A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series
Abstract
:1. Introduction
2. Data and Methods
2.1. Satellite Data and Processing
2.2. The Case Study Sites
2.2.1. Yatir Pine Forest
2.2.2. Mt. Carmel Mixed Pine-Oak Woodlands
Plot | Tr-Ev (over) | Sh-Ev (under) | He-Ep (under) | Total (over + under) |
---|---|---|---|---|
1 | 14 | 37 | 17 | 68 |
2 | 9 | 38 | 33 | 80 |
3 | 2 | 39 | 44 | 85 |
4 | 3 | 25 | 59 | 87 |
5 | 12 | 41 | 30 | 83 |
6 | 28 | 41 | 16 | 85 |
7 | 15 | 30 | 30 | 77 |
8 | 17 | 46 | 18 | 82 |
9 | 16 | 29 | 23 | 68 |
10 | 16 | 34 | 20 | 70 |
11 | 9 | 53 | 26 | 88 |
12 | 19 | 28 | 30 | 77 |
13 | 20 | 31 | 23 | 73 |
14 | 9 | 17 | 35 | 60 |
15 | 14 | 29 | 26 | 68 |
16 | 25 | 38 | 20 | 83 |
17 | 31 | 26 | 36 | 93 |
18 | 13 | 24 | 29 | 67 |
19 | 28 | 25 | 15 | 68 |
20 | 14 | 49 | 18 | 80 |
21 | 29 | 18 | 31 | 78 |
22 | 28 | 46 | 11 | 85 |
AVG | 17 | 34 | 27 | 78 |
SE | 2 | 2 | 2 | 2 |
2.3. Description of the Method
- (1)
- The average NDVIEcos over the dry period (June–August) was calculated and taken as NDVIW for each seasonal year (i.e., from September to September). If NDVIEcos in the wet season was lower than the calculated NDVIW, the minimum NDVIEcos value was taken as the NDVIW instead. This ensures that abrupt intra-annual changes following disturbances (e.g., fires or clearing) are detected. For example, if a fire event occurs in December (i.e., during the wet season), taking the average NDVIEcos over the dry season (June–August) would overestimate woody cover in that specific year. In contrast, taking the minimum NDVIEcos, which is the NDVIEcos value following the fire, would be more representative because it includes the change due to the fire.
- (2)
- The NDVIW is then subtracted from NDVIEcos to compute the seasonal component of the time series (NDVISeas).
- (3)
- The maximum NDVISeas value in each seasonal year is taken as NDVIH, which represents the peak biomass/green-cover of the herbaceous vegetation [13].
2.4. Applications of NDVIW and NDVIH for Pre- and Post-Fire Monitoring in Mt. Carmel
- (i)
- Post-fire monitoring of woody and herbaceous recovery (i.e., changes in woody and herbaceous cover) in the burnt area of the wildfire of 2010 (four post-fire years) assessed from NDVIW and NDVIH.
- (ii)
- Fire severity assessment in the burnt area from the difference in NDVIW between pre and post fire years.
- (iii)
- Production of a fuel-based fire risk map from NDVIW for the year prior to the wildfire and comparison with fire-spread behavior (i.e., the burnt area). Fire risk map was produced by assigning a relative score from 1 to 10 (i.e., from the lowest to the highest risk level) to each pixel in the Mt. Carmel area according to its woody cover (i.e., 1 for minimum and 10 for maximum cover) and dryness status (i.e., 1 for the most positive, or no trend, and 10 for the most negative trend).
