Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling
Abstract
:1. Introduction
2. Data and Methodology
2.1. TRMM PR
2.2. GPM DPR
2.3. Methodology
3. Results
3.1. Global Distribution of Different Precipitation Types
3.2. Global Distribution of Freezing Level and BB Heights
3.3. Comparison of Precipitation Estimates Based on Matchup Events
3.3.1. Comparison of Overall Precipitation
3.3.2. Comparison of Rain Types
3.3.3. Comparison of the Vertical Structure of Precipitation
3.3.4. Comparison of Precipitation on Different Surface Types
3.3.5. Latitudinal Distribution Analysis
4. Conclusions and Outlook
- Generally speaking, GPM DPR and TRMM PR correspond well with each other in estimating both the intensity and distribution of precipitation globally. GPM DPR is much more sensitive at detecting light precipitation by improving the KuPR’s sensitivity and combining the observation of KaPR with the traditional KuPR, compared with TRMM single Ku-band PR. At the coincident events obtained in both whole swath data and the inner beams, the occurrences of all kinds of precipitation and light precipitation (rain rates < 1 mm/h) detected by DPR were ~1.7 and ~2.53 times more than that of PR. However, when precipitation events were captured by both radars, TRMM PR tended to give a higher estimation of precipitation rates for rates between 0.6 and 3 mm/h.
- GPM DPR gives a slight overestimation of freezing level height in the tropical regions, while in the middle latitudes its estimate of freezing level height is lower than that of TRMM PR. The difference between the estimates of freezing level given by the two radars was within ±100 m at low latitudes. The observations of BB height were in general consistency with that of freezing level height, though in some regions the difference between the two heights was up to 1 km. According to comparisons of coincident events in all swath data, the correlation coefficients of freezing level height and BB height between the two radars were 0.997 and 0.947, respectively.
- GPM DPR distinguishes rain types more clearly and classifies more precipitation events as “stratiform” and “convective” with no precipitation events classified as “missing”. DPR reduces the misclassification of clouds and noise signals as precipitation type “other” (from 10.14%) to 0.51% for all swath data. DFRm decision for rain type classification was close to that of Ku-only method decision. In the inner swath and outer swath of DPR, the results were consistent. Around 82.89% of “stratiform” precipitation recognized by PR was classified into “stratiform” by DPR. The consistency of classification of convective precipitation between DPR and PR was a little worse than that of stratiform precipitation, as 71.02% of PR’s convective precipitation was regarded the same in DPR.
- Regardless of the types of the earth’s surface, GPM DPR detects more precipitation than TRMM PR. However, TRMM PR developed a slight trend in detecting more precipitation than GPM DPR when the rainfall rate increases to exceed 1 mm/h, particularly over coast and land. The performance of the two radars was quite close over the ocean. Further study needs to be conducted over complex mountainous terrain.
- Although GPM DPR captured significantly more light precipitation events than TRMM PR, the distribution of total precipitation volume of the coincident events derived by the two radars was relatively close, regardless of precipitation types. Both freezing level height and BB height showed obvious latitudinal dependence. However, for regions near 30°N/S, the estimates of freezing level height produced by TRMM PR and GPM PR were discrepant while estimates of BB height agreed well with each other.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schouppe, M.; Ghazi, A. European Commission Research for Global Climate Change Studies: Towards Improved Water Observations and Forecasting Capability. In Measuring Precipitation from Space; Springer: Dordrecht, The Netherlands, 2007; pp. 3–6. [Google Scholar]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Yang, D.; Farhan, S.B. Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region. Int. J. Climatol. 2015, 35, 1201–1211. [Google Scholar] [CrossRef]
