Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fertilizer Treatments
2.3. Remote and Proximal Sensing Data Acquisition and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Multiple-Rank Analysis of Spectral Indices, Crop Height and Yield
3.2. Relationship between the SPECTRAL Indices and Crop Height with Yield
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CM | Chlorophyll meter |
DSM | Digital surface model |
DGM | Digital ground model |
EONR | Economic optimum nitrogen rate |
GNDVI | Green normalized difference vegetation index |
GRV | Green ratio vegetation index |
N | Nitrogen |
NDVI | Normalized difference vegetation index |
NIR | Near infrared |
Ps | Pig slurry |
UAV | Unmanned aerial vehicle |
WDRVI | Wide dynamic range vegetation index |
References
- Cardwell, V.B. Fifty years of Minnesota corn production: Sources of yield increase. Agron. J. 1982, 74, 984–990. [Google Scholar] [CrossRef]
- Stanger, T.F.; Lauer, J.G. Corn grain yield response to crop rotation and nitrogen over 35 years. Agron. J. 2008, 100, 543–650. [Google Scholar] [CrossRef]
- Berenguer, P.; Santiveri, F.; Boixadera, J.; Lloveras, J. Fertilisation of irrigated maize with pig slurry combined with mineral nitrogen. Eur. J. Agron. 2008, 28, 635–645. [Google Scholar] [CrossRef]
- Sawyer, J.; Nafziger, E.; Randall, G.; Bundy, L.; Rehm, G.; Joern, G. Concepts and Rationale for Regional Nitrogen Rate Guidelines for Corn. Iowa State University, University Extension, 2006. Available online: https://store.extension.iastate.edu/Product/pm2015-pdf (accessed on 5 March 2016).
- Hanway, J. Corn growth and composition in relation to soil fertility. II Uptake of N, P, and K, and their distribution in different plant parts during the growing season. Agron. J. 1962, 54, 217–222. [Google Scholar] [CrossRef]
- Ritchie, S.W.; Hanway, J.J.; Benson, G.O. How a Corn Plant Develops; Special Report No. 48; Iowa State University Cooperative Extension Service: Ames, IA, USA, 1997. [Google Scholar]
- Crozier, C.R. Fertilizer and lime management. In North Carolina Corn Production Guide; North Carolina State University: Raleigh, NC, USA, 2000. [Google Scholar]
- Bausch, W.C.; Duke, H.R. Remote sensing of plant nitrogen status in corn. Am. Soc. Agric. Biol. Eng. 1996, 39, 1869–1875. [Google Scholar] [CrossRef]
- Bausch, W.C.; Khosla, R. QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize. Precis. Agric. 2010, 11, 274–290. [Google Scholar] [CrossRef]
- Bagheri, N.; Ahmadi, H.; Alavipanah, S.K.; Omid, M. Multispectral remote sensing for site-specific nitrogen fertilizer management. Pesqui. Agropecu. Bras. 2013, 48, 1394–1401. [Google Scholar] [CrossRef]
- Quemada, M.; Gabriel, J.L.; Zarco-Tejada, P. Airborne hyperspectral images and ground-level optical sensors as assessment tools for maize nitrogen fertilization. Remote Sens. 2014, 6, 2940–2962. [Google Scholar] [CrossRef]
- Hawkins, J.A.; Sawyer, J.E.; Barker, D.W.; Lundvall, J.P. Using relative chlorophyll meter values to determine nitrogen application rates for corn. Agron. J. 2007, 99, 1034–1040. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J. Prod. Agric. 1995, 8, 56–60. [Google Scholar] [CrossRef]
- Scharf, P.C.; Lory, J.A. Calibrating corn color from aerial photographs to predict sidedress nitrogen need. Agron. J. 2002, 94, 397–404. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S.; Varvel, G.E.; Walter-Shea, E.A. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron. J. 1996, 88, 1–5. [Google Scholar] [CrossRef]
- Cilia, C.; Panigada, C.; Rossini, M.; Meroni, M.; Busetto, L.; Amaducci, S.; Boschetti, M.; Picchi, V.; Colombo, R. Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sen. 2014, 6, 6549–6565. [Google Scholar] [CrossRef] [Green Version]
- Isla, R.; Quílez, D.; Valentín, F.; Casterad, M.A.; Aibar, J.; Maturano, M. Utilización de imágenes aéreas multiespectrales para evaluar la disponibilidad de nitrógeno en maíz (Use of multispectral airbone images to assess nitrogen availability in maize). In Teledetección, Bosques y Cambio Climático; Recondo, C., Pendás, E., Eds.; Asociación Española de Teledetección: Mieres, Spain, 2011; pp. 9–12. [Google Scholar]
- Sripada, R.P.; Schmidt, J.P.; Dellinger, A.E.; Beegle, D.B. Evaluating multiple indices from a canopy reflectance sensor to estimate corn N requirements. Agron. J. 2008, 100, 1553–1561. [Google Scholar] [CrossRef]
- Miao, Y.; Mulla, D.J.; Randall, G.W.; Vetsch, J.A.; Vintila, R. Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn. Precis. Agric. 2009, 10, 45–62. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Bausch, W.C.; Halvorson, A.D.; Cipra, J. Quickbird satellite and ground-based multispectral data correlations with agronomic parameters of irrigated maize grown in small plots. Biosyst. Eng. 2008, 101, 306–315. [Google Scholar] [CrossRef]
- Xiang, H.; Tian, L. An automated stand-alone in-field remote sensing system (SIRSS) for in-season crop monitoring. Comput. Electron. Agric. 2011, 78, 1–8. [Google Scholar] [CrossRef]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Gonzalez-Dugo, V.; Fereres, E. Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2009, 38, 6. [Google Scholar]
- Papadopoulos, A.; Iatrou, M.; Papadopoulos, F.; Metaxa, I.; Theodoridou, S.; Kalogeropoulus, K.; Kiparissi, S. Preliminary results for standardization of NDVI using soil nitrates in corn growing. Fresen. Environ. Bull. 2014, 23, 348–354. [Google Scholar]
- McMurtrey, J.E.; Chappelle, E.W.; Kim, M.S.; Meisinger, J.J.; Corp, L.A. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sens. Environ. 1994, 47, 36–44. [Google Scholar] [CrossRef]
- Gasparotto, A.C.; Nanni, M.R.; da Silva Junior, C.A.; Cesar, E.; Romagnoli, F.; da Silva, A.A.; Guirado, G.C. Using GNIR and RNIR extracted by digital images to detect different levels of nitrogen in corn. J. Agron. 2015, 14, 62–71. [Google Scholar] [CrossRef]
- Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. 2013, 25, 47–54. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crop Res. 2014, 157, 111–123. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy. In Proceedings of the 12th ed. USDA-Natural Resources Conservation Service, Washington, DC, USA, 15 May 2014.
- Biau, A.; Santiveri, F.; Mijangos, I.; Lloveras, J. The impact of organic and mineral fertilizers on soil quality parameters and the productivity of irrigated maize crops in semiarid regions. Eur. J. Soil Biol. 2012, 53, 56–61. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (GreenWave Effect) of Natural Vegetation; NASA/GSFC Type III Final Report; NASA: Greenbelt, MD, USA, 1974.
- Gitelson, A.A. Wide Dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Duncan, W.G.; Williams, W.A.; Loomis, R.S. Tassels and the productivity of maize. Crop Sci. 1967, 7, 37–39. [Google Scholar] [CrossRef]
- Bonneville, M.C.; Fyles, J.W. Assessing variations in SPAD-502 chlorophyll meter measurements and their relationships with nutrient content of trembling aspen foliage. Commun. Soil Sci. Plant Anal. 2006, 37, 525–539. [Google Scholar] [CrossRef]
- Cerrato, M.E.; Blackmer, A.M. Comparison of models for describing; corn yield response to nitrogen fertilizer. Agron. J. 1990, 82, 138–143. [Google Scholar] [CrossRef]
- Welch, L.F.; Mulvaney, D.L.; Odham, M.G.; Boone, L.V.; Pendleton, J.W. Corn yields with fall, spring, and sidedress nitrogen. Agron. J. 1971, 63, 119–123. [Google Scholar] [CrossRef]
- Magdoff, F.R.; Ross, D.; Amadon, J. A soil test for nitrogen availability to corn. Soil Sci. Soc. Am. J. 1984, 48, 1301–1304. [Google Scholar] [CrossRef]
- Cooper, J.E. Nitrification in soils incubated with pig slurry. Soil Biol. Biochem. 1975, 7, 119–124. [Google Scholar] [CrossRef]
- Rochette, P.; van Bochove, E.; Prévost, D.; Angers, D.A.; Côté, D.; Bertrand, N. Soil carbon and nitrogen dynamics following applications of pig slurry for the 19th consecutive year: II. Nitrous oxide fluxes and mineral nitrogen. Soil Sci. Soc. Am. J. 2000, 64, 1396–1403. [Google Scholar] [CrossRef]
- Yin, X.; McClure, M.A.; Jaja, N.; Tyler, D.D.; Hayes, R.M. In-season prediction of corn yield using plant height under major production systems. Agron. J. 2011, 103, 923–929. [Google Scholar] [CrossRef]
- Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. MODIS-based corn grain yield estimation model incorporating crop phenology information. Remote Sen. Environ. 2013, 131, 215–231. [Google Scholar] [CrossRef]
- Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. Near real-time prediction of US corn yields based on time-series MODIS data. Remote Sen. Environ. 2014, 147, 19–231. [Google Scholar] [CrossRef]
- Wang, M.; Tao, F.; Shi, W. Corn yield forecasting in northeast china using remotely sensed spectral indices and crop phenology metrics. J. Integr. Agric. 2014, 13, 1538–1545. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Wardlow, B.D.; Keydan, G.P.; Leavitt, B. An evaluation of MODIS 250-m data for green LAI estimation in crops. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
N Treatment | NDVI | WDRVI | GRVI | SPAD | Crop Height (m) | Yield (Mg·ha−1) |
---|---|---|---|---|---|---|
N0 | 0.451 d | −0.574 f | 1.253 f | 30.06 b | 0.81 i | 3.16 e |
N100 (100) | 0.942 c | 0.619 e | 1.355 e | 48.68 a | 1.65 h | 9.79 cd |
N150 (150) | 0.963 b | 0.747 d | 1.366 cde | 51.76 a | 1.85 fg | 12.02 bcd |
N0Ps150 (150) | 0.926 c | 0.584 e | 1.362 cde | 46.30 a | 1.88 fg | 8.70 de |
N200 (200) | 0.974 ab | 0.809 bcd | 1.367 cde | 56.30 a | 1.88 fg | 15.04 abc |
N250 (250) | 0.967 ab | 0.781 cd | 1.363 de | 56.71 a | 1.86 fg | 16.17 ab |
N0Ps250 (250) | 0.971 ab | 0.808 bcd | 1.373 abcd | 54.26 a | 1.99 cde | 15.14 abc |
N100Ps150 (250) | 0.975 ab | 0.834 abcd | 1.377 abcd | 56.30 a | 1.99 cd | 14.65 abc |
N300 (300) | 0.971 ab | 0.793 cd | 1.366 cde | 56.23 a | 1.82 g | 15.40 ab |
N400 (300) * | 0.979 ab | 0.846 abc | 1.367 bcde | ** | 1.93 def | 17.64 a |
N100Ps250 (350) | 0.986 a | 0.894 ab | 1.385 a | 56.48 a | 2.11 ab | 17.00 ab |
N200Ps150 (350) | 0.987 a | 0.900 a | 1.383 ab | 56.89 a | 2.03 bc | 17.56 a |
N200Ps250 (450) | 0.987 a | 0.899 ab | 1.382 abc | 57.36 a | 2.16 a | 16.98 ab |
N Treatment | NDVI | GRVI | WDRVI | Crop Height | Sum | Rank |
---|---|---|---|---|---|---|
N0 (0) | 1 | 1 | 1 | 1 | 4 | 1 |
N100 (100) | 3 | 2 | 3 | 2 | 10 | 2 |
N0Ps150 (150) | 2 | 3 | 2 | 6 | 13 | 3 |
N150 (150) | 4 | 5 | 4 | 4 | 17 | 4 |
N250 (250) | 5 | 4 | 5 | 5 | 19 | 5 |
N300 (300) | 7 | 6 | 6 | 3 | 22 | 6 |
N200 (200) | 8 | 8 | 8 | 7 | 31 | 7 |
N0Ps250 (250) | 6 | 9 | 7 | 9 | 31 | 8 |
N400 (300) | 10 | 7 | 10 | 8 | 35 | 9 |
N100Ps150 (250) | 9 | 10 | 9 | 10 | 38 | 10 |
N100Ps250 (350) | 11 | 13 | 11 | 12 | 47 | 11 |
N200Ps150 (350) | 12 | 12 | 13 | 11 | 48 | 12 |
N200Ps250 (450) | 13 | 11 | 12 | 13 | 49 | 13 |
Vegetation Index | Linear Regression with Yield | Quadratic Regression with Yield | ||||
---|---|---|---|---|---|---|
R2 | RMSE Mg·ha−1 | p-Value | R2 | RMSE Mg·ha−1 | p-Value | |
SPAD | 0.88 | 0.82 | <0.001 | 0.89 | 1.10 | 0.0002 |
NDVI | 0.90 | 0.98 | <0.001 | 0.92 | 0.92 | <0.001 |
GRVI | 0.64 | 1.86 | 0.003 | 0.71 | 1.78 | 0.0075 |
WDRVI | 0.92 | 0.87 | <0.001 | 0.92 | 0.93 | <0.001 |
Crop height | 0.60 | 1.97 | <0.001 | 0.64 | 1.98 | 0.0174 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J.A. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sens. 2016, 8, 973. https://doi.org/10.3390/rs8120973
Maresma Á, Ariza M, Martínez E, Lloveras J, Martínez-Casasnovas JA. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sensing. 2016; 8(12):973. https://doi.org/10.3390/rs8120973
Chicago/Turabian StyleMaresma, Ángel, Mar Ariza, Elías Martínez, Jaume Lloveras, and José A. Martínez-Casasnovas. 2016. "Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service" Remote Sensing 8, no. 12: 973. https://doi.org/10.3390/rs8120973
APA StyleMaresma, Á., Ariza, M., Martínez, E., Lloveras, J., & Martínez-Casasnovas, J. A. (2016). Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sensing, 8(12), 973. https://doi.org/10.3390/rs8120973