3. Results and Discussion
3.1. Mapping Leaf Area Index from NDVIW in Yatir
3.2. Assessing Woody and Herbaceous Cover from NDVIW and NDVIH in Mt. Carmel
3.3. Pre and Post Fire Assessment Using NDVIW and NDVIH in Mt. Carmel
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kuebbing, S.E.; Souza, L.; Sanders, N.J. Effects of co-occurring non-native invasive plant species on old-field succession. For. Ecol. Manage. 2014, 324, 196–204. [Google Scholar] [CrossRef]
- Kambatuku, J.R.; Cramer, M.D.; Ward, D. Savanna tree-grass competition is modified by substrate type and herbivory. J. Veg. Sci. 2011, 22, 225–237. [Google Scholar] [CrossRef]
- Odion, D.C.; Moritz, M.A.; DellaSala, D.A. Alternative community states maintained by fire in the Klamath Mountains, USA. J. Ecol. 2010, 98, 96–105. [Google Scholar] [CrossRef]
- Pauwels, V.R.N.; Wood, E.F. A soil-vegetation-atmosphere transfer scheme for the modeling of water and energy balance processes in high latitudes: 1. Model improvements. J. Geophys. Res. Atmos. 1999, 104, 27811–27822. [Google Scholar] [CrossRef]
- Birdsey, R.; Pregitzer, K.; Lucier, A. Forest carbon management in the United States. J. Environ. Qual. 2006, 35, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.-C.; Wardle, D.A. Understory vegetation as a forest ecosystem driver: Evidence from the northern Swedish boreal forest. Front. Ecol. Environ. 2005, 3, 421–428. [Google Scholar] [CrossRef]
- Penman, T.D.; Collins, L.; Syphard, A.D.; Keeley, J.E.; Bradstock, R.A. Influence of fuels, weather and the built environment on the exposure of property to wildfire. PLoS One 2014, 9, e111414. [Google Scholar] [CrossRef] [PubMed]
- Swatantran, A.; Dubayah, R.; Goetz, S.; Hofton, M.; Betts, M.G.; Sun, M.; Simard, M.; Holmes, R. Mapping migratory bird prevalence using remote sensing data fusion. PLoS One 2012, 7, e28922. [Google Scholar] [CrossRef] [PubMed]
- Osem, Y.; Perevolotsky, A.; Kigel, J. Grazing effect on diversity of annual plant communities in a semi arid rangeland: Interactions with small scale spatial and temporal variation in primary productivity. J. Ecol. 2002, 90, 936–946. [Google Scholar] [CrossRef]
- Jenkins, M.J.; Page, W.G.; Hebertson, E.G.; Alexander, M.E. Fuels and fire behavior dynamics in bark beetle-attacked forests in Western North America and implications for fire management. For. Ecol. Manage. 2012, 275, 23–34. [Google Scholar] [CrossRef]
- Mussery, A.; Helman, D.; Leu, S.; Budovsky, A. Modeling herbaceous productivity considering tree-grass interactions in drylands savannah: The case study of Yatir farm in the Negev drylands. J. Arid Environ. 2016, 124, 160–164. [Google Scholar] [CrossRef]
- Huete, A.R. Vegetation indices, remote sensing and forest monitoring. Geogr. Compass 2012, 6, 513–532. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.; Cabello, D.; Tomás-Burguera, M.; Martín-Hernández, N.; Beguería, S.; Azorin-Molina, C.; Kenawy, A. Drought variability and land degradation in semiarid regions: Assessment using remote sensing data and drought indices (1982–2011). Remote Sens. 2015, 7, 4391–4423. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Fensholt, R.; Wang, K.; Vitkovskaya, I.; Tian, F. Climate contributions to vegetation variations in central Asian drylands: Pre- and post-USSR collapse. Remote Sens. 2015, 7, 2449–2470. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Schaepman, M.E.; de Bruin, S. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Glob. Chang. Biol. 2012, 18, 642–655. [Google Scholar] [CrossRef]
