Hydrological Response of Alpine Wetlands to Climate Warming in the Eastern Tibetan Plateau
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. In-Situ Data
2.3. Remote Sensing Measurements
2.4. Data Analysis
3. Results
3.1. Changes in Surface Climate and Land Cover Conditions
3.2. Changes in Hydrological Responses
3.3. Changes in Non-Frozen Period and Growing-Season Length
3.4. Changes in Surface Evapotranspiration and Thermal Conditions
4. Discussion
4.1. Climate Warming and Its Impact on Hydrological Response of the Zoige Wetland
4.2. Impact of Human Activities on the Hydrology Response of the Zoige Wetland
4.3. Implication of Climate Warming in Alpine Wetlands
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Aber, J.S.; Pavri, F.; Aber, S.W. High-latitude and high-altitude wetland case studies. In Wetland Environments: A Global Perspective; John Wiley & Sons, Ltd.: Chichester, UK, 2012; pp. 336–357. [Google Scholar]
- Shen, M.; Zhang, G.; Cong, N.; Wang, S.; Kong, W.; Piao, S. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 2014, 189–190, 71–80. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Evans, M.; Warburton, J. The Hydrology of Upland Peatlands. In Geomorphology of Upland Peat; Blackwell Publishing Ltd.: Oxford, UK, 2008; pp. 28–53. [Google Scholar]
- Winter, T.C. The vulnerability of wetlands to climate change: A hydrologic landscape perspective. JAWRA J. Am. Water Resour. Assoc. 2000, 36, 305–311. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Gao, Y.; Zhu, D.; Yang, G.; Tian, J.; et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob. Chang. Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shi, W. Effects of alpine swamp wetland change on rainfall season runoff and flood characteristics in the headwater area of the Yangtze River. CATENA 2015, 127, 116–123. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, H.; Wang, X.; Yao, W.; Zhou, D.; Zhao, K.; Zhao, H.; Li, N.; Huang, H.; Li, C.; et al. Mapping wetland changes in China between 1978 and 2008. Chin. Sci. Bull. 2012, 57, 2813–2823. [Google Scholar] [CrossRef]
- Waddington, J.M.; Morris, P.J.; Kettridge, N.; Granath, G.; Thompson, D.K.; Moore, P.A. Hydrological feedbacks in northern peatlands. Ecohydrology 2014. [Google Scholar] [CrossRef]
- Zhang, L.; Su, F.; Yang, D.; Hao, Z.; Tong, K. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. Atmosp. 2013, 118, 8500–8518. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, Z.; Lu, X.; Zou, Y.; Lu, Y.; Jiang, M.; Tong, S.; Zhang, K. Predicted areas of potential distributions of alpine wetlands under different scenarios in the Qinghai-Tibetan Plateau, China. Glob. Planet. Chang. 2014, 123, 77–85. [Google Scholar] [CrossRef]
- Xu, Z.X.; Zhao, F.F.; Li, J.Y. Response of streamflow to climate change in the headwater catchment of the Yellow River basin. Quat. Int. 2009, 208, 62–75. [Google Scholar] [CrossRef]
- Yao, T.; Masson-Delmotte, V.; Gao, J.; Yu, W.; Yang, X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.; He, Y.; et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys. 2013, 51, 2012RG000427. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, Y.; Kimball, J.; Kim, Y.; Song, K. Climatic Controls on Spring Onset of the Tibetan Plateau Grasslands from 1982 to 2008. Remote Sens. 2015, 7, 16607–16622. [Google Scholar] [CrossRef]
