Dust Aerosol Optical Depth Retrieval and Dust Storm Detection for Xinjiang Region Using Indian National Satellite Observations
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.3. Spectral Response Characteristics of INSAT-3D Imager
3. Methods
3.1. AOD Retrieval
3.2. Enhanced Dust Index
4. Results and Discussion
4.1. Validation of Retrieved INSAT 3D AOD
4.2. Results of Enhanced Dust Index and Thresholds Method
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ackerman, S.A. Using the radiative temperature difference at 3.7 and 11 μm to tract dust outbreaks. Remote Sens. Environ. 1989, 27, 129–133. [Google Scholar] [CrossRef]
- Evan, A.T.; Heidinger, A.K.; Pavolonis, M.J. Development of a new over-water advanced very high resolution radiometer dust detection algorithm. Int. J. Remote Sens. 2006, 27, 3903–3924. [Google Scholar] [CrossRef]
- Baddock, M.C.; Bullard, J.E.; Bryant, R.G. Dust source identification using MODIS: A comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens. Environ. 2009, 113, 1511–1528. [Google Scholar] [CrossRef] [Green Version]
- Jafari, R.; Malekian, M. Comparison and evaluation of dust detection algorithms using MODIS Aqua/Terra Level 1B data and MODIS/OMI dust products in the Middle East. Int. J. Remote Sens. 2015, 36, 597–617. [Google Scholar] [CrossRef]
- Roskovensky, J.; Liou, K. Differentiating airborne dust from cirrus clouds using MODIS data. Geophys. Res. Lett. 2005. [Google Scholar] [CrossRef]
- Klüser, L.; Schepanski, K. Remote sensing of mineral dust over land with MSG infrared channels: A new bitemporal mineral dust index. Remote Sens. Environ. 2009, 113, 1853–1867. [Google Scholar] [CrossRef] [Green Version]
- Sannazzaro, F.; Filizzola, C.; Marchese, F.; Corrado, R.; Paciello, R.; Mazzeo, G.; Pergola, N.; Tramutoli, V. Identification of dust outbreaks on infrared MSG-SEVIRI data by using a Robust Satellite Technique (RST). Acta Astronaut. 2014, 93, 64–70. [Google Scholar] [CrossRef]
- Hu, X.; Lu, N.; Zhang, P. Remote sensing and detection of dust storm in China using the thermal bands of geostationary meteorological satellite. J. Appl. Meteorol. Sci. 2007, 18, 266–275. [Google Scholar]
- Ackerman, S.A. Remote sensing aerosols using satellite infrared observations. J. Geophys. Res. Atmos. 1997, 102, 17069–17079. [Google Scholar] [CrossRef]
- Legrand, M.; Plana-Fattori, A.; N’Doumé, C. Satellite detection of dust using the IR imagery of Meteosat: 1. Infrared difference dust index. J. Geophys. Res. 2001, 106, 18251–18274. [Google Scholar] [CrossRef]
- Chaboureau, J.P.; Tulet, P.; Mari, C. Diurnal cycle of dust and cirrus over West Africa as seen from Meteosat second generation satellite and a regional forecast model. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- Cao, G.; Zhang, P.; Chen, L.; Zheng, Z.; Hu, X. Dust storm detection by merging meteorological visibility with remote sensing IDDI. Remote Sens. Technol. Appl. 2013, 28, 588–593. [Google Scholar]
- Hsu, N.C.; Herman, J.R.; Bhartia, P.K.; Seftor, C.J.; Torres, O.; Thompson, A.M.; Gleason, J.F.; Eck, T.F.; Holben, B.N. Detection of biomass burning smoke from TOMS measurements. Geophys. Res. Lett. 1996, 23, 745–748. [Google Scholar] [CrossRef]
- O’Brien, D.M.; Mitchell, R.M. Atmospheric heating due to carbonaceous aerosol in Northern Australia—Confidence limits based on TOMS aerosol index and sun-photometer data. Atmos. Res. 2003, 66, 21–41. [Google Scholar] [CrossRef]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 2007. [Google Scholar] [CrossRef]
- Huang, J.; Ge, J.; Weng, F. An analysis of global aerosol type as retrieved by MISR. J. Geophys. Res. Atmos. 2007, 120, 4248–4281. [Google Scholar]