- Sorooshian, S.; AghaKouchak, A.; Arkin, P.; Eylander, J.; Foufoula-Georgiou, E.; Harmon, R.; Hendrickx, J.M.; Imam, B.; Kuligowski, R.; Skahill, B. Advancing the remote sensing of precipitation. Bull. Am. Meteorol. Soc. 2011, 92, 1271–1272. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Bellerby, T.; Todd, M.; Kniveton, D.; Kidd, C. Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network. J. Appl. Meteorol. 2000, 39, 2115–2128. [Google Scholar] [CrossRef]
- Kidd, C.; Kniveton, D.R.; Todd, M.C.; Bellerby, T.J. Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeorol. 2003, 4, 1088–1104. [Google Scholar] [CrossRef]
- Kidd, C.; Bauer, P.; Turk, J.; Huffman, G.; Joyce, R.; Hsu, K.-L.; Braithwaite, D. Intercomparison of high-resolution precipitation products over Northwest Europe. J. Hydrometeorol. 2012, 13, 67–83. [Google Scholar] [CrossRef]
- Hossain, F.; Lettenmaier, D.P. Flood prediction in the future: Recognizing hydrologic issues in anticipation of the Global Precipitation Measurement mission. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [Google Scholar] [CrossRef] [Green Version]
- Iguchi, T.; Oki, R.; Smith, E.; Furuhama, Y. Global Precipitation Measurement program and the development of dual-frequency precipitation radar. J. Commun. Res. Lab. 2002, 49, 37–46. [Google Scholar]
- Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A.; Stocker, E.; Adler, R.; Hou, A.; Kakar, R.; Wentz, F. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteorol. 2000, 39, 1965–1982. [Google Scholar] [CrossRef]
- Rui, L.; Yunfei, F. Tropical precipitation estimated by GPCP and TRMM PR observations. Adv. Atmos. Sci. 2005, 22, 852–864. [Google Scholar] [CrossRef]
- Seto, S.; Iguchi, T. Rainfall-induced changes in actual surface backscattering cross sections and effects on rain-rate estimates by spaceborne precipitation radar. J. Atmos. Ocean. Technol. 2007, 24, 1693–1709. [Google Scholar] [CrossRef]
- Amitai, E.; Llort, X.; Sempere-Torres, D. Comparison of TRMM radar rainfall estimates with NOAA next-generation QPE. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 109–118. [Google Scholar] [CrossRef]
- Kirstetter, P.-E.; Hong, Y.; Gourley, J.J.; Chen, S.; Flamig, Z.; Zhang, J.; Schwaller, M.; Petersen, W.; Amitai, E. Toward a Framework for Systematic Error Modeling of Spaceborne Precipitation Radar with NOAA/NSSL Ground Radar–Based National Mosaic QPE. J. Hydrometeorol. 2012, 13, 1285–1300. [Google Scholar] [CrossRef]
- Liao, L.; Meneghini, R.; Iguchi, T. Comparisons of rain rate and reflectivity factor derived from the TRMM precipitation radar and the WSR-88D over the Melbourne, Florida, site. J. Atmos. Ocean. Technol. 2001, 18, 1959–1974. [Google Scholar] [CrossRef]
- Wang, J.; Wolff, D.B. Comparisons of Reflectivities from the TRMM Precipitation Radar and Ground-Based Radars. J. Atmos. Ocean. Technol. 2009, 26, 857–875. [Google Scholar] [CrossRef]
- Bolen, S.M.; Chandrasekar, V. Quantitative cross validation of space-based and ground-based radar observations. J. Appl. Meteorol. 2000, 39, 2071–2079. [Google Scholar] [CrossRef]
- Kirstetter, P.-E.; Hong, Y.; Gourley, J.; Schwaller, M.; Petersen, W.; Zhang, J. Comparison of trmm 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar–based national mosaic QPE. J. Hydrometeorol. 2013, 14, 661–669. [Google Scholar] [CrossRef]
- Masunaga, H.; Iguchi, T.; Oki, R.; Kachi, M. Comparison of rainfall products derived from TRMM microwave imager and precipitation radar. J. Appl. Meteorol. 2002, 41, 849–862. [Google Scholar] [CrossRef]
- Liao, L.; Meneghini, R. Validation of TRMM precipitation radar through comparison of its multiyear measurements with ground-based radar. J. Appl. Meteorol. Climatol. 2009, 48, 804–817. [Google Scholar] [CrossRef]
- Anagnostou, E.N.; Morales, C.A.; Dinku, T. The Use of TRMM Precipitation Radar Observations in Determining Ground Radar Calibration Biases. J. Atmos. Ocean. Technol. 2001, 18, 616–628. [Google Scholar] [CrossRef]
- Zhong, L.; Yang, R.; Wen, Y.; Chen, L.; Gou, Y.; Li, R.; Zhou, Q.; Hong, Y. Cross-evaluation of reflectivity from the space-borne precipitation radar and multi-type ground-based weather radar network in China. Atmos. Res. 2017, 196, 200–210. [Google Scholar] [CrossRef]
