A New Algorithm of the FPAR Product in the Heihe River Basin Considering the Contributions of Direct and Diffuse Solar Radiation Separately
Abstract
:1. Introduction
2. Methods
Inversion Process
Vegetation Type | Clumping Index | Vegetation Type | Clumping Index |
---|---|---|---|
Broadleaf, evergreen | 0.63 | Shrubs | 0.71 |
Broadleaf, deciduous | 0.69 | Herbaceous | 0.74 |
Needleleaf, evergreen | 0.62 | Sparse shrubs | 0.75 |
Needleleaf, deciduous | 0.68 | Cultivated and managed area | 0.73 |
Mixed leaf types | 0.69 | Other | 0.87 |
3. Study Area and Data
Parameter | Product | Spatial Resolution | Temporal Resolution |
---|---|---|---|
LAI | MCD15 | 1 km | 4 days |
Black-sky albedo | MCD43 | 1 km | 16 days |
White-sky albedo | MCD43 | 1 km | 16 days |
Land cover | MCD12 | 1 km | Yearly |
k | Calculated by direct and total PAR | 1 km | Hourly |
4. Results and Discussion
4.1. Validation with Observed FPAR
4.2. Validation with Simulated FPAR by the SAIL Model
4.3. Validation with Observed PAR Data
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Myneni, R.B.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Lotsch, A.; Zhang, Y.; Wang, Y.; Morisette, J.T.; Votava, P.; et al. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed By vegetation (FPAR) Product (MOD15). 1999; Algorithm Theoretical Basis Document Version 4.0. Available online: http://modis-land.gsfc.nasa.gov/lai.html (accessed on 18 May 2015). [Google Scholar]
- Deering, D.W. Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors; Texas A & M University: College Station, TX, USA, 1978. [Google Scholar]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar]
- Goward, S.N.; Huemmrich, K.F. Vegetation canopy PAR absorptance and the normalized difference vegetation index: An assessment using the SAIL model. Remote Sens. Environ. 1992, 39, 119–140. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [Google Scholar] [CrossRef]
- Sellers, P.J.; Los, S.O.; Tucher, C.J.; Collatz, G.J.; Justice, C.O.; Dazlich, D.A.; Randall, D.A. A global 1 × 1 NDVI data set for climate studies. Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI. Int. J. Remote Sens. 1994, 15, 3519–3545. [Google Scholar] [CrossRef]
- Xiao, X.M.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B., III. Satellite-based modeling of gross primary production in an evergreen needle leaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Xiao, X.M.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B., III; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Dawson, T.P.; North, P.R.J.; Plummer, S.E.; Curran, P.J. Forest ecosystem chlorophyll, content: Implications for remotely sensed estimates of net primary productivity. Int. J. Remote Sens. 2003, 24, 611–617. [Google Scholar] [CrossRef]
- Chen, L.F.; Gao, Y.H.; Li, L.; Liu, Q.; Gu, X. Forest NPP estimation based on MODIS data under cloudless condition. Sci. China Ser. D Earth Sci. 2008, 51, 331–338. [Google Scholar] [CrossRef]
- Tao, X. Remote Sensing Retrieval of FAPAR: Model and Scaling Effect. Master’s Thesis, Peking University, Beijing, China, 2009. [Google Scholar]
- Fan, W.J.; Liu, Y.; Xu, X.R.; Chen, G.; Zhang, B. A new FAPAR analytical model based on the law of energy conservation: A case study in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 99. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D.; Berry, S.L.; Noble, L.R. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 2001, 129, 21–30. [Google Scholar] [CrossRef]
- Yamasoe, M.A.; Von, R.C.; Manzi, A.O.; Schafer, J.S.; Eck, T.F.; Holben, B.N. Effect of smoke and clouds on the transmissivity of Photosynthetically active radiation inside the canopy. Atmos. Chem. Phys. 2006, 6, 1645–1656. [Google Scholar] [CrossRef]
- Gu, L.H.; Baldocchi, D.D.; Wofsy, S.; Munger, J.W.; Michalsky, J.J.; Urbanski, S.P.; Boden, T.A. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science 2003, 299, 2035–2038. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; Roderick, M.L. Pinatubo, Diffuse Light, and the Carbon Cycle. Science 2003, 299, 1997–1998. [Google Scholar] [CrossRef] [PubMed]
- Mercado, L.M.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P.M. Impact of changes in diffuse radiation on the global land carbon sink. Nature. 2009, 458, 1014–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.Z.; Zhou, T.; Jia, G.S.; Zhang, Z.Y.; Li, X.J.; Zhao, C.; Feng, S.H. Modeled effects of changes in the amount and Diffuse Fraction of PAR on Forest GPP. J. Nat. Resour. 2011, 26, 619–634. [Google Scholar]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and PAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Zhou, B. The study of Fraction of Photosynthetic Active Radiation using Monte Carlo method. Master’s Thesis, Institute of Remote Sensing Applications, Chinese Academy of Science, Beijing, China, 2007. [Google Scholar]
