Feature Extraction in the North Sinai Desert Using Spaceborne Synthetic Aperture Radar: Potential Archaeological Applications
Abstract
:1. Introduction
1.1. Context of Research
1.2. Satellite SAR Remote Sensing in Desert Regions
1.3. North Sinai Geography, Geology and Climate
1.4. North Sinai Archaeology
2. Materials and Methods
- AOI 1:
- The region between the Wadi Tumilat and El Maghara Mountain (Gebel Maghara) (see Figure 1). This comprises an area of mobile sand dunes traversed, probably since antiquity (see Section 1.4) to the present. Many anomaly linear features of high relative backscatter were identified in this region.
- AOI 2:
- The area of Tell El-Farama, Tell El-Mahzan, and Tell El-Kanais. This is where features of low relative backscatter were found, which possibly correspond to archaeological structures.
2.1. PALSAR-1 Mosaic of North Sinai
2.2. Extraction of Linear Features of High Backscatter over AOI 1
- The mean value of pixels along a straight line of any orientation is greater than a threshold factor (1.6) multiplied by the mean value of pixels outside the line of the same orientation.
- The standard deviation of pixels along a line of the same orientation is less than a second threshold (0.6).
2.3. Analysis of Geometric Features of Low Backscatter in AOI 2
- Extraction of subset SLC images over the Tells
- Multilooking: given the small variation in incidence angle, the same factor of 2 in azimuth could be applied to all images to produce a square ground range pixel spacing of approximately 2 m
- Coregistration
- De Grandi multitemporal speckle filtering
- Geometric correction and calibration: geometric correction to geographic latitude/longitude, WGS 84, with a pixel spacing of 1.5 m. Calibration to (in both dB and linear units)
- Extraction of the following images calculated from the entire filtered time series (in both dB and linear):
- a.
- Mean
- b.
- Standard deviation
- c.
- Gradient: maximum absolute variation between consecutive acquisition dates
- d.
- Maximum
- e.
- Minimum
- f.
- Span difference: difference between the maximum value and the minimum value of all input data
- g.
- Maximum increment between consecutive acquisition dates
- h.
- Maximum decrement between consecutive acquisition dates
- i.
- Span ratio: the ratio calculated between the maximum value and the minimum value of all input data
- j.
- Maximum ratio: maximum value (max backscatter increment) among all ratios calculated between consecutive acquisition dates
- k.
- Minimum ratio: minimum value (max backscatter decrement) among all ratios calculated between consecutive acquisition dates
- l.
- Mu Sigma: mean/standard deviation ratio
- m.
- Coefficient of variation: standard deviation/mean ratio
- Average coherence generation (taking results of step 1 as input)
- a.
- Coregistration of SLC data for each incidence angle separately
- b.
- Coherence generation of consecutive acquisitions for each incidence angle stack
- c.
- Multilooking by the same factor as above
- d.
- Averaging multilooked coherence images within each stack
- e.
- Geometric correction to same map system as in step 5.
3. Results
4. Discussion
4.1. Focus on AOI 1 (Region East of Wadi Tumilat and West of Gebel Maghara)
4.2. Focus on AOI 2 (Area of Tell El-Farama, Tell El-Mahzan, and Tell El-Kanais)
4.3. Image Artefacts
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Giardino, M.J. A history of NASA remote sensing contributions to archaeology. J. Archaeol. Sci. 2011, 38, 2003–2009. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V. Remote sensing archaeology: Tracking and mapping evolution in European scientific literature from 1999 to 2015. J. Archaeol. Sci. Rep. 2015, 4, 192–200. [Google Scholar] [CrossRef]
- Wiseman, J.; El-Baz, F. Remote Sensing in Archaeology. Interdisciplinary Contributions to Archaeology; Springer: New York, NY, USA, 2007.
- Chen, F.; Masini, N.; Yang, R.; Milillo, P.; Feng, D.; Lasaponara, R. A space view of radar archaeological marks: First applications of COSMO-SkyMed X-band data. Remote Sens. 2015, 7, 24–50. [Google Scholar] [CrossRef]
- Paillou, P.; Lopez, S.; Farr, T.; Rosenqvist, A. Mapping subsurface geology in Sahara using l-band SAR: First results from the ALOS/PALSAR imaging radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 632–636. [Google Scholar] [CrossRef]
- Ulaby, T.; Moore, K.; Fung, K. Microwave Remote Sensing. Volume I: Microwave Remote Sensing Fundamentals and Radiometry; Artech House: Norwood, MA, USA, 1981; Volume 1. [Google Scholar]
- Ulaby, T.; Moore, K.; Fung, K. Microwave Remote Sensing. Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory; Addison Wesley: New York, NY, USA, 1982; Volume 2. [Google Scholar]
- Farr, T.G.; Elachi, C.; Hartl, P.; Chowdhury, K. Microwave penetration and attenuation in desert soil-A field experiment with the shuttle imaging radar. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 590–594. [Google Scholar] [CrossRef]
- Roth, L.E.; Elachi, C. Coherent electromagnetic losses by scattering from volume inhomogeneities. IEEE Trans. Antennas Propag. 1975, 23, 674–675. [Google Scholar] [CrossRef]
- McCauley, J.F.; Schaber, G.G.; Breed, C.S.; Grolier, M.J.; Haynes, C.V.; Issawi, B.; Elachi, C.; Blom, R. Subsurface valleys and geoarcheology of the eastern Sahara revealed by shuttle radar. Science 1982, 218, 1004–1020. [Google Scholar] [CrossRef] [PubMed]
- Schaber, G.G.; McCauley, J.F.; Breed, C.S. The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt. Remote Sens. Environ. 1997, 59, 337–363. [Google Scholar] [CrossRef]
- Paillou, P.; Grandjean, G.; Baghdadi, N.; Heggy, E.; August-Bernex, T.; Achache, J. Subsurface imaging in south-central Egypt using low-frequency radar: Bir Safsaf revisited. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1672–1684. [Google Scholar] [CrossRef]
- McHugh, W.P.; Breed, C.S.; Schabers, G.G.; McCauley, J.F.; Szabo, B.J. Acheulian sites along the “radar rivers,” southern Egyptian Sahara. J. Field Archaeol. 1988, 15, 361–379. [Google Scholar] [CrossRef]
- Holcomb, D.W. Imaging radar and archaeological survey: An example from the Gobi Desert of southern Mongolia. J. Field Archaeol. 2001, 28, 131–141. [Google Scholar] [CrossRef]
- McCauley, J.F.; Breed, C.S.; Schaber, G.G.; McHugh, W.P.; Issawi, B.; Haynes, C.V.; Grolier, M.J.; Kilani, A.E. Paleodrainages of the eastern Sahara-the radar rivers revisited (Sir-A/B implications for a Mid-Tertiary Trans-Afnrcan Drainage System). IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 624–648. [Google Scholar] [CrossRef]
- Stern, R.J.; Abdelsalam, M.G. The origin of the great bend of the Nile from Sir-C/X-Sar imagery. Science 1996, 274, 1696–1698. [Google Scholar] [CrossRef] [PubMed]
- El-Baz, F. Groundwater concentration beneath sand fields in the western desert of Egypt: Indications by radar images from space. Egypt. J. Remote Sens. Space Sci. 1999, 1, 1–24. [Google Scholar]
- Gaber, A.; Koch, M.; Griesh, M.H.; Sato, M.; El-Baz, F. Near-surface imaging of a buried foundation in the western desert, Egypt, using space-borne and ground penetrating radar. J. Archaeol. Sci. 2013, 40, 1946–1955. [Google Scholar] [CrossRef]
- Stewart, C.; Lasaponara, R.; Schiavon, G. ALOS PALSAR analysis of the archaeological site of Pelusium. Archaeol. Prospect. 2013, 20, 109–116. [Google Scholar] [CrossRef]
- Linck, R.; Busche, T.; Buckreuss, S.; Fassbinder, J.; Seren, S. Possibilities of archaeological prospection by high-resolution x-band satellite radar—A case study from Syria. Archaeol. Prospect. 2013, 20, 97–108. [Google Scholar] [CrossRef]
- Patruno, J.; Dore, N.; Crespi, M.; Pottier, E. Polarimetric multifrequency and multi-incidence SAR sensors analysis for archaeological purposes. Archaeol. Prospect. 2013, 20, 89–96. [Google Scholar] [CrossRef]
- Blom, R.; Hedges, G. Space technology and the discovery of the lost city of Ubar. In Proceedings of the IEEE Aerospace Conference, Snowmass, Aspen, USA, 13 February 1997; pp. 19–28.
- Comer, D.C.; Blom, R.G. Detection and identification of archaeological sites and features using synthetic aperture radar (SAR) data collected from airborne platforms. In Remote Sensing in Archaeology; Springer: New York, NY, USA, 2006; pp. 103–136. [Google Scholar]
- Stewart, C.; Lemmens, K.; Sala, M. Satellite radar in support to archaeological research in Egypt: Tracing ancient tracks between Egypt and southern Levant across north Sinai. In Egyptian Curses 2. A Research on Ancient Catastrophes; Capriotti Vittozzi, G., Ed.; Consiglio Nazionale Delle Ricerche (CNR), Istituto Di Studi Sul Mediterraneo Antico (ISMA): Rome, Italy, 2015; pp. 197–221. [Google Scholar]
- Stewart, C.; Lemmens, K.; Sala, M.; Vittozzi, G.C. A contribution of satellite radar to archaeological research in north Sinai, Egypt. In Archaeological Heritage & Multidisciplinary Egyptological Studies (AHMES); Consiglio Nazionale Delle Ricerche Istituto di Studi Sul Mediterraneo Antico: Rome, Italy, 2016; Volume 3, p. 11. [Google Scholar]
- Sever, T.L.; Irwin, D.E. Landscape archaeology: Remote-sensing investigation of the ancient Maya in the Peten rainforest of northern Guatemala. Anc. Mesoam. 2003, 14, 113–122. [Google Scholar] [CrossRef]
- Evans, D.; Pottier, C.; Fletcher, R.; Hensley, S.; Tapley, I.; Milne, A.; Barbetti, M. A comprehensive archaeological map of the world’s largest preindustrial settlement complex at Angkor, Cambodia. Proc. Natl. Acad. Sci. USA 2007, 104, 14277–14282. [Google Scholar] [CrossRef] [PubMed]
- Hermas, E.; Leprince, S.; El-Magd, I.A. Retrieving sand dune movements using sub-pixel correlation of multi-temporal optical remote sensing imagery, northwest Sinai Peninsula, Egypt. Remote Sens. Environ. 2012, 121, 51–60. [Google Scholar] [CrossRef]
- Siegal, Z.; Tsoar, H.; Karnieli, A. Effects of prolonged drought on the vegetation cover of sand dunes in the NW Negev Desert: Field survey, remote sensing and conceptual modeling. Aeolian Res. 2013, 9, 161–173. [Google Scholar] [CrossRef]
- Gad, M.; Zeid, S.; Khalaf, S.; Abdel-Hamid, A.; Seleem, E.; El Feki, A. Optimal management of groundwater resources in arid areas case study: North Sinai, Egypt. Water Resour. 2015, 42, 535–552. [Google Scholar] [CrossRef]
- Mumford, G. The Sinai Peninsula and its environs: Our changing perceptions of a pivotal land bridge between Egypt, the Levant, and Arabia. J. Anc. Egypt. Interconnect. 2015, 7, 1–24. [Google Scholar]
- Oren, E.D. Early Bronze Age settlement on northern Sinai: A model for Egypto-Canaanite interconnections. In L’urbanisation de la Palestine à l’âge du Bronze Ancien. Bilan et Perspectives des Recherches Actuelles. Actes du Colloque d’emmaüs (20–24 Octobre 1986); de Miroschedji, P., Ed.; British Archaeological Reports–International Series: Oxford, UK, 1989; Volume 527, pp. 389–405. [Google Scholar]
- Oren, E.D. The “ways of horus” in north Sinai. In Egypt, Israel, Sinai: Archaeological and Historical Relationships in the Biblical Period; Rainey, A.F., Ed.; Tel Aviv University Press: Tel Aviv, Israel, 1987; pp. 69–119. [Google Scholar]
- Hoffmeier, J.K.; Moshier, S.O. “A highway out of Egypt”: The main road from Egypt to Canaan. In Desert Road Archaeology in Ancient Egypt and Beyond; Riemer, H., Förster, F., Eds.; Heinrich-Barth-Institut: Koln, Germany, 2013; pp. 485–510. [Google Scholar]
- Abdel-Motelib, A.; Bode, M.; Hartmann, R.; Hartung, U.; Hauptmann, A.; Pfeiffer, K. Archaeometallurgical expeditions to the Sinai Peninsula and the eastern desert of Egypt (2006, 2008). Metalla (Bochum) 2012, 19, 56. [Google Scholar]
- Hoffmeier, J.K. Sinai in Egyptian, Levantine and Hebrew (biblical) perspectives. In The History of the Peoples of the Eastern Desert; Barnard, H., Duistermaat, K., Eds.; Cotsen Institute of Archaeology: Los Angeles, CA, USA, 2012; Volume Monograph 73, pp. 105–124. [Google Scholar]
- Tassie, G.J.; van Wetering, J.F.L. The wadi tumilat. In Encyclopedia of Ancient History; Bagnall, R.S., Brodersen, K., Champion, C.B., Erskine, A., Huebner, S.R., Eds.; Wiley-Blackwell: Oxford, UK, 2012; pp. 7035–7036. [Google Scholar]
- Hoffmeier, J.K. The exodus and wilderness narratives. In Ancient Israel’s History: An Introduction to Issues and Sources; Arnold, B.T., Hess, R.S., Eds.; Baker Academic: Grand Rapids, MI, USA, 2014; pp. 46–90. [Google Scholar]
- Mourad, A.L. The procession of Asiatics. In Beni Hassan. Volume I: The Tomb of Khnumhotep II; Kanawati, N., Evans, L., Eds.; Reports 36; Aris and Phillips: Oxford, UK, 2014; pp. 72–78. [Google Scholar]
- Beit-Arieh, I. Archaeology of Sinai: The Ophir Expedition; Emery and Claire Yass Publications in Archaeology: Tel Aviv, Israel, 2003; Volume 21. [Google Scholar]
- Dunstan, S. The Six Day War 1967: Sinai; Bloomsbury Publishing: New York, NY, USA, 2012. [Google Scholar]
- Gold, Z. Security in the Sinai: Present and Future; ICCT Research Paper; International Centre for Counter-Terrorism: The Hague, The Netherlands, 2014. [Google Scholar]
- Oren, E.D. North Sinai survey 1972–1978. In Sinai in Antiquity; Meshel, Z., Finkelstein, I., Eds.; Hakkibutz Hameu-Chad (Hebrew): Tel Aviv, Israel, 1980; pp. 101–158. [Google Scholar]
- Arthur, P.; Oren, E.D. The north Sinai survey and the evidence of transport amphorae for roman and byzantine trading patterns. J. Rom. Archaeol. 1998, 11, 193–212. [Google Scholar] [CrossRef]
- Valbelle, D. Recherches archéologiques récentes dans le nord-sinaï. Comptes Rendus Séances l’Académie Inscriptions Belles-Lettres 1989, 133, 594–607. [Google Scholar] [CrossRef]
- Di Iorio, A.; Straccia, N.; Carlucci, R. Advancement in automatic monitoring and detection of archaeological sites using a hybrid process of Remote Sensing, GIS techniques and a shape detection algorithm. In Proceedings of the 30th EARSeL Symposium, Paris, France, 31 May–4 June 2010; pp. 53–63.
- Misak, R.; Draz, M. Sand drift control of selected coastal and desert dunes in Egypt: Case studies. J. Arid Environ. 1997, 35, 17–28. [Google Scholar] [CrossRef]
- JAXA. DAICHI (ALOS) Operation Completion. Available online: http://global.jaxa.jp/press/2011/05/20110512_daichi_e.html (accessed on 2 June 2016).
- De Grandi, G.; Leysen, M.; Lee, J.; Schuler, D. Radar reflectivity estimation using multiple SAR scenes of the same target: Technique and applications. In Proceedings of the 1997 IEEE International Geoscience and Remote Sensing, IGARSS’97. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; pp. 1047–1050.
- Aspert, F.; Bach-Cuadra, M.; Cantone, A.; Holecz, F.; Thiran, J.-P. Time-varying segmentation for mapping of land cover changes. In Proceedings of the ENVISAT Symposium, Montreux, Switzerland, 23–27 April 2007.
- Quegan, S.; Le Toan, T.; Yu, J.J.; Ribbes, F.; Floury, N. Multitemporal ERS SAR analysis applied to forest mapping. IEEE Trans. Geosci. Remote Sens. 2000, 38, 741–753. [Google Scholar] [CrossRef]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.B.; Oimoen, M.J.; Zhang, Z.; Danielson, J.J.; Krieger, T.; Curtis, B.; Haase, J. Aster Global Digital Elevation Model Version 2—Summary of Validation Results; NASA Land Processes Distributed Active Archive Center: Sioux Falls, SC, USA, 2011.
- Mukul, M.; Srivastava, V.; Mukul, M. Accuracy analysis of the 2014–2015 Global Shuttle Radar Topography mission (SRTM) 1 arc-sec C-Band height model using international Global Navigation Satellite System Service (IGS) network. J. Earth Syst. Sci. 2016, 125, 909–917. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Dobson, M.C. Handbook of Radar Scattering Statistics for Terrain; Artech House: Norwood, MA, USA, 1989; p. 500. [Google Scholar]
- Quackenbush, L.J. A review of techniques for extracting linear features from imagery. Photogramm. Eng. Remote Sens. 2004, 70, 1383–1392. [Google Scholar] [CrossRef]
- Blom, R.; Elachi, C. Multifrequency and multipolarization radar scatterometry of sand dunes and comparison with spaceborne and airborne radar images. J. Geophys. Res. B 1987, 92, 7877–7889. [Google Scholar] [CrossRef]
- Iisaka, J.; Sakurai-Amano, T.; Lukowski, T.I. Automated detection of road intersections from ERS-1 SAR imagery. In Proceedings of the International Geoscience and Remote Sensing Symposium, IGARSS’95, ‘Quantitative Remote Sensing for Science and Applications’, Firenze Italy, 10–14 July 1995; pp. 676–678.
- Jaritz, H.; Favre, S.; Nogara, G.; Rodziewicz, M.; Carrez-Maratray, J.-Y. Pelusium Prospection Archéologique et Topographique de la Région de Tell el-Kana’is; Franz Steiner: Stuttgart, France, 1996. [Google Scholar]
- Arieh, I.B. An early Bronze Age ii site at Nabi Salah in southern Sinai. Tel Aviv 1974, 1, 144–156. [Google Scholar] [CrossRef]
- Moshier, S.O.; El-Kalani, A. Late Bronze Age paleogeography along the ancient ways of Horus in Northwest Sinai, Egypt. Geoarchaeology 2008, 23, 450–473. [Google Scholar] [CrossRef]
- Herbich, T. Reconstructing the layout of Pelusium. In Newsletter of the Polish Centre of Mediterranean Archaeology of the University of Warsaw; 2009; Available online: http://www.pcma.uw.edu.pl/en/pcma-newsletter/2009/hellenistic-and-graeco-roman-period/pelusium-tell-farama-egypt/ (accessed on 30 September 2016).
- Marcolongo, B. Evolution du paléo-environement dans la partie orientale du delta du Nil depuis la transgression flandrienne (8000 bp). Cahiers Recherches l’Institut Papyrologie d’Egyptologie Lille 1992, 14, 23–31. [Google Scholar]
- Stanley, J.-D.; Bernasconi, M.P.; Jorstad, T.F. Pelusium, an ancient port fortress on Egypt’s nile delta coast: Its evolving environmental setting from foundation to demise. J. Coast. Res. 2008, 24, 451–462. [Google Scholar] [CrossRef]
- Jakubiak, K. Tell Farama (Pelusium). The City on Sinai—Where Egypt and middle east meet. In SOMA 2012 Identity and Connectivity, Proceedings of the 16th Symposium on Mediterranean Archaeology, Florence, Italy, 1–3 March 2012; Bombardieri, L., D’Agostino, A., Guarducci, G., Orsi, V., Valentini, S., Eds.; Archaeopress: Oxford, UK, 2013; pp. 569–576. [Google Scholar]
- Yong, S.-S.; Ra, S.-W. The design of MSC (multi-spectral camera) system operation. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium IGARSS’04, Anchorage, AK, USA, 20–24 September 2004; pp. 3311–3313.
- Gascon, F.; Cadau, E.; Colin, O.; Hoersch, B.; Isola, C.; Fernández, B.L.; Martimort, P. Copernicus sentinel-2 mission: Products, algorithms and Cal/Val. In Proceedings of the SPIE Earth Observing Systems XIX, San Diego, CA, USA, 21 October 2014.
- Gleyzes, M.-A.; Perret, L.; Kubik, P. Pleiades system architecture and main performances. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, B1. [Google Scholar] [CrossRef]
- Carrez-Maratray, J.-Y.; Wagner, G. Tell el-Kanaïs. In Cahiers de Recherches de l’Institut de Papyrologie et d’Egyptlogie de Lille n.15; Université Charles De Gaulle: Lille, France, 1993; pp. 105–110. [Google Scholar]
- Li, F.; Johnson, W. Ambiguities in spacebornene synthetic aperture radar systems. IEEE Trans. Aerosp. Electron. Syst. 1983, 3, 389–397. [Google Scholar] [CrossRef]
- Meyer, F.J.; Nicoll, J.B.; Doulgeris, A.P. Correction and characterization of radio frequency interference signatures in l-band synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4961–4972. [Google Scholar] [CrossRef] [Green Version]
- Rosen, P.A.; Hensley, S.; Le, C. Observations and mitigation of RFI in ALOS PALSAR SAR data: Implications for the DESDynI mission. In Proceedings of the Radar Conference, Rome, Italy, 26–30 May 2008; pp. 1–6.
- Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
Track/Frame (see Figure 1 for Location) | Number of Scenes | Sensor Mode (Polarisation) | Acquisition Date Range |
---|---|---|---|
604/610 | 2 | FBD (HH/HV) | September 2007–June 2010 |
605/600 | 7 | FBD (HH/HV) | June 2007–June 2010 |
605/610 | 2 | FBD (HH/HV) | June 2007–May 2010 |
606/600 | 7 | FBD (HH/HV) | July 2007–September 2010 |
606/610 | 2 | FBD (HH/HV) | July 2007–June 2010 |
607/590 | 8 | FBS (HH) | October 2007–February 2011 |
O | 21 | 10 FBS (HH), 11 FBD (HH/HV) | June 2007–February 2011 |
607/610 | 19 | 10 FBS (HH), 9 FBD (HH/HV) | June 2007–February 2011 |
608/600 | 7 | FBD (HH/HV) | November 2007–April 2010 |
Acquisition Date | Incidence Angle (Degrees) |
---|---|
5 August 2015 | 49 |
10 August 2015 | 40 |
19 August 2015 | 49 |
16 September 2015 | 49 |
21 September 2015 | 40 |
30 September 2015 | 49 |
5 October 2015 | 40 |
Sensor | Acquisition Date | Image Characteristics |
---|---|---|
Kompsat-2 | 11 July 2012 | Four spectral bands from 450 to 900 nm at 4 m spatial resolution. One panchromatic band from 500 to 900 nm at 1 m spatial resolution [65]. |
Sentinel-2 | 19 February 2016 | 13 spectral bands from 443 to 2190 nm [66], 4 of which (visible and near infrared) at 10 m spatial resolution were used in the analysis. |
Pleiades | 24 November 2015 | Four spectral bands from 430 to 950 nm at 2.8 m spatial resolution. One panchromatic band from 480 to 830 nm at 0.7 m spatial resolution [67]. |
Imagery available on Google Earth (unknown sensor) | 17 August 2003 | True colour imagery |
7 February 2007 | ||
1 August 2009 | ||
26 July 2013 | ||
5 February 2016 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stewart, C.; Montanaro, R.; Sala, M.; Riccardi, P. Feature Extraction in the North Sinai Desert Using Spaceborne Synthetic Aperture Radar: Potential Archaeological Applications. Remote Sens. 2016, 8, 825. https://doi.org/10.3390/rs8100825
Stewart C, Montanaro R, Sala M, Riccardi P. Feature Extraction in the North Sinai Desert Using Spaceborne Synthetic Aperture Radar: Potential Archaeological Applications. Remote Sensing. 2016; 8(10):825. https://doi.org/10.3390/rs8100825
Chicago/Turabian StyleStewart, Christopher, Rosanna Montanaro, Maura Sala, and Paolo Riccardi. 2016. "Feature Extraction in the North Sinai Desert Using Spaceborne Synthetic Aperture Radar: Potential Archaeological Applications" Remote Sensing 8, no. 10: 825. https://doi.org/10.3390/rs8100825
APA StyleStewart, C., Montanaro, R., Sala, M., & Riccardi, P. (2016). Feature Extraction in the North Sinai Desert Using Spaceborne Synthetic Aperture Radar: Potential Archaeological Applications. Remote Sensing, 8(10), 825. https://doi.org/10.3390/rs8100825