- Erasmi, S.; Schucknecht, A.; Barbosa, M.; Matschullat, J. Vegetation greenness in northeastern brazil and its relation to ENSO warm events. Remote Sens. 2014, 6, 3041–3058. [Google Scholar] [CrossRef] [Green Version]
- Canisius, F.; Chen, J.M. Retrieving forest background reflectance in a boreal region from Multi-angle Imaging SpectroRadiometer (MISR) data. Remote Sens. Environ. 2007, 107, 312–321. [Google Scholar] [CrossRef]
- Yang, W.; Kobayashi, H.; Suzuki, R.; Nasahara, K.N. A simple method for retrieving understory NDVI in sparse needleleaf forests in Alaska using MODIS BRDF data. Remote Sens. 2014, 6, 11936–11955. [Google Scholar] [CrossRef]
- Pisek, J.; Rautiainen, M.; Nikopensius, M.; Raabe, K. Estimation of seasonal dynamics of understory NDVI in northern forests using MODIS BRDF data: Semi-empirical versus physically-based approach. Remote Sens. Environ. 2015, 163, 42–47. [Google Scholar] [CrossRef]
- Roderick, M.L.; Noble, I.R.; Cridland, S.W. Estimating woody and herbaceous vegetation cover from time series satellite observations. Glob. Ecol. Biogeogr. 1999, 8, 501–508. [Google Scholar] [CrossRef]
- Lu, H.; Raupach, M.R.; McVicar, T.R.; Barrett, D.J. Decomposition of vegetation cover into woody and herbaceous components using AVHRR NDVI time series. Remote Sens. Environ. 2003, 86, 1–18. [Google Scholar] [CrossRef]
- Cleveland, R.; Cleveland, W.; Mcrae, J.; Terpenning, I. STL: A seasonal-trend decomposition procedure based on loess (with discussion). J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Maseyk, K.S.; Lin, T.; Rotenberg, E.; Grünzweig, J.M.; Schwartz, A.; Yakir, D. Physiology-phenology interactions in a productive semi-arid pine forest. New Phytol. 2008, 178, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.W.; Schell, J.A.; Deering, D.H.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation; NASA/GSFC: Greenbelt, MD, USA, 1974. [Google Scholar]
- Helman, D.; Lensky, I.M.; Mussery, A.; Leu, S. Rehabilitating degraded drylands by creating woodland islets: Assessing long-term effects on aboveground productivity and soil fertility. Agric. For. Meteorol. 2014, 195–196, 52–60. [Google Scholar] [CrossRef]
- Helman, D.; Mussery, A.; Lensky, I.M.; Leu, S. Detecting changes in biomass productivity in a different land management regimes in drylands using satellite derived vegetation index. Soil Use Manag. 2014, 30, 32–39. [Google Scholar] [CrossRef]
- Rotem-Mindali, O.; Michael, Y.; Helman, D.; Lensky, I.M. The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Appl. Geogr. 2015, 56, 145–153. [Google Scholar] [CrossRef]
- Levin, N. Human factors explain the majority of MODIS-derived trends in vegetation cover in Israel: A densely populated country in the eastern Mediterranean. Reg. Environ. Chang. 2015, 15, 1–15. [Google Scholar]
- Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Rotenberg, E.; Yakir, D. Distinct patterns of changes in surface energy budget associated with forestation in the semiarid region. Glob. Chang. Biol. 2011, 17, 1536–1548. [Google Scholar] [CrossRef]
- Sprintsin, M.; Cohen, S.; Maseyk, K.; Rotenberg, E.; Grünzweig, J.; Karnieli, A.; Berliner, P.; Yakir, D. Long term and seasonal courses of leaf area index in a semi-arid forest plantation. Agric. For. Meteorol. 2011, 151, 565–574. [Google Scholar] [CrossRef]
- Rotenberg, E.; Yakir, D. Contribution of semi-arid forests to the climate system. Science 2010, 327, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Ne’eman, G. Regeneration of natural pine forest—Review of work done after the 1989 fire in Mount Carmel, Israel. Int. J. Wildl. Fire 1997, 7, 295–306. [Google Scholar] [CrossRef]