- Saraiva, I.; Silva Dias, M.; Morales, C.; Saraiva, J. Regional Variability of Rain Clouds in the Amazon Basin as Seen by a Network of Weather Radars. J. Appl. Meteorol. Climatol. 2016, 55, 2657–2675. [Google Scholar] [CrossRef]
- Awaka, J.; Iguchi, T.; Okamoto, K. TRMM PR standard algorithm 2A23 and its performance on bright band detection. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 31–52. [Google Scholar] [CrossRef]
- Hamada, A.; Takayabu, Y.N.; Liu, C.; Zipser, E.J. Weak linkage between the heaviest rainfall and tallest storms. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Hamada, A.; Takayabu, Y.N. Improvements in detection of light precipitation with the Global Precipitation measurement dual-frequency precipitation radar (GPM DPR). J. Atmos. Ocean. Technol. 2016, 33, 653–667. [Google Scholar] [CrossRef]
- Tang, G.; Wen, Y.; Gao, J.; Long, D.; Ma, Y.; Wan, W.; Hong, Y. Similarities and differences between three coexisting spaceborne radars in global rainfall and snowfall estimation. Water Resour. Res. 2017. [Google Scholar] [CrossRef]
- Ma, Y.; Tang, G.; Long, D.; Yong, B.; Zhong, L.; Wan, W.; Hong, Y. Similarity and error intercomparison of the GPM and its predecessor-TRMM Multisatellite Precipitation Analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens. 2016, 8, 569. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Connor, S.J. Challenges of satellite rainfall estimation over mountainous and arid parts of east Africa. Int. J. Remote Sens. 2011, 32, 5965–5979. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D. A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Su, F.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J. Hydrometeorol. 2008, 9, 622–640. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.; Weedon, G.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-Scale Evaluation of 23 Precipitation Datasets Using Gauge Observations and Hydrological modeling. Hydrol. Earth Syst. Sci. 2017. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.-H. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). In Algorithm Theoretical Basis Document (ATBD); NASA/GSFC: Greenbelt, MD, USA, 2014. [Google Scholar]
- Houze, R.A.; Hobbs, P.V. Organization and structure of precipitating cloud systems. Adv. Geophys. 1982, 24, 225–315. [Google Scholar]
- Houze, R.A. Observed structure of mesoscale convective systems and implications for large-scale heating. Q. J. R. Meteorol. Soc. 1989, 115, 425–461. [Google Scholar] [CrossRef]
- Robert, A. Cloud clusters and large-scale vertical motions in the tropics. J. Meteorol. Soc. Jpn. Ser. II 1982, 60, 396–410. [Google Scholar]
- Iguchi, T.; Seto, S.; Meneghini, R.; Yoshida, N.; Awaka, J.; Kubota, T. GPM/DPR Level-2 Algorithm Theoretical Basis Document; Technical Report; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2010. [Google Scholar]
- Team, T.P.R. Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar Algorithm: Instruction Manual for Version 7; Japan Aerospace Exploration Agency: Tokyo, Japan, 2011. [Google Scholar]
- Haddad, Z.S.; Smith, E.A.; Kummerow, C.D.; Iguchi, T.; Farrar, M.R.; Durden, S.L.; Alves, M.; Olson, W.S. The TRMM ‘day-1’radar/radiometer combined rain-profiling algorithm. J. Meteorol. Soc. Jpn. Ser. II 1997, 75, 799–809. [Google Scholar] [CrossRef]
- Awaka, J.; Iguchi, T.; Okamoto, K. Rain type classification algorithm. In Measuring Precipitation from Space; Springer: Dordrecht, The Netherlands, 2007; pp. 213–224. [Google Scholar]
- Schumacher, C.; Houze, R.A., Jr. Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Clim. 2003, 16, 1739–1756. [Google Scholar] [CrossRef]
- Yang, S.; Smith, E.A. Convective–Stratiform Precipitation Variability at Seasonal Scale from 8 Yr of TRMM Observations: Implications for Multiple Modes of Diurnal Variability. J. Clim. 2008, 21, 4087–4114. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Am. Meteorol. Soc. 1997, 78, 2179–2196. [Google Scholar] [CrossRef]
