Seasonal Variation of Colored Dissolved Organic Matter in Barataria Bay, Louisiana, Using Combined Landsat and Field Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Absorption Spectroscopy
2.4. Landsat Imagery
Date of Image Acquisition | Date of In-Situ Observation | Difference (in days) | Number of Pixels | Visibility (km) | Sun Zenith Angle |
---|---|---|---|---|---|
Training data | |||||
7 October 2010 | 12 October 2010 | +5 | 13 | 35.67 | 41° |
1 April 2011 | 6 April 2011 | +5 | 8 | 59.33 | 35° |
12 February 2011 | 15 February 2011 | +3 | 15 | 30.09 | 51° |
11 November 2011 | 8 November 2011 | −3 | 14 | 55.03 | 51° |
Total = 50 | |||||
Test data | |||||
8 November 2010 | 11 November 2011 | + 3 | 15 | 55.23 | 49° |
19 May 2011 | 24 May 2011 | + 5 | 13 | 36.66 | 28° |
Total = 28 |
2.5. Statistical Analysis
Statistical Estimator | Formula |
---|---|
Absolute Bias (%) | |
Root Mean Square Error (RMSE) | |
Pearson’s correlation coefficient (r) | |
R-squared (R2) |
3. Results and Discussion
3.1. Meteorological and Hydrological Conditions during the Study Period
3.2. CDOM Optical Properties: Field Observations
3.2.1. Spatial and Seasonal Assessment
Season | Station-01 (South of Barataria Bay) | Station-15 (North of Barataria Bay) | ||||
---|---|---|---|---|---|---|
Salinity (PSU) | Temperature (°C) | ag355 (m−1) (S275–295 (μm−1)) | Salinity (PSU) | Temperature (°C) | ag355 (m−1) (S275–295 (μm−1)) | |
Spring | 12.04 ± 4.23 | 24.58 ± 3.09 | 3.42 ± 0.35 | 7.18 ± 5.73 | 27.94 ± 3.40 | 7.41 ± 0.63 |
(17.94 ± 0.68) | (18.76 ± 0.52) | |||||
Summer | 24.26 ± 0.91 | 30.05 ± 0.75 | 0.61 ± 0.40 | 0.31 ± 0.30 | 29.8 | 7.47 ± 1.35 |
(20.17 ± 0.84) | (18.75 ± 0.27) | |||||
Fall | 23.81 ± 2.47 | 27.13 ± 1.62 | 1.65 ± 0.36 | 5.35 ± 0.92 | 27.03 ± 2.35 | 6.41 ± 0.98 |
(22.42 ± 0.97) | (19.36 ± 1.24) | |||||
Winter | 23.75 ± 5.86 | 16.6 ± 3.69 | 2.11 ± 0.77 | 7.65 ± 5.23 | 15.76 ± 3.34 | 7.98 ± 1.8 |
(20.37 ± 2.87) | (18.26 ± 1.30) |
3.2.2. ag355-Salinity and S275–295-Salinity Relationships
3.2.3. Inter-Comparison of CDOM Variability during the DPFD Opening, the High MR Flow Condition, and the Passage of the High-Pressure System in 2010
3.2.4. A Tree-Based Analysis of the CDOM Absorption Coefficient
3.3. Satellite Assessment of CDOM Variability in the Barataria Bay
3.3.1. Band Selection for the Empirical Algorithm
3.3.2. The CDOM Empirical Algorithm for the Landsat Sensor
3.3.3. Hydrological and Meteorological Influences—Landsat Satellite Assessment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Blough, N.V.; Green, S.A. Spectroscopic characterization and remote sensing of non-living organic matter. In The Role of Non-living Organic Matter in the Earth’s Carbon Cycle; Zepp, R.G., Sonntag, C., Eds.; John Wiley Sons Ltd: Hoboken, NJ, USA, 1995; pp. 23–45. [Google Scholar]
- Blough, N.V.; Del Vecchio, R. Chromophoric DOM in the coastal environment. In Biogeochemistry of Marine Dissolved Organic Matter; Hansell, D., Carlson, C.A., Eds.; Academic Press, 2002; pp. 509–546. [Google Scholar]
- Bricaud, A.; Morel, A.; Prieur, L. Absorption by dissolved organic matter of the Sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr. 1981, 26, 43–53. [Google Scholar] [CrossRef]
- Bianchi, T.S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proc. Natl. Acad. Sci. 2011, 108, 19473–19481. [Google Scholar] [CrossRef] [PubMed]
- Coble, P.G.; Del Castillo, C.E.; Avril, B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Research Part II: Topical Stud. Oceanogr. 1998, 45, 2195–2223. [Google Scholar] [CrossRef]
- Del Castillo, C.E.; Gilbes, F.; Coble, P.G.; Müller-Karger, F.E. On the dispersal of riverine colored dissolved organic matter over the West Florida Shelf. Limnol. Oceanogr. 2000, 45, 1425–1432. [Google Scholar] [CrossRef]