- Suits, G.H. The calculation of the directional reflectance of a vegetative canopy. Remote Sens. Environ. 1972, 2, 117–125. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef]
- Verhoef, W. Earth observation modeling based on layer scattering matrices. Remote Sens. Environ. 1985, 17, 165–178. [Google Scholar] [CrossRef]
- Goel, N.S.; Strebel, D.E. Simple beta distribution representation of leaf orientation in vegetation canopies. Agron. J. 1984, 76, 800–803. [Google Scholar] [CrossRef]
- Li, L.; Fan, W.J.; Du, Y.M.; Tang, Y.; Xin, X.Z.; Zhang, H.L.; Liu, Q.H. A Characteristic Study of Crop Canopy Direct and Diffuse Fraction of Absorbed Photosynthetically Active Radiation Based on SAIL Model Simulation. Acta Sci. Nat. Univ. Pekin. 2015, 51, 99–108. [Google Scholar]
- Li, W.J.; Fang, H.L. Estimation of direct, diffuse, and total FPARs from Landsat surface reflectance data and ground-based estimates over six FLUXNET sits. J. Geophys. Res. Biogeosci. 2015, 120. [Google Scholar] [CrossRef]
- Chen, J.M. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forest. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1353–1368. [Google Scholar] [CrossRef]
- Li, X.W.; Wang, J.D. Vegetation Optical Remote Sensing Model and Parameterized Vegetation Structure; Science Press: Beijing, China, 1995. (in Chinese) [Google Scholar]
- Chen, J.M.; Menges, C.H.; Leblanc, S.G. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 2005, 97, 447–457. [Google Scholar] [CrossRef]
- Li, X.; Li, X.W.; Li, Z.Y.; Ma, M.G.; Wang, J.; Xiao, Q.; Liu, Q.; Che, T.; Chen, E.X.; Yan, G.J.; et al. Watershed allied telemetry experimental research. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.D.; Liu, S.M.; Xiao, Q.; Ma, M.G.; Jin, R.; Che, T.; Liu, Q.H.; Wang, W.Z.; Qi, Y.; et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Cheng, G.D.; Li, X.; Zhao, W.Z.; Xu, Z.M.; Feng, Q.; Xiao, S.C.; Xiao, H.L. Integrated study of the water-ecosystem-economy in the Heihe River Basin. Nat. Sci. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef]
- Li, L.; Xin, X.Z.; Su, G.L.; Liu, Q.H. Photosyntheticall active radiation retrieval based on HJ-1A/B satellite data. Sci. China Earth Sci. 2010, 53, 81–91. [Google Scholar] [CrossRef]
- Li, L. PAR and FPAR Retrieval Base on Multi-Source Remote Sensing Data. Ph.D. Thesis, Institute of Remote Sensing Applications, Chinese Academy of Science, Beijing, China, 2010. [Google Scholar]
- Zhang, H.; Xin, X.; Li, L.; Liu, Q. An improved parametric model for simulating cloudy sky daily direct solar radiation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 180–187. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef]
- McCallum, L.; Wagner, W.; Schmullius, C.; Shvidenko, A.; Obersteiner, M.; Fritz, S.; Nilsson, S. Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000. Remote Sens. Environ. 2010, 114, 941–949. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ. 2004, 91, 490–507. [Google Scholar] [CrossRef]
- Pinty, B.; Lavergne, T.; Kaminski, T.; Aussedat, O.; Giering, R.; Gobron, N.; Taberner, M.; Verstraete, M.M.; Voßbeck, M.; Widlowski, J.-L.; et al. Partitioning the solar radiant fluxes in forest canopies in the presence of snow. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Meroni, M.; Atzberger, C.; Vancutsem, C.; Gobron, N.; Baret, F.; Lacaze, R.; Eerens, H.; Leo, O. Evaluation of agreement between space remote sensing SPOT-VEGETATION fapar time series. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1951–1962. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Du, Y.; Tang, Y.; Xin, X.; Zhang, H.; Wen, J.; Liu, Q. A New Algorithm of the FPAR Product in the Heihe River Basin Considering the Contributions of Direct and Diffuse Solar Radiation Separately. Remote Sens. 2015, 7, 6414-6432. https://doi.org/10.3390/rs70506414
Li L, Du Y, Tang Y, Xin X, Zhang H, Wen J, Liu Q. A New Algorithm of the FPAR Product in the Heihe River Basin Considering the Contributions of Direct and Diffuse Solar Radiation Separately. Remote Sensing. 2015; 7(5):6414-6432. https://doi.org/10.3390/rs70506414
Chicago/Turabian StyleLi, Li, Yongming Du, Yong Tang, Xiaozhou Xin, Hailong Zhang, Jianguang Wen, and Qinhuo Liu. 2015. "A New Algorithm of the FPAR Product in the Heihe River Basin Considering the Contributions of Direct and Diffuse Solar Radiation Separately" Remote Sensing 7, no. 5: 6414-6432. https://doi.org/10.3390/rs70506414
APA StyleLi, L., Du, Y., Tang, Y., Xin, X., Zhang, H., Wen, J., & Liu, Q. (2015). A New Algorithm of the FPAR Product in the Heihe River Basin Considering the Contributions of Direct and Diffuse Solar Radiation Separately. Remote Sensing, 7(5), 6414-6432. https://doi.org/10.3390/rs70506414