- Huang, J.; Fu, Q.; Su, J.; Tang, Q.; Minnis, P.; Hu, Y.; Yi, Y.; Zhao, Q. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys. 2009, 9, 4011–4021. [Google Scholar] [CrossRef]
- Govaerts, Y.; Wagner, S.; Lattanzio, A.; Watts, P. Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory. J. Geophys. Res. Atmos. 2010. [Google Scholar] [CrossRef]
- Knapp, K.; Frouin, R.; Kondragunta, S.; Prados, A. Toward aerosol optical depth retrievals over land from GOES visible radiances: Determining surface reflectance. Int. J. Remote Sens. 2005, 26, 4097–4116. [Google Scholar] [CrossRef]
- Kim, J.; Yoon, J.M.; Ahn, M.; Sohn, B.; Lim, H. Retrieving aerosol optical depth using visible and mid-IR channels from geostationary satellite MTSAT-1R. Int. J. Remote Sens. 2008, 29, 6181–6192. [Google Scholar] [CrossRef]
- Mei, L.; Xue, Y.; De Leeuw, G.; Holzer-Popp, T.; Guang, J.; Li, Y.; Yang, L.; Xu, H.; Xu, X.; Li, C. Retrieval of aerosol optical depth over land based on a time series technique using MSG/SEVIRI data. Atmos. Chem. Phys. 2012, 12, 9167–9185. [Google Scholar] [CrossRef]
- Sanwlani, N.; Chauhan, P.; Navalgund, R. Dust storm detection and monitoring using multi-temporal INSAT-3A-CCD data. Int. J. Remote Sens. 2001, 32, 5527–5539. [Google Scholar] [CrossRef]
- Mishra, M.K.; Chauhan, P.; Sahay, A. Detection of Asian dust storms from geostationary satellite observations of the INSAT-3D imager. Int. J. Remote Sens. 2015, 36, 4668–4682. [Google Scholar] [CrossRef]
- Bai, L.; Xue, Y.; Cao, C.; Feng, J.; Zhang, H.; Guang, J.; Wang, Y.; Li, Y.; Mei, L.; Ai, J. Quantitative retrieval of aerosol optical thickness from FY-2 VISSR data. In Proceedings of the Sixth International Symposium on Digital Earth, Beijing, China, 9–12 September 2009.
- Wang, Y.; Xue, Y.; Guang, J.; Mei, L.; Hou, T.; Li, Y.; Xu, H. Simultaneously retrieval of Aerosol Optical Depth and surface albedo with FY-2 geostationary data. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Kyoto, Japan, 24–29 July 2011; pp. 2912–2914.
- Ren, T.; Gao, L.; Li, C.; Mao, J.; Li, W.; Shi, G.; Yang, D.; Wang, L. Retrieval of aerosol optical depth from FengYun-2C geostationary satellite observation: Theory and Implementation. Acta Sci. Nat. Univ. Pekin. 2011, 47, 636–647. [Google Scholar]
- Jiang, Y.; Liu, J.; Shao, W.; Yu, X.; Wang, S. Climatic characteristics and historical evolution of precipitation in different time scales in Xinjiang from 1961 to 2013. J. Glaciol. Geocryol. 2014, 36, 1363–1375. [Google Scholar]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Y.; Chen, H. Climatic characteristics of sandstorm in Xinjiang. J. Desert Res. 2003, 23, 539–544. [Google Scholar]
- Hsu, N.C.; Tsay, S.-C.; King, M.D.; Herman, J.R. Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3180–3195. [Google Scholar] [CrossRef]
- Hsu, N.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.; Hansell, R.; Seftor, C.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Ogawa, K.; Schmugge, T.; Jacob, F.; French, A. Estimation of land surface window (8–12 μm) emissivity from multi-spectral thermal infrared remote sensing—A case study in a part of Sahara Desert. Geophys. Res. Lett. 2003. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef]
- Kulkarni, A.V.; Singh, S.K.; Mathur, P.; Mishra, V.D. Algorithm to monitor snow cover using AWiFS data of RESOURCESAT-1 for the Himalayan region. Int. J. Remote Sens. 2006, 27, 2449–2457. [Google Scholar] [CrossRef]
- Frey, R.A.; Ackerman, S.A.; Liu, Y.; Strabala, K.I.; Zhang, H.; Key, J.R.; Wang, X. Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Ocean. Technol. 2008, 25, 1057–1072. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Frey, R.; Pavolonis, M. Relative merits of the 1.6 and 3.75 μm channels of the AVHRR/3 for cloud detection. Can. J. Remote Sens. 2004, 30, 182–194. [Google Scholar] [CrossRef]