- Morel, A.; Prieur, L. Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Steinberg, D.K.; Nelson, N.B.; Carlson, C.A.; Prusak, A.C. Production of Chromophoric Dissolved Organic Matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacterium Trichodesmium Spp. Mar. Ecol. Prog. Ser. 2004, 267, 45–56. [Google Scholar] [CrossRef]
- D’Sa, E.J.; Ko, D.S. Short-term influences on suspended particulate matter distribution in the northern Gulf of Mexico: Satellite and model observations. Sensors 2008, 8, 4249–4264. [Google Scholar] [CrossRef]
- DʼSa, E.J.; Miller, R.L.; Del Castillo, C. Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front. Appl. Opt. 2006, 45, 7410–7428. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D.A.; Maritorena, S.; Nelson, N.B.; Hansell, D.A.; Lorenzi-Kayser, M. Global distribution and dynamics of colored dissolved and detrital organic materials. J. Geophys. Res. Ocean. (1978–2012) 2002, 107. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Pennock, J.R.; Twilley, R.R. Biogeochemistry of Gulf of Mexico Estuaries; John Wiley Sons: Hoboken, NJ, 1999. [Google Scholar]
- Rabalais, N.N.; Turner, R.E.; Wiseman, W.J., Jr. Gulf of Mexico hypoxia, AKA “the dead zoneˮ. Ann. Rev. Ecol. Syst. 2002, 33, 235–263. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E.; Wiseman, W.J. Hypoxia in the Gulf of Mexico. J. Environ. Qual. 2001, 30, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Sklar, F.H.; Turner, R.E. Characteristics of Phytoplankton Production off Barataria Bay in an Area Influenced by the Mississippi River. Available online: http://agris.fao.org/agris-search/search.do?recordID=US19830857423 (accessed on 27 July 2015).
- Britsch, L.D.; Kemp Iii, E.B. Land Loss Rates: Mississippi River Deltaic Plain; Defense Technical Information Center: Fort Belvoir, VA, USA, 1990. [Google Scholar]
- Conner, W.H.; Day, J.W., Jr. The Ecology of Barataria Basin, Louisiana: An Estuarine Profile; Louisiana State University; Center for Wetland Resources: Baton Rouge, LA, USA, 1987. [Google Scholar]
- Day, J.W.; Boesch, D.F.; Clairain, E.J.; Kemp, G.P.; Laska, S.B.; Mitsch, W.J.; Orth, K.; Mashriqui, H.; Reed, D.J.; Shabman, L. Restoration of the Mississippi Delta: Lessons from hurricanes Katrina and Rita. Science 2007, 315, 1679–1684. [Google Scholar] [CrossRef] [PubMed]
- Penland, S.; Connor, P.F., Jr.; Beall, A.; Fearnley, S.; Williams, S.J. Changes in Louisianaʼs shoreline: 1855–2002. J. Coast. Res. 2005, 44, 7–39. [Google Scholar]
- Bianchi, T.S.; Cook, R.L.; Perdue, E.M.; Kolic, P.E.; Green, N.; Zhang, Y.; Smith, R.W.; Kolker, A.S.; Ameen, A.; King, G. Impacts of diverted freshwater on dissolved organic matter and microbial communities in Barataria Bay, Louisiana, USA. Mar. Environ. Res. 2011, 72, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Park, D.; Justic, D.; Wiseman, W.J. A high-resolution integrated hydrology-hydrodynamic model of the Barataria Basin system. Environ. Model. Softw. 2008, 23, 1122–1132. [Google Scholar] [CrossRef]
- Booth, J.G.; Miller, R.L.; McKee, B.A.; Leathers, R.A. Wind-induced bottom sediment resuspension in a microtidal coastal environment. Continental Shelf Res. 2000, 20, 785–806. [Google Scholar] [CrossRef]
- Reed, D.J. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne Bay, Louisiana: The role of winter storms. Estuaries 1989, 12, 222–227. [Google Scholar] [CrossRef]
- Park, D. Hydrodynamics and freshwater diversion within Barataria Basin. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2002. [Google Scholar]
- Hitchcock, G.L.; Chen, R.F.; Gardner, G.B.; Wiseman, W.J. A Lagrangian view of fluorescent chromophoric dissolved organic matter distributions in the Mississippi River plume. Mar. Chem. 2004, 89, 225–239. [Google Scholar] [CrossRef]
- Singh, S.; DʼSa, E.; Swenson, E. Seasonal variability in CDOM absorption and fluorescence properties in the Barataria Basin, Louisiana, USA. J. Environ. Sci. 2010, 22, 1481–1490. [Google Scholar] [CrossRef]