- Li, X.; Jin, R.; Pan, X.; Zhang, T.; Guo, J. Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinform. 2012, 17, 33–42. [Google Scholar] [CrossRef]
- Zhao, L.; Ping, C.-L.; Yang, D.; Cheng, G.; Ding, Y.; Liu, S. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) Plateau, China. Glob. Planet. Chang. 2004, 43, 19–31. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Wang, Y. Changes in alpine wetland ecosystems of the Qinghai–Tibetan plateau from 1967 to 2004. Environ. Monitor. Assess. 2011, 180, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Xiang, S.; Guo, R.; Wu, N.; Sun, S. Current status and future prospects of Zoige Marsh in Eastern Qinghai-Tibet Plateau. Ecol. Eng. 2009, 35, 553–562. [Google Scholar] [CrossRef]
- Yi, S.; Xiaoyun, W.; Yu, Q.; Bo, X.; Yongjian, D. Responses of alpine grassland on Qinghai-Tibetan plateau to climate warming and permafrost degradation: A modeling perspective. Environ. Res. Lett. 2014, 9, 074014. [Google Scholar] [CrossRef]
- Yang, K.; Qin, J.; Zhao, L.; Chen, Y.; Tang, W.; Han, M.; Lazhu; Chen, Z.; Lv, N.; Ding, B.; et al. A multiscale soil moisture and freeze–thaw monitoring network on the third pole. Bull. Am. Meteorol. Soc. 2013, 94, 1907–1916. [Google Scholar] [CrossRef]
- Chen, H.; Yang, G.; Peng, C.; Zhang, Y.; Zhu, D.; Zhu, Q.; Hu, J.; Wang, M.; Zhan, W.; Zhu, E.; et al. The carbon stock of alpine peatlands on the Qinghai–Tibetan Plateau during the Holocene and their future fate. Quat. Sci. Rev. 2014, 95, 151–158. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Wang, Y.; Chen, L. Typical alpine wetland system changes on the Qinghai-Tibet Plateau in recent 40 years. Acta Geogr. Sin. 2007, 62, 481–491. [Google Scholar]
- Sun, G. Study on the mineral formation law, classification and reserves of the peat in the Ruoergai Plateau. J. Nat. Resour. 1992, 7, 334–346. [Google Scholar]
- Lang, H.; Jin, S.; Niu, H. The types and evolution of the marsh plants in the Zoige region, Western Sichuan. Acta Phytoecol. Geobot. Sin. 1964, 2, 40–59. [Google Scholar]
- Zhang, X.; Liu, H.; Baker, C.; Graham, S. Restoration approaches used for degraded peatlands in Ruoergai (Zoige), Tibetan Plateau, China, for sustainable land management. Ecol. Eng. 2012, 38, 86–92. [Google Scholar] [CrossRef]
- Li, B.; Yu, Z.; Liang, Z.; Song, K.; Li, H.; Wang, Y.; Zhang, W.; Acharya, K. Effects of climate variations and human activities on runoff in the Zoige Alpine Wetland in the eastern edge of the Tibetan Plateau. J. Hydrol. Eng. 2014, 19, 1026–1035. [Google Scholar] [CrossRef]
- Zhang, M.; Zha, K.; Wang, Q.; Gu, H. Qualitative evalution on blocking operations for drains of Zoige alpine wetland. Sichuan For. Explor. Design 2010, 4, 15–19. (in Chinese). [Google Scholar]
- Chai, X.; Jin, S. The types of Zoige Alpine Marsh and its development. Acta Geogr. Sin. 1963, 29, 219–240. [Google Scholar]
- Zhang, X. Vegetation Map of the People's Republic of China (1:1,000,000); China Geological Publishing House: Beijing, China, 2007. [Google Scholar]
- CDC. China Daily Meteorological Data Collection (1951–2012); China Meteorological Data Sharing Center: Beijing, China, 2013. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Buermann, W.; Parida, B.; Jung, M.; MacDonald, G.M.; Tucker, C.J.; Reichstein, M. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys. Res. Lett. 2014, 41, 2014GL059450. [Google Scholar] [CrossRef]
- Kim, Y.; Kimball, J.S.; McDonald, K.C.; Glassy, J. Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing. Geosci. Remote Sens. IEEE Trans. 2011, 49, 949–960. [Google Scholar] [CrossRef]
- Kim, Y.; Kimball, J.S.; Zhang, K.; McDonald, K.C. Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth. Remote Sens. Environ. 2012, 121, 472–487. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Duan, J.; Zhu, X.; Xu, G.; Luo, C.; Zhang, Z.; Meng, F.; Li, Y.; Du, M. Timing and duration of phenological sequences of alpine plants along an elevation gradient on the Tibetan Plateau. Agric. For. Meteorol. 2014, 189–190, 220–228. [Google Scholar] [CrossRef]
- Pinzon, J.; Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef]
- Jönsson, A.M.; Eklundh, L.; Hellström, M.; Bärring, L.; Jönsson, P. Annual changes in MODIS vegetation indices of Swedish coniferous forests in relation to snow dynamics and tree phenology. Remote Sens. Environ. 2010, 114, 2719–2730. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.; et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci. 2011, 116, G00J07. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.N.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Am. Meteorol. Soc. Bull. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Fan, X. Influence of Vegetation Coverage on Evapotranspiration Procees of Alpine Meadows in the Source Region of Yangtze River; Lanzhou University: Lanzhou, China, 2011. [Google Scholar]
- Qin, J.; Yang, K.; Liang, S.; Guo, X. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim. Chang. 2009, 97, 321–327. [Google Scholar] [CrossRef]
- Lu, C.; Wang, L.; Xie, G.; Leng, Y. Altitude Effect of Precipitation and Spatial Distribution of Qinghai-Tibetan Plateau. J. Mt. Sci. 2007, 25, 655–663. [Google Scholar]
- Wu, G.-L.; Ren, G.-H.; Wang, D.; Shi, Z.-H.; Warrington, D. Above- and below-ground response to soil water change in an alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China. J. Hydrol. 2013, 476, 120–127. [Google Scholar] [CrossRef]
- Su, Z.; Wen, J.; Dente, L.; van der Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci. 2011, 15, 2303–2316. [Google Scholar] [CrossRef]
- Wang, G.; Bai, W.; Li, N.; Hu, H. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China. Clim. Chang. 2011, 106, 463–482. [Google Scholar] [CrossRef]
- Kovářová, M.; Pokorný, J. Comparison of long-term monitoring of temperature and precipitation between wetland and other ecosystems. Ecohydrology 2010, 3, 445–456. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, Q.; Song, K.; Qin, G.; Wang, Y.; Wang, X.; Li, H.; Li, J.; Liu, G.; Li, H. Remotely sensing the ecological influences of ditches in Zoige Peatland, eastern Tibetan Plateau. Int. J. Remote Sens. 2014, 35, 5186–5197. [Google Scholar] [CrossRef]
- Yang, F. Assessing the mire marsh of Zoige Plateau. Chin. J. Resour. Explor. Prot. 1988, 4, 24–30. [Google Scholar]
- Holden, J.; Evans, M.G.; Burt, T.P.; Horton, M. Impact of land drainage on peatland hydrology. J. Environ. Qual. 2006, 35, 1764–1778. [Google Scholar] [CrossRef] [PubMed]