- Luo, J.N.; Fan, Y.D.; Shi, P.J.; Lu, W.J.; Zhou, J.H. Comparable method of monitoring the intensity of dust storm by multisource data of remote sensing. J. Nat. Disasters 2003, 12, 28–34. [Google Scholar]
- Shao, Y.; Dong, C.H. A review on East Asian dust storm climate, modelling and monitoring. Glob. Planet. Chang. 2006, 52, 1–22. [Google Scholar] [CrossRef]
- Guo, N.; Cai, D.; Han, L.; Liang, Y.; Li, M. Introduction to the operational system and identification method of dust strom based on MODIS. Meteorol. Mon. 2009, 35, 102–108. [Google Scholar]
- Guo, N.; Liang, Y. A Study on quantitative identification of sand and dust storm using MODIS data. Arid Meteorol. 2006, 24, 1–6. [Google Scholar]
- Li, Y.; Xue, Y.; de Leeuw, G.; Li, C.; Yang, L.; Hou, T.; Marir, F. Retrieval of aerosol optical depth and surface reflectance over land from NOAA AVHRR data. Remote Sens. Environ. 2013, 133, 1–20. [Google Scholar] [CrossRef]
- Wanner, W.; Li, X.; Strahler, A.H. On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res. Atmos. 1995, 100, 21077–21089. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007. [Google Scholar] [CrossRef]
- Patel, P.N. Estimation of aerosol characteristics and radiative forcing during dust events over Dehradun. Aerosol Air Qual. Res. 2015, 15, 2082–2093. [Google Scholar] [CrossRef]
- Ma, C.-J.; Choi, K.-C. A Combination of bulk and single particle analyses for asian dust. Water Air Soil Pollut. 2007, 183, 3–13. [Google Scholar] [CrossRef]
- Colarco, P.R.; Nowottnick, E.P.; Randles, C.A.; Yi, B.; Yang, P.; Kim, K.-M.; Smith, J.A.; Bardeen, C.G. Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index. J. Geophys. Res. Atmos. 2014, 119, 753–786. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, P.; Kattawar, G.W.; Hsu, N.C.; Tsay, S.-C.; Laszlo, I. Effects of particle nonsphericity and radiation polarization on retrieving dust properties from satellite observations. J. Aerosol Sci. 2009, 40, 776–789. [Google Scholar] [CrossRef]
- Yi, B.; Hsu, C. N.; Yang, P.; Tsay, S.-H. Radiative transfer simulation of dust-like aerosols: Uncertainties from particle shape and refractive index. J. Aerosol Sci. 2011, 42, 631–644. [Google Scholar] [CrossRef]
- Anderson, T.L.; Charlson, R.J.; Winker, D.M.; Ogren, J.A.; Holmén, K. Mesoscale variations of tropospheric aerosols. J. Atmos. Sci. 2003, 60, 119–136. [Google Scholar] [CrossRef]
- Baddock, M.C.; Strong, C.L.; Leys, J.F.; Heidenreich, S.K.; Tews, E.K.; McTainsh, G.H. A visibility and total suspended dust relationship. Atmos. Environ. 2014, 89, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Camino, C.; Cuevas, E.; Basart, S.; Alonso-Pérez, S.; Baldasano, J.M.; Terradellas, E.; Marticorena, B.; Rodríguez, S.; Berjón, A. An empirical equation to estimate mineral dust concentrations from visibility observations in Northern Africa. Aeol. Res. 2015, 16, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X. Discussion on some terms used for sand-dust weather in the national standard. Sci. Meteorol. Sin. 2010, 30, 234–238. [Google Scholar]
- Yan, H.; Jiao, M.; Bi, B.; Zheng, C. Observation on Sand dust Aerosol in Center of Taklimakan Desert. J. Desert Res. 2006, 26, 389–393. [Google Scholar]
- Zhao, X.; Chen, C.; Yuan, T.; Zhang, W.; Dong, X. Lanzhou aerosol optical depth in winter and their relation with visibility. Plateau Meteorol. 2005, 24, 617–622. [Google Scholar]
- Hao, X.; John, J.Q. Saharan dust storm detection using moderate resolution imaging spectroradiometer thermal infrared bands. J. Appl. Remote Sens. 2007. [Google Scholar] [CrossRef]
- Jia, J.; Jiao, L. Image segmentation by spectral clustering algorithm with spatial coherence constraints. J. Infrared Millim. Waves 2010, 29, 69–74. [Google Scholar] [CrossRef]