- DʼSa, E.J.; DiMarco, S.F. Seasonal variability and controls on chromophoric dissolved organic matter in a large river-dominated coastal margin. Limnol. Oceanogr. 2009, 54, 2233–2242. [Google Scholar] [CrossRef]
- Boss, E.; Pegau, W.S.; Zaneveld, J.R.V.; Barnard, A.H. Spatial and temporal variability of absorption by dissolved material at a continental shelf. J. Geophys. Res. Ocean. 2001, 106, 9499–9507. [Google Scholar] [CrossRef]
- Li, C.; White, J.R.; Chen, C.; Lin, H.; Weeks, E.; Galvan, K.; Bargu, S. Summertime tidal flushing of Barataria Bay: Transports of water and suspended sediments. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef]
- D’Sa, E.; Hu, C.; Muller-Karger, F.; Carder, K. Estimation of colored dissolved organic matter and salinity fields in Case 2 waters using SeaWIFS: Examples from Florida Bay and Florida Shelf. J. Earth Syst. Sci. 2002, 111, 197–207. [Google Scholar] [CrossRef]
- Del Castillo, C.E.; Miller, R.L. On the use of ocean color remote sensing to measure the transport of dissolved organic carbon by the Mississippi River plume. Remote Sens. Environ. 2008, 112, 836–844. [Google Scholar] [CrossRef]
- Tehrani, N.C.; D'Sa, E.J.; Osburn, C.L.; Bianchi, T.S.; Schaeffer, B.A. Chromophoric dissolved organic matter and dissolved organic carbon from sea-viewing wide field-of-view sensor (SeaWIFS), Moderate Resolution Imaging Spectroradiometer (MODIS) and MERIS sensors: Case study for the northern Gulf of Mexico. Remote Sens. 2013, 5, 1439–1464. [Google Scholar] [CrossRef]
- Brezonik, P.; Menken, K.D.; Bauer, M. Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and Colored Dissolved Organic Matter (CDOM). Lake Reserv. Manag. 2005, 21, 373–382. [Google Scholar] [CrossRef]
- Ficek, D.; Zapadka, T.; Dera, J. Remote sensing reflectance of Pomeranian lakes and the Baltic. Oceanologia 2011, 53, 959–970. [Google Scholar] [CrossRef]
- Griffin, C.G.; Frey, K.E.; Rogan, J.; Holmes, R.M. Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery. J. Geophys. Res. Biogeosci. 2011. [Google Scholar] [CrossRef]
- Kutser, T. The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters. Remote Sens. Environ. 2012, 123, 334–338. [Google Scholar] [CrossRef]
- Penland, S.; Roberts, H.; Williams, S.; Sallenger, A., Jr.; Cahoon, D.R.; Davis, D.W.; Groat, C. Coastal land loss in Louisiana. 1990, 40, 685–699. [Google Scholar]
- Swenson, E.M.; Turner, R.E. Past, Present and Probable Future Salinity Variations in the Barataria Estuarine System; Louisiana State University: Baton Rouge, LA, USA, 1998. [Google Scholar]
- Green, S.A.; Blough, N.V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr. 1994, 39, 1903–1916. [Google Scholar] [CrossRef]
- Jerlov, N.G. Marine Optics; Elsevier: New York, NY, USA, 1976. [Google Scholar]
- D’Sa, E.; Goes, J.; Gomes, H.; Mouw, C. Absorption and fluorescence properties of chromophoric dissolved organic matter of the eastern Bering Sea in the summer with special reference to the influence of a cold pool. Biogeosciences 2014, 11, 3225–3244. [Google Scholar] [CrossRef]
- Gordon, H.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: Waltham, MA, USA, 1994. [Google Scholar]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Baton Rouge, LA, USA, 1984. [Google Scholar]
- Podgorelec, V.; Kokol, P.; Stiglic, B.; Rozman, I. Decision trees: An overview and their use in medicine. J. Med. Syst. 2002, 26, 445–463. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Olesnikova, A.; Song, C.-H.; Lee, W.D. The development and application of decision tree for agriculture data. In Proceedings of the Second International Symposium on Intelligent Information Technology and Security Informatics, Moscow, Russia, 23–25 January 2009; pp. 16–20.
- Gandomi, A.H.; Fridline, M.M.; Roke, D.A. Decision Tree Approach for Soil Liquefaction Assessment. Available online: http://www.hindawi.com/journals/tswj/2013/346285/ (accessed on 27 July 2015).
- De’ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Torgo, L. Inductive learning of tree-based regression models. AI Commun. 2000, 13, 137–138. [Google Scholar]
- Schaffer, C. Selecting a classification method by cross-validation. Mach. Learn. 1993, 13, 135–143. [Google Scholar] [CrossRef]
- Das, A.; Justić, D.; Swenson, E. Modeling estuarine-shelf exchanges in a deltaic estuary: Implications for coastal carbon budgets and hypoxia. Ecol. Model. 2010, 221, 978–985. [Google Scholar] [CrossRef]
- Fichot, C.G.; Benner, R. The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnol. Oceanogr. 2012, 57, 1453–1466. [Google Scholar] [CrossRef]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef]
- Vodacek, A.; Blough, N.V.; DeGrandpre, M.D.; Nelson, R.K. Seasonal variation of CDOM and DOC in the middle Atlantic Bight: Terrestrial inputs and photooxidation. Limnol. Oceanogr. 1997, 42, 674–686. [Google Scholar]
- Feng, Z.; Li, C. Cold-front-induced flushing of the Louisiana Bays. J. Mar. Syst. 2010, 82, 252–264. [Google Scholar] [CrossRef]
- Stone, G.W.; Liu, B.; Pepper, D.A.; Wang, P. The importance of extratropical and tropical cyclones on the short-term evolution of barrier islands along the northern Gulf of Mexico, USA. Mar. Geol. 2004, 210, 63–78. [Google Scholar] [CrossRef]
- Del Castillo, C.E. Remote sensing of organic matter in coastal waters. In Remote Sensing of Coastal Aquatic Environments; Springer: Berlin, Germany, 2005; pp. 157–180. [Google Scholar]
- Miller, W.L.; Zepp, R.G. Photochemical production of dissolved inorganic carbon from terrestrial organic matter: Significance to the oceanic organic carbon cycle. Geophys. Res. Lett. 1995, 22, 417–420. [Google Scholar] [CrossRef]
- Moran, M.A.; Sheldon, W.M.; Zepp, R.G. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol. Oceanogr. 2000, 45, 1254–1264. [Google Scholar] [CrossRef]
- Osburn, C.L.; Retamal, L.; Vincent, W.F. Photoreactivity of chromophoric dissolved organic matter transported by the Mackenzie River to the Beaufort Sea. Mar. Chem. 2009, 115, 10–20. [Google Scholar] [CrossRef]
- Uher, G.; Hughes, C.; Henry, G.; Upstill-Goddard, R.C. Non-conservative mixing behavior of colored dissolved organic matter in a humic-rich, turbid estuary. Geophys. Res. Lett. 2001, 28, 3309–3312. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.C.; Kallio, K.Y.; Reinart, A.; Sobek, S. Mapping lake CDOM by satellite remote sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Moeller, C.C.; Huh, O.K.; Roberts, H.H.; Gumley, L.E.; Menzel, W.P. Response of Louisiana coastal environments to a cold front passage. J. Coast. Res. 1993, 9, 434–447. [Google Scholar]
- DʼSa, E.J.; Miller, R.L. Bio-optical properties in waters influenced by the Mississippi River during low flow conditions. Remote sens. Environ. 2003, 84, 538–549. [Google Scholar] [CrossRef]
- Ward, L.G. The influence of wind waves and tidal currents on sediment resuspension in middle Chesapeake Bay. Geo-Mar. Lett. 1985, 5, 71–75. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, I.; D’Sa, E.J. Seasonal Variation of Colored Dissolved Organic Matter in Barataria Bay, Louisiana, Using Combined Landsat and Field Data. Remote Sens. 2015, 7, 12478-12502. https://doi.org/10.3390/rs70912478
Joshi I, D’Sa EJ. Seasonal Variation of Colored Dissolved Organic Matter in Barataria Bay, Louisiana, Using Combined Landsat and Field Data. Remote Sensing. 2015; 7(9):12478-12502. https://doi.org/10.3390/rs70912478
Chicago/Turabian StyleJoshi, Ishan, and Eurico J. D’Sa. 2015. "Seasonal Variation of Colored Dissolved Organic Matter in Barataria Bay, Louisiana, Using Combined Landsat and Field Data" Remote Sensing 7, no. 9: 12478-12502. https://doi.org/10.3390/rs70912478
APA StyleJoshi, I., & D’Sa, E. J. (2015). Seasonal Variation of Colored Dissolved Organic Matter in Barataria Bay, Louisiana, Using Combined Landsat and Field Data. Remote Sensing, 7(9), 12478-12502. https://doi.org/10.3390/rs70912478