, 25, 485–512. [Google Scholar] [CrossRef]
- Stacke, T.; Hagemann, S. Development and evaluation of a global dynamical wetlands extent scheme. Hydrol. Earth Syst. Sci. 2012, 16, 2915–2933. [Google Scholar] [CrossRef]
- Gore, A.J.P. Mires: Swamp, Bog, Fen and Moor; Elsevier: Amsterdam, Netherlands, 1983. [Google Scholar]
- Matthews, E.; Fung, I.; Lerner, J. Methane emission from rice cultivation: Geographic and seasonal distribution of cultivated areas and emissions. Glob. Biogeochem. Cycles 1991, 5, 3–24. [Google Scholar] [CrossRef]
- The Ramsar List of Wetlands of International Importance. Available online: http://ramsar.rgis.ch/cda/en/ramsar-documents-list/main/ramsar/1-31-218_4000_0__ (accessed on 20 November 2014).
- Ramsar Wetland Type Classification. Available online: http://www.environment.gov.au/water/wetlands/ramsar/wetland-type-classification (accessed on 9 April 2015).
- NASA Jet Propulsion Laboratory. Wetlands-Global Monitoring of Wetland Extent and Dynamics. Available online: http://wetlands.jpl.nasa.gov/ (accessed on 20 November 2014).
- Alaska Satellite Facility. Wetland MEaSUREs Time Series Data. Available online: https://www.asf.alaska.edu/wetlands/time-series-data/ (accessed on 11 November 2014).
- Fluet-Chouinard, E.; Lehner, B.; Rebelo, L.-M.; Papa, F.; Hamilton, S.K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 2015, 158, 348–361. [Google Scholar] [CrossRef]
- Hughes, R.H.; Hughes, J.S. A Directory of African Wetlands; IUCN, UNEP, WCMC: Gland, Switzerland; Nairobi, Kenya; Cambridge, UK, 1992. [Google Scholar]
- FAO. Wetland Characterization and Classification for Sustainable Agricultural Development; FAO: Harare, Zimbabwe, 1998. [Google Scholar]
- Acreman, M.C.; Hollis, G.E. Water Management and Wetlands in Sub-Saharan Africa; International Union for Conservation of Nature: Gland, Switzerland, 1996. [Google Scholar]
- UNEP; Kenya Ministry of Environment and Natural Resources. Kenya Wetlands Atlas; UNEP: Nairobi, Kenya, 2012.
- Rwanda Ministère des Resssources Naturelles; Rwanda Environmental Management Agency. Projet de Gestion Integree des Ecosystemes Critiques-Etablissement d`un Inventaire National Rapide des Marrais et Élaboration de 5 Avant-Projets d’arretés Ministériels Relatifs aux Marais. Available online: http://www.rema.gov.rw/rema_doc/publications/Rapport%20de%20l%27Inventaire%20des%20Marais%20du%20Rwanda%20Module%203.pdf (accessed on 7 January 2015).
- Rwanda Environment Management Authority. Rwanda State of Environment and Outlook; REMA: Kigali, Rwanda, 2009.
- Rwanda Environment Management Authority. Atlas of Rwanda’s Changing Environment: Implications for Climate Change Resilience; REMA: Kigali, Rwanda, 2011.
- Tanzania Ministry of Natural Resources and Tourism (MNR); Tanzania Wildlife Division; Tanzania Ministry of foreign Affairs; Danish International Development Agency (DanIDA). Sustainable Wetlands Management 2004–2009, Tanzania; MNR: Dar Es Salaam, Tanzania, 2003.
- Kamukala, G.L; Crafter, S.A. Wetlands of Tanzania-Proceedings of a Seminar on the Wetlands of Tanzania; Kamukala, G.L., Crafter, S.A., Eds.; IUCN: Morogoro, Tanzania, 1993. [Google Scholar]
- Huising, E.J. Wetland monitoring in Uganda. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, XXXIV(6/W6), 127–135. [Google Scholar]
- Uganda Ministry of Water, Lands and Environment-Wetlands Inspection Division. Uganda Wetlands Sector Strategic Plan 2001–2010. Available online: http://www.foodnet.cgiar.org/scrip/docs&databases/ifpristudies_ug_nonscrip/pdfs/Nationa_Wetlands_Programme/Uganda%20Wetland%20Sector%20Strategic%20Plan%202001-10.pdf (accessed on 7 January 2015).
- Kuria, D.N.; Menz, G.; Misana, S.; Mwita, E.; Thamm, H.-P.; Alvarez, M.; Mogha, N.; Becker, M.; Oyieke, H. Seasonal vegetation changes in the Malinda Wetland using bi-temporal, multi-sensor, very high resolution remote sensing data sets. Adv. Remote Sens. 2014, 3, 33–48. [Google Scholar] [CrossRef]
- Mwita, E.; Menz, G.; Misana, S.; Nienkemper, P. Detection of small wetlands with multi sensor data in East Africa. Adv. Remote Sens. 2012, 1, 64–73. [Google Scholar] [CrossRef]
- Mwita, E.; Menz, G.; Misana, S.; Becker, M.; Kisanga, D.; Boehme, B. Mapping small wetlands of Kenya and Tanzania using remote sensing techniques. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 173–183. [Google Scholar] [CrossRef]
- McCarthy, J.; Gumbricht, T.; McCarthy, T.S. Ecoregion classification in the Okavango Delta, Botswana from multitemporal remote sensing. Int. J. Remote Sens. 2005, 26, 4339–4357. [Google Scholar] [CrossRef]
- Schmidt, M.; Udelhoven, T.; Gill, T.; Röder, A. Long term data fusion for dense time series analysis with MODIS and Landsat imagery in an Australian Savanna. J. Appl. Remote Sens. 2012, 6. [Google Scholar] [CrossRef]
- European Space Agency. Copernicus Overview. Available online: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview4 (accessed on 7 January 2015).
- European Space Agency. GlobWetland Africa user consultation. Available online: http://due.esrin.esa.int/meetings/meetings302.php (accessed on 7 January 2015).
- Haas, E.M.; Bartholomé, E.; Combal, B. Time series analysis of optical remote sensing data for the mapping of temporary surface water bodies in sub-Saharan western Africa. J. Hydrol. 2009, 370, 52–63. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amler, E.; Schmidt, M.; Menz, G. Definitions and Mapping of East African Wetlands: A Review. Remote Sens. 2015, 7, 5256-5282. https://doi.org/10.3390/rs70505256
Amler E, Schmidt M, Menz G. Definitions and Mapping of East African Wetlands: A Review. Remote Sensing. 2015; 7(5):5256-5282. https://doi.org/10.3390/rs70505256
Chicago/Turabian StyleAmler, Esther, Michael Schmidt, and Gunter Menz. 2015. "Definitions and Mapping of East African Wetlands: A Review" Remote Sensing 7, no. 5: 5256-5282. https://doi.org/10.3390/rs70505256
APA StyleAmler, E., Schmidt, M., & Menz, G. (2015). Definitions and Mapping of East African Wetlands: A Review. Remote Sensing, 7(5), 5256-5282. https://doi.org/10.3390/rs70505256