- Strack, M.; Waddington, J.M.; Bourbonniere, R.A.; Buckton, E.L.; Shaw, K.; Whittington, P.; Price, J.S. Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrol. Process. 2008, 22, 3373–3385. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Q.; Dong, S.; Liu, S.; Wang, X.; Su, X.; Li, Y.; Tang, L.; Wu, X.; Zhao, H. Effects of grazing and climate warming on plant diversity, productivity and living state in the alpine rangelands and cultivated grasslands of the Qinghai-Tibetan Plateau. Rangel. J. 2015, 37, 57–65. [Google Scholar] [CrossRef]
- Moore, P.A.; Pypker, T.G.; Waddington, J.M. Effect of long-term water table manipulation on peatland evapotranspiration. Agric. For. Meteorol. 2013, 178–179, 106–119. [Google Scholar] [CrossRef]
- Petrone, R.M.; Rouse, W.R.; Marsh, P. Comparative surface energy budgets in western and central subarctic regions of Canada. Int. J. Climatol. 2000, 20, 1131–1148. [Google Scholar] [CrossRef]
- Runkle, B.R.K.; Wille, C.; Gažovič, M.; Wilmking, M.; Kutzbach, L. The surface energy balance and its drivers in a boreal peatland fen of northwestern Russia. J. Hydrol. 2014, 511, 359–373. [Google Scholar] [CrossRef]
- Sonnentag, O.; Van Der Kamp, G.; Barr, A.G.; Chen, J.M. On the relationship between water table depth and water vapor and carbon dioxide fluxes in a minerotrophic fen. Glob. Chang. Biol. 2010, 16, 1762–1776. [Google Scholar] [CrossRef]
- Wu, J.; Kutzbach, L.; Jager, D.; Wille, C.; Wilmking, M. Evapotranspiration dynamics in a boreal peatland and its impact on the water and energy balance. J. Geophys. Res. Biogeosci. 2010, 115, G04038. [Google Scholar] [CrossRef]
- Connon, R.F.; Quinton, W.L.; Craig, J.R.; Hayashi, M. Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrol. Process. 2014, 28, 4163–4178. [Google Scholar] [CrossRef]
- Eugster, W.; Rouse, W.R.; Pielke Sr, R.A.; McFadden, J.P.; Baldocchi, D.D.; Kittel, T.G.F.; Chapin, F.S.; Liston, G.E.; Vidale, P.L.; Vaganov, E.; et al. Land-atmosphere energy exchange in Arctic tundra and boreal forest: Available data and feedbacks to climate. Glob. Chang. Biol. 2000, 6, 84–115. [Google Scholar] [CrossRef]
- Grippa, M.; Mognard, N.M.; Le Toan, T.; Biancamaria, S. Observations of changes in surface water over the western Siberia lowland. Geophys. Res. Lett. 2007, 34, L15403. [Google Scholar] [CrossRef]
- Woo, M.-K.; Guan, X.J. Hydrological connectivity and seasonal storage change of tundra ponds in a polar oasis environment, Canadian High Arctic. Permaf. Periglac. Process. 2006, 17, 309–323. [Google Scholar] [CrossRef]
Basin | Area (km2) | Elevation Mean ± SD (m) | Slope Mean ± SD (°) | AMT (°C) | ATP (mm) | Gauge | Location | Wetland Proportion |
---|---|---|---|---|---|---|---|---|
uYR * | 70,251 | 4200 ± 394 | 10.4 ± 8.3 | 0.32 | 550 | Maqu | 33.97°N 102.08°E | 1.8% |
WR | 5358 | 3700 ± 187 | 11.6 ± 8.4 | 1.62 | 640 | Tangke | 33.42°N 102.46°E | 17.1% |
BR | 8061 | 3550 ± 148 | 8.9 ± 7.1 | Dashui | 33.98°N 102.27°E | 40.1% |
Site | Lon | Lat | Elevation (m) | Basin | AMT (°C) | ATP (mm) |
---|---|---|---|---|---|---|
Maduo | 98.22°N | 34.92°E | 4272 | uYR | −3.28 | 329.8 |
Dari | 99.65°N | 33.75°E | 3968 | uYR | −0.52 | 546.6 |
Jiuzhi | 101.48°N | 33.43°E | 3629 | uYR | 1.10 | 721.2 |
Maqu | 102.08°N | 34.00°E | 3471 | uYR | 1.87 | 586.0 |
Zoige | 102.97°N | 33.58°E | 3440 | BR | 1.47 | 625.9 |
Hongyuan | 102.55°N | 32.80°E | 3492 | WR | 1.78 | 722.0 |
Climatic Variable | Period | Zoige | uYR | ||
---|---|---|---|---|---|
Mean ± SD | Trend | Mean ± SD | Trend | ||
Air temperature | Annual | 1.71 ± 0.56 | 0.058 * | −0.21 ± 0.64 | 0.065 * |
Warm-season | 8.82 ± 0.53 | 0.051 ** | 7.45 ± 0.52 | 0.054 ** | |
Cold-season | −3.42 ± 0.69 | 0.052 ** | −5.73 ± 0.84 | 0.061 ** | |
Precipitation | Annual | 644.6 ± 62.4 | −0.151 | 545.9 ± 58.6 | 1.170 |
Warm-season | 512.1 ± 57.3 | −1.169 | 447.2 ± 53.1 | 1.110 | |
Cold-season | 132.6 ± 34.6 | 1.018 | 98.7 ± 22.9 | 0.061 |
Land Cover | uYR | BR | WR | Land Cover | uYR | BR | WR |
---|---|---|---|---|---|---|---|
Grassland | 84.76% | 58.79% | 80.40% | Gobi desert | 0.80% | 0.11% | 0.00% |
Rock | 4.85% | 0.04% | 0.00% | Beach | 0.26% | 0.10% | 0.02% |
Forest | 2.36% | 0.64% | 2.35% | Ditch | 0.07% | 0.04% | 0.09% |
Lake | 2.17% | 0.16% | 0.02% | Snow | 0.01% | 0.00% | 0.00% |
Wetland | 1.80% | 40.10% | 17.10% | Saline-alkali | 0.00% | 0.00% | 0.00% |
Other | 1.66% | 0.00% | 0.00% | Cropland | 0.00% | 0.00% | 0.02% |
Barren land | 1.27% | 0.00% | 0.00% | Urban | 0.00% | 0.02% | 0.00% |
Land Cover | Conversion Area (km2) | Land Cover | Conversion Area (km2) | ||||||
---|---|---|---|---|---|---|---|---|---|
From | To | uYR | BR | WR | From | To | uYR | BR | WR |
Grassland | Forest | 4 | 0 | 0 | Lake | Grassland | 11 | 1 | 0 |
Ditch | 1 | 0 | 0 | Beach | 4 | 0 | 0 | ||
Lake | 3 | 0 | 0 | Gobi | 2 | 0 | 0 | ||
Beach | 8 | 0 | 0 | Gobi desert | Grassland | 1 | 0 | 0 | |
Urban | 2 | 0 | 0 | Gobi | 2 | 0 | 0 | ||
Gobi | 30 | 1 | 1 | Forest | Grassland | 8 | 1 | 1 | |
Saline-Alkali | 1 | 0 | 0 | Beach | 3 | 0 | 0 | ||
Barren land | 4 | 0 | 0 | Barren land | 4 | 0 | 0 | ||
Rock | 1 | 0 | 0 | Rock | 5 | 0 | 0 | ||
Other | 1 | 0 | 0 | Other | 10 | 0 | 0 | ||
Sum | 55 | 1 | 1 | Sum | 50 | 2 | 1 |
Discharge | WR | BR | uYR | |
---|---|---|---|---|
Annual | Original, m3·s−1·year−1 | −0.74 | −0.97 ** | −2.07 |
Norm., year−1 | −1.3% | −3.5% ** | −0.6% | |
Warm season | Original, m3·s−1·year−1 | −1.86 * | −1.72 ** | −3.47 |
Norm., year−1 | −2.0% * | −3.9% ** | −0.7% | |
Cold season | Original, m3 s−1·year−1 | 0.40 * | −0.21 * | −0.65 |
Norm., year−1 | 1.7% * | −1.7% * | −0.5% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Yi, Y.; Song, K.; Kimball, J.S.; Lu, Q. Hydrological Response of Alpine Wetlands to Climate Warming in the Eastern Tibetan Plateau. Remote Sens. 2016, 8, 336. https://doi.org/10.3390/rs8040336
Zhang W, Yi Y, Song K, Kimball JS, Lu Q. Hydrological Response of Alpine Wetlands to Climate Warming in the Eastern Tibetan Plateau. Remote Sensing. 2016; 8(4):336. https://doi.org/10.3390/rs8040336
Chicago/Turabian StyleZhang, Wenjiang, Yonghong Yi, Kechao Song, John S. Kimball, and Qifeng Lu. 2016. "Hydrological Response of Alpine Wetlands to Climate Warming in the Eastern Tibetan Plateau" Remote Sensing 8, no. 4: 336. https://doi.org/10.3390/rs8040336
APA StyleZhang, W., Yi, Y., Song, K., Kimball, J. S., & Lu, Q. (2016). Hydrological Response of Alpine Wetlands to Climate Warming in the Eastern Tibetan Plateau. Remote Sensing, 8(4), 336. https://doi.org/10.3390/rs8040336