- Tessler, N.; Wittenberg, L.; Provizor, E.; Greenbaum, N. The influence of short-interval recurrent forest fires on the abundance of Aleppo pine (Pinus halepensis Mill.) on Mount Carmel, Israel. For. Ecol. Manage. 2014, 324, 109–116. [Google Scholar] [CrossRef]
- Tessler, N.; Wittenberg, L.; Greenbaum, N. Soil water repellency persistence after recurrent forest fires on Mount Carmel, Israel. Int. J. Wildl. Fire 2013, 22, 515–526. [Google Scholar] [CrossRef]
- Tessler, N. Documentation and analysis of wildfire regimes on Mount Carmel and the Jerusalem hills. 2012; 79, 184–193. [Google Scholar]
- Stohlgren, T.J. Measuring Plant Diversity: Lessons from the Field; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Neary, D.G.; Ryan, K.C.; DeBano, L.F. Wildland Fire in Ecosystems: Effects of Fire on Soils And Water; Gen. Tech. Rep. RMRS-GTR-42; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2005; Volume 4, p. 250. [Google Scholar]
- Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.; Fernandes, R.A.; Leblanc, S.G.; et al. Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1804–1817. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Epstein, H.E.; Lauenroth, W.K.; Burke, I.C. ANPP estimates from NDVI for the central grassland region of the United States. Ecology 1997, 78, 953–958. [Google Scholar] [CrossRef]
- Zeng, X.; Dickinson, R.E.; Walker, A.; Shaikh, M.; DeFries, R.S.; Qi, J. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteor. 2000, 39, 826–839. [Google Scholar] [CrossRef]
- Daly, C.; Bachelet, D.; Lenihan, J.M.; Neilson, R.P.; Parton, W.; Ojima, D. Dynamic simulation of tree-grass interactions for global change studies. Ecol. Appl. 2000, 10, 449–469. [Google Scholar]
- Merzer, T. The Effects of Different Vegetative Cover on the Local Hydrological Balance of a Semi Arid Afforestation. Master’s Thesis, Ben Gurion University of the Negev, Beer-Sheva, Israel, 2007. [Google Scholar]
- Carmel, Y.; Paz, S.; Jahashan, F.; Shoshany, M. Assessing fire risk using Monte Carlo simulations of fire spread. For. Ecol. Manage. 2009, 257, 370–377. [Google Scholar] [CrossRef]
- Chakroun, H.; Mouillot, F.; Hamdi, A. Regional equivalent water thickness modeling from remote sensing across a tree cover/LAI gradient in Mediterranean forests of northern Tunisia. Remote Sens. 2015, 7, 1937–1961. [Google Scholar] [CrossRef]
- Majasalmi, T.; Rautiainen, M.; Stenberg, P.; Manninen, T. Validation of MODIS and GEOV1 fPAR products in a boreal forest site in Finland. Remote Sens. 2015, 7, 1359–1379. [Google Scholar] [CrossRef]
- Ryu, Y.; Lee, G.; Jeon, S.; Song, Y.; Kimm, H. Monitoring multi-layer canopy spring phenology of temperate deciduous and evergreen forests using low-cost spectral sensors. Remote Sens. Environ. 2014, 149, 227–238. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helman, D.; Lensky, I.M.; Tessler, N.; Osem, Y. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series. Remote Sens. 2015, 7, 12314-12335. https://doi.org/10.3390/rs70912314
Helman D, Lensky IM, Tessler N, Osem Y. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series. Remote Sensing. 2015; 7(9):12314-12335. https://doi.org/10.3390/rs70912314
Chicago/Turabian StyleHelman, David, Itamar M. Lensky, Naama Tessler, and Yagil Osem. 2015. "A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series" Remote Sensing 7, no. 9: 12314-12335. https://doi.org/10.3390/rs70912314
APA StyleHelman, D., Lensky, I. M., Tessler, N., & Osem, Y. (2015). A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series. Remote Sensing, 7(9), 12314-12335. https://doi.org/10.3390/rs70912314