- Ichoku, C.; Chu, D.A.; Mattoo, S.; Kaufman, Y.J.; Remer, L.A.; Tanre, D.; Slutsker, I.; Holben, B.N. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett. 2002. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J.; Garay, M.J.; Diner, D.J.; Eck, T.F.; Smirnov, A.; Holben, B.N. Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J. Geophys. Res. Atmos. 2010. [Google Scholar] [CrossRef]
Bands | Wavelength Range (μm) | Wavelength Center (μm) | Resolution (km) |
---|---|---|---|
VIS | 0.55–0.75 | 0.65 | 1 |
SWIR | 1.55–1.70 | 1.625 | 1 |
MIR | 3.8–4.0 | 3.9 | 4 |
WV | 6.5–7.1 | 6.8 | 8 |
TIR1 | 10.3–11.3 | 10.8 | 4 |
TIR2 | 11.5–12.5 | 12 | 4 |
Aerosol | Label | Spherical | Non-Spherical | ||||
---|---|---|---|---|---|---|---|
ABSORB | MODABS | NONABS | SMARAD | MEDRAD | LARRAD | ||
Fine mode | rvf | 0.155 | 0.221 | 0.179 | 0.145 | 0.172 | 0.202 |
σf | 0.404 | 0.497 | 0.426 | 0.500 | 0.636 | 0.627 | |
Cvf | 0.083 | 0.094 | 0.101 | 0.037 | 0.033 | 0.043 | |
ref | 0.143 | 0.195 | 0.164 | 0.129 | 0.141 | 0.165 | |
Coarse mode | rvc | 3.012 | 2.886 | 3.004 | 2.423 | 1.961 | 1.978 |
σc | 0.649 | 0.598 | 0.623 | 0.617 | 0.549 | 0.527 | |
Cvc | 0.051 | 0.050 | 0.039 | 0.262 | 0.364 | 0.521 | |
rec | 2.414 | 2.427 | 2.474 | 1.984 | 1.672 | 1.697 | |
S | 98.6 | 93.6 | 98.5 | 3.1 | 1.3 | 1.2 | |
g | 0.6 | 0.58 | 0.68 | 0.62 | 0.68 | 0.72 | 0.74 |
0.8 | 0.53 | 0.64 | 0.56 | 0.68 | 0.73 | 0.75 | |
1.6 | 0.56 | 0.58 | 0.51 | 0.70 | 0.74 | 0.78 | |
0.6 | 0.86 | 0.93 | 0.95 | 0.92 | 0.95 | 0.96 | |
0.8 | 0.834 | 0.92 | 0.94 | 0.93 | 0.96 | 0.97 | |
1.6 | 0.76 | 0.88 | 0.91 | 0.95 | 0.97 | 0.98 |
Aerosol Type Class | Mixture Type Group | Mixture Aerosol Type Number | Mixture Aerosol Component Number | SSA (672 μm) |
---|---|---|---|---|
1: Spherical Non-Absorbing | Spherical_Reff_0.06_Reff_2.8_Nonabsorbing | 1–10 | 1, 6 | 1.0 |
Spherical_Reff_0.12_Reff_2.8_Nonabsorbing | 11–20 | 2, 6 | 1.0 | |
Spherical_Reff_0.26_Reff_2.8_Nonabsorbing | 21–30 | 3, 6 | 1.0 | |
2: Spherical Absorbing | Spherical_Reff_0.12_SSA_0.9_Reff_2.8_Absorbing | 31–40 | 6, 8 | 0.885–0.983 |
Spherical_Reff_0.12_SSA_0.8_Reff_2.8_Absorbing | 41–50 | 6, 14 | 0.773–0.967 | |
3: Non–Spherical | Spherical_Reff_0.06_Reff_2.8 _Med_Dust | 51–62 | 2, 6, 19 | 0.995–0.998 |
Spherical_Reff_0.12_Med_Dust_Coarse_Dust | 63–70 | 2, 19, 21 | 0.978–0.993 | |
Med_Dust_Coarse_Dust | 71–74 | 19, 21 | 0.975–0.99 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, A.; Xue, Y.; Yang, X.; Leys, J.; Guang, J.; Mei, L.; Wang, J.; She, L.; Hu, Y.; He, X.; et al. Dust Aerosol Optical Depth Retrieval and Dust Storm Detection for Xinjiang Region Using Indian National Satellite Observations. Remote Sens. 2016, 8, 702. https://doi.org/10.3390/rs8090702
Di A, Xue Y, Yang X, Leys J, Guang J, Mei L, Wang J, She L, Hu Y, He X, et al. Dust Aerosol Optical Depth Retrieval and Dust Storm Detection for Xinjiang Region Using Indian National Satellite Observations. Remote Sensing. 2016; 8(9):702. https://doi.org/10.3390/rs8090702
Chicago/Turabian StyleDi, Aojie, Yong Xue, Xihua Yang, John Leys, Jie Guang, Linlu Mei, Jingli Wang, Lu She, Yincui Hu, Xingwei He, and et al. 2016. "Dust Aerosol Optical Depth Retrieval and Dust Storm Detection for Xinjiang Region Using Indian National Satellite Observations" Remote Sensing 8, no. 9: 702. https://doi.org/10.3390/rs8090702
APA StyleDi, A., Xue, Y., Yang, X., Leys, J., Guang, J., Mei, L., Wang, J., She, L., Hu, Y., He, X., Che, Y., & Fan, C. (2016). Dust Aerosol Optical Depth Retrieval and Dust Storm Detection for Xinjiang Region Using Indian National Satellite Observations. Remote Sensing, 8(9), 702. https://doi.org/10.3390/rs8090702