- Awaka, J.; Iguchi, T.; Kumagai, H.; Okamoto, K. Rain type classification algorithm for TRMM precipitation radar. In Proceedings of the IEEE International Geoscience and Remote Sensing, 1997. Remote Sensing-A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; pp. 1633–1635. [Google Scholar]
- Steiner, M.; Houze, R.A., Jr.; Yuter, S.E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteorol. 1995, 34, 1978–2007. [Google Scholar] [CrossRef]
- Iguchi, T.; Kozu, T.; Meneghini, R.; Awaka, J.; Okamoto, K. Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteorol. 2000, 39, 2038–2052. [Google Scholar] [CrossRef]
- Shrestha, D.; Singh, P.; Nakamura, K. Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM Precipitation Radar. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Le, M.; Chandrasekar, V. Precipitation type classification method for dual-frequency precipitation radar (DPR) onboard the GPM. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1784–1790. [Google Scholar] [CrossRef]
- Awaka, J.; Le, M.; Chandrasekar, V.; Yoshida, N.; Higashiuwatoko, T.; Kubota, T.; Iguchi, T. Rain Type Classification Algorithm Module for GPM Dual-Frequency Precipitation Radar. J. Atmos. Ocean. Technol. 2016, 33, 1887–1898. [Google Scholar] [CrossRef]
- Hirose, M.; Shimizu, S.; Oki, R.; Iguchi, T.; Short, D.A.; Nakamura, K. Incidence-Angle Dependency of TRMM PR Rain Estimates. J. Atmos. Ocean. Technol. 2012, 29, 192–206. [Google Scholar] [CrossRef]
- Kubota, T.; Iguchi, T.; Kojima, M.; Liao, L.; Masaki, T.; Hanado, H.; Meneghini, R.; Oki, R. A Statistical Method for Reducing Sidelobe Clutter for the Ku-Band Precipitation Radar on board the GPM Core Observatory. J. Atmos. Ocean. Technol. 2016, 33, 1413–1428. [Google Scholar] [CrossRef]
- Kelley, O.A. Where the least rainfall occurs in the Sahara Desert, the TRMM radar reveals a different pattern of rainfall each season. J. Clim. 2014, 27, 6919–6939. [Google Scholar] [CrossRef]
- Iguchi, T.; Seto, S.; Awaka, J.; Meneghini, R.; Kubota, T.; Chandra, V.; Yoshida, N.; Kawamoto, N.; Oki, R. Precipitation rates estimated with GPM's Dual-frequency Radar. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3917–3918. [Google Scholar]
- Funk, A.; Schumacher, C.; Awaka, J. Analysis of rain classifications over the tropics by version 7 of the TRMM PR 2A23 algorithm. J. Meteorol. Soc. Jpn. Ser. II 2013, 91, 257–272. [Google Scholar] [CrossRef]
- Schumacher, C.; Houze, R.A., Jr. The TRMM precipitation radar's view of shallow, isolated rain. J. Appl. Meteorol. 2003, 42, 1519–1524. [Google Scholar] [CrossRef]
- Fu, Y.; Feng, S.; Liu, P.; Cao, A.; Liu, X.; Li, R.; Liu, Q.; Wang, Y. The cumulonimbus incus in summer Asia as detected by the TRMM PR. Acta Meteorol. Sin. 2010, 2, 195–206. [Google Scholar]
- Shimizu, S.; Oki, R.; Tagawa, T.; Iguchi, T.; Hirose, M. Evaluation of the Effects of the Orbit Boost of the TRMM Satellite on PR Rain Estimates. J. Meteorol. Soc. Jpn. Ser. II 2009, 87A, 83–92. [Google Scholar] [CrossRef]
- Liu, X.T.; Fu, Y.F.; Liu, Q. Significant impacts of the TRMM satellite orbit boost on climatological records of tropical precipitation. Chin. Sci. Bull. 2012, 57, 4627–4634. [Google Scholar] [CrossRef]
- Liang, L.; Meneghini, R. Changes in the TRMM version-5 and version-6 precipitation radar products due to orbit boost. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 93–107. [Google Scholar]
- Nakazawa, T.; Rajendran, K. Interannual variability of tropical rainfall characteristics and the impact of the altitude boost from TRMM PR 3A25 data. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 317–338. [Google Scholar] [CrossRef]
- Kojima, M.; Miura, T.; Furukawa, K.; Hyakusoku, Y.; Ishikiri, T.; Kai, H.; Iguchi, T.; Hanado, H.; Nakagawa, K. Dual-frequency precipitation radar (DPR) development on the global precipitation measurement (GPM) core observatory. Proc. SPIE 2012, 8528. [Google Scholar] [CrossRef]
- Toyoshima, K.; Masunaga, H.; Furuzawa, F.A. Early Evaluation of Ku- and Ka-Band Sensitivities for the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR). Sola 2015, 11, 14–17. [Google Scholar] [CrossRef]
- Bolen, S.M.; Chandrasekar, V. Methodology for aligning and comparing spaceborne radar and ground-based radar observations. J. Atmos. Ocean. Technol. 2003, 20, 647–659. [Google Scholar] