Fine-Scale Sea Ice Structure Characterized Using Underwater Acoustic Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Location
2.2. Acoustic Data Acquisition and Processing
2.2.1. Data Acquisition and Configuration of the AUV
2.2.2. Bathymetric (Depth) Data Processing
2.2.3. Data Corrections and Cleaning
2.2.4. Calibration
2.3. Establishing a Geoswath Processing Workflow for AUV Operations
2.4. Backscatter Data Processing
2.5. Sea Ice Morphology Spatial Analysis and Image Processing
2.6. Image Validation
2.7. Ice Thickness Validation
3. Results
3.1. Sea Ice Morphology
3.1.1. Sea Ice Thickness
3.1.2. Sea Ice Slope
3.1.3. Terrain Roughness or Vector Ruggedness Measure (VRM)
3.2. Sea Ice Texture
4. Discussion
4.1. Relevance of Spatial Data for Sea Ice Studies
4.2. Data Processing Future Recommendations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cadena, A. Design and implementation of cooperative autonomous underwater vehicles for antarctic exploration. Proc. SPIE 2011. [Google Scholar] [CrossRef]
- Doble, M.J.; Skourup, H.; Wadhams, P.; Geiger, C.A. The relation between Arctic sea ice surface elevation and draft: A case study using coincident AUV sonar and airborne scanning laser. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef]
- Dowdeswell, J.A.; Evans, J.; Mugford, R.; Griffiths, G.; McPhail, S.; Millard, N.; Stevenson, P.; Brandon, M.A.; Banks, C.; Heywood, K.J.; et al. Instruments and methods autonomous underwater vehicles (AUVs) and investigations of the ice; ocean interface in Antarctic and Arctic waters. J. Glaciol. 2008, 54, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, J. Under-ice seabed mapping with AUVs. In Proceedings of the OCEANS 2009-EUROPE, Bremen, Germany, 11–14 May 2009.
- Nicholls, K.W.; Abrahamsen, E.P.; Buck, J.J.H.; Dodd, P.A.; Goldblatt, C.; Griffiths, G.; Heywood, K.J.; Hughes, N.E.; Kaletzky, A.; Lane-Serff, G.F.; et al. Measurements beneath an Antarctic ice shelf using an autonomous underwater vehicle. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.; Maksym, T.; Wilkinson, J.; Kunz, C.; Murphy, C.; Kimball, P.; Singh, H. Thick and deformed Antarctic sea ice mapped with autonomous underwater vehicles. Nat. Geosci. 2014, 8, 61–67. [Google Scholar] [CrossRef]
- Liu, C.; Chao, J.; Gu, W.; Li, L.; Xu, Y. On the surface roughness characteristics of the land fast sea-ice in the Bohai Sea. Acta Oceanol. Sin. 2014, 33, 97–106. [Google Scholar] [CrossRef]
- Tschudi, M.; Fowler, C.; Maslanik, J.; Stroeve, J. Tracking the movement and changing surface characteristics of Arctic sea ice. IEEE J. Appl. Earth Obs. Remote Sens. 2010, 3, 536–540. [Google Scholar] [CrossRef]
- McMinn, A.; Martin, A.; Ryan, K. Phytoplankton and sea ice algal biomass and physiology during the transition between winter and spring (McMurdo Sound, Antarctica). Pol. Biol. 2010, 33, 1547–1556. [Google Scholar] [CrossRef]
- Arrigo, K.R.; Thomas, D.N. Large scale importance of sea ice biology in the Southern Ocean. Antarct. Sci. 2004, 16, 471–486. [Google Scholar] [CrossRef]
- Thomas, D.; Dieckmann, G. Antarctic sea ice—A habitat for extremophiles. Science 2002, 295, 641–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lizotte, M.P. The contributions of sea ice algae to Antarctic marine primary production. Am. Zool. 2001, 41, 57–73. [Google Scholar] [CrossRef]
- Fernández-Méndez, M.; Katlein, C.; Rabe, B.; Nicolaus, M.; Peeken, I.; Bakker, K.; Flores, H.; Boetius, A. Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012. Biogeosciences 2015, 12, 3525–3549. [Google Scholar] [CrossRef] [Green Version]
- Jeffries, M.O.; Schwartz, K.; Morris, K.; Veazey, A.D.; Krouse, H.R.; Gushing, S. Evidence for platelet ice accretion in Arctic sea ice development. J. Geophys. Res. 1995, 100, 10905–10914. [Google Scholar] [CrossRef]
- Langhorne, P.J.; Hughes, K.G.; Gough, A.J.; Smith, I.J.; Williams, M.J.M.; Robinson, N.J.; Stevens, C.L.; Rack, W.; Price, D.; Leonard, G.H.; et al. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux. Geophys. Res. Lett. 2015, 42, 5442–5451. [Google Scholar] [CrossRef]
- Garrison, D.L.; Sullivan, C.W.; Ackley, S.F. Sea ice microbial community studies in the Antarctic. Bioscience 1986, 36, 243–250. [Google Scholar] [CrossRef]
- Lazzara, L.; Nardello, I.; Gallo, C.; Mangoni, O.; Saggiomo, V. Light environment and seasonal dynamics of microalgae in the annual sea ice at Terra Nova Bay (Ross Sea, Antarctica). Antarct. Sci. 2007, 19, 83–92. [Google Scholar] [CrossRef]
- Smith, I.J.; Langhorne, P.J.; Haskell, T.G.; Trodhal, H.J.; Frew, R.; Ross Vennell, M. Platelet ice and the land-fast sea ice of McMurdo Sound, Antarctica. Ann. Glaciol. 2001, 33, 21–27. [Google Scholar] [CrossRef]
- Hoppmann, M.; Nicolaus, M.; Hunkeler, P.A.; Heil, P.; Behrens, L.K.; König-Langlo, G.; Gerdes, R. Seasonal evolution of an ice-shelf influenced fast-ice regime, derived from an autonomous thermistor chain. J. Geophys. Res. Oceans 2015, 120, 1703–1724. [Google Scholar] [CrossRef] [Green Version]
- Hunkeler, P.A.; Hoppmann, M.; Hendricks, S.; Kalscheuer, T.; Gerdes, R. A glimpse beneath Antarctic sea ice: Platelet layer volume from multifrequency electromagnetic induction sounding. Geophys. Res. Lett. 2016, 43, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Schnack-Schiel, S.B.; Dieckman, G.S.; Kattner, G.; Thomas, D.N. Copepods in summer platelet ice in the eastern Weddell Sea, Antarctica. Pol. Biol. 2004, 27, 502–506. [Google Scholar] [CrossRef]
- Vacchi, M.; DeVries, A.L.; Evans, C.W.; Bottaro, M.; Ghigliotti, L.; Cutroneo, L.; Pisano, E. A nursery area for the Antarctic silverfish Pleuragramma antarcticum at Terra Nova Bay (Ross Sea): First estimate of distribution and abundance of eggs and larvae under the seasonal sea-ice. Pol. Biol. 2012, 35, 1573–1585. [Google Scholar] [CrossRef]
- La Mesa, M.; Eastman, J.T.; Vacchi, M. The role of notothenioid fish in the food web of the Ross Sea shelf waters: A review. Pol. Biol. 2004, 27, 321–338. [Google Scholar] [CrossRef]
- Mangoni, O.; Saggiomo, M.; Modigh, M.; Catalano, G.; Zingone, A.; Saggiomo, V. The role of platelet ice microalgae in seeding phytoplankton blooms in Terra Nova Bay (Ross Sea, Antarctica): A mesocosm experiment. Pol. Biol. 2009, 32, 311–323. [Google Scholar] [CrossRef]
- Mundy, C.J.; Ehn, J.K.; Barber, D.G.; Michel, C. Influence of snow cover and algae on the spectral dependence of transmitted irradiance through Arctic landfast first-year sea ice. J. Geophys. Res. Oceans 2007, 112. [Google Scholar] [CrossRef]
- Katlein, C.; Arndt, S.; Nicolaus, M.; Perovich, D.K.; Jakuba, M.V.; Suman, S.; Elliott, S.; Whitcomb, L.L.; McFarland, C.J.; Gerdes, R.; et al. Influence of ice thickness and surface properties on light transmission through Arctic sea ice. J. Geophys. Res. Oceans 2015, 120, 5932–5944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, M.; Larsen, C.; Sturm, M. Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure-from-motion photogrammetry. Cryosphere 2015, 9, 1445–1463. [Google Scholar] [CrossRef]
- Jenkins, A.; Dutrieux, P.; Jacobs, S.S.; McPhail, S.D.; Perrett, J.R.; Webb, A.T.; White, D. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci. 2010, 3, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Hayes, D.R.; Morison, J. Ice- ocean turbulent exchange in the Arctic summer measured by an autonomous underwater vechile. Limnol. Oceanogr. 2008, 53, 2287–2308. [Google Scholar] [CrossRef]
- Doble, M.J.; Forrest, A.L.; Wadhams, P.; Laval, B.E. Through-ice AUV deployment: Operational and technical experience from two seasons of Arctic fieldwork. Cold Reg. Sci. Technol. 2009, 56, 90–97. [Google Scholar] [CrossRef]
- Kukulya, A.; Plueddemann, A.; Austin, T.; Stokey, R.; Purcell, M.; Allen, B.; Littlefield, R.; Freitag, L.; Koski, P.; Gallimore, E.; et al. Under-ice operations with a REMUS-100 AUV in the Arctic. In Proceedings of the IEEE/OES Autonomous Underwater Vehicles (AUV), Monterey, CA, USA, 1–3 Septemebr 2010.
- Schmidt, V.; Raineault, N.A.; Skarke, A.; Trembanis, A.; Mayer, L.A. Correction of bathymetric survey artifacts resulting from apparent wave-induced vertical position of an AUV. In Proceedings of the Canadian Hydrographic Conference (CHC), Quebec City, QC, Canada, 21–23 June 2010.
- Lucieer, V.; Hill, N.A.; Barrett, N.S.; Nichol, S. Do marine substrates ‘look’ and ‘sound’ the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle images. Estuar. Coast. Shelf Sci. 2013, 117, 94–106. [Google Scholar] [CrossRef]
- Lucieer, V.L. The Application of Automated Segmentation Methods and Fragementation Statistics to Characterise Rocky Reef Habitat. J. Spat. Sci. 2007, 52, 81–91. [Google Scholar] [CrossRef]
- Horn, B. Hill shading and the reflectance map. Proc. IEEE 1981, 69, 14–47. [Google Scholar] [CrossRef]
- Mock, T.; Thomas, D.N. Recent advances in sea-ice microbiology. Environ. Microbiol. 2005, 7, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Nicol, S. Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience 2006, 56, 111–120. [Google Scholar] [CrossRef]
- Nicolaus, M.; Katlein, C.; Maslanik, J.; Hendricks, S. Changes in Arctic sea ice result in increasing light transmittance and absorption. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Rysgaard, S.; Kühl, M.; Glud, R.; Hansen, J. Biomass, production and horizontal patchiness of sea ice algae in a high-Arctic fjord (Young Sound, NE Greenland). Mar. Ecol. Prog. Ser. 2001, 223, 15–26. [Google Scholar] [CrossRef]
- Nicolaus, M.; Katlein, C. Mapping radiation transfer through sea ice using a remotely operated vehicle (ROV). Cryosphere 2013, 7, 763–777. [Google Scholar] [CrossRef]
- Lucieer, V.L.; Forrest, A.L. Emerging Mapping Techniques for Autonomous Underwater Vehicles (AUVs). In Seafloor Mapping along Continental Shelves; Springer: New York, NY, USA, 2016; pp. 53–67. [Google Scholar]
Core ID | Pressure Sensor Depth (m) | Ice Core Depth (m) | Difference (m) | % Difference of Ice Thickness |
---|---|---|---|---|
0 | −1.636 | −1.880 | −0.244 | 14.91 |
1 | −1.644 | −1.890 | −0.246 | 14.96 |
2 | −1.660 | −1.880 | −0.220 | 13.25 |
3 | −1.767 | −1.880 | −0.113 | 6.40 |
4 | −1.751 | −1.890 | −0.139 | 7.94 |
5 | −1.704 | −1.910 | −0.206 | 12.09 |
6 | −1.663 | −1.910 | −0.247 | 14.85 |
7 | −1.637 | −1.880 | −0.243 | 14.84 |
8 | −1.679 | −1.940 | −0.261 | 15.54 |
9 | −1.599 | −1.730 | −0.131 | 8.19 |
10 | −1.912 | −1.930 | −0.018 | 0.94 |
11 | −1.670 | −1.870 | −0.200 | 11.98 |
12 | −1.674 | −1.870 | −0.196 | 11.71 |
13 | −1.689 | −1.870 | −0.181 | 10.72 |
Class | GLCM Homogeneity | GLCM Std Dev | GLCM Dissimilarity | GLCM Mean | dB Mean | dB Std Dev | Within Cluster Sum of Squares | Cluster Sizes |
---|---|---|---|---|---|---|---|---|
1 Smooth ice | 0.028 | 0.751 | 0.629 | 0.437 | 10 | 6.7 | 5.82 | 168 |
2 Platelet ice | 0.044 | 0.53 | 0.45 | 0.63 | 17.8 | 6 | 6.0 | 387 |
3 Unclassifed | 0.09 | 0.33 | 0.30 | 0.75 | 29 | 7.3 | 6.5 | 331 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucieer, V.; Nau, A.W.; Forrest, A.L.; Hawes, I. Fine-Scale Sea Ice Structure Characterized Using Underwater Acoustic Methods. Remote Sens. 2016, 8, 821. https://doi.org/10.3390/rs8100821
Lucieer V, Nau AW, Forrest AL, Hawes I. Fine-Scale Sea Ice Structure Characterized Using Underwater Acoustic Methods. Remote Sensing. 2016; 8(10):821. https://doi.org/10.3390/rs8100821
Chicago/Turabian StyleLucieer, Vanessa, Amy W. Nau, Alexander L. Forrest, and Ian Hawes. 2016. "Fine-Scale Sea Ice Structure Characterized Using Underwater Acoustic Methods" Remote Sensing 8, no. 10: 821. https://doi.org/10.3390/rs8100821
APA StyleLucieer, V., Nau, A. W., Forrest, A. L., & Hawes, I. (2016). Fine-Scale Sea Ice Structure Characterized Using Underwater Acoustic Methods. Remote Sensing, 8(10), 821. https://doi.org/10.3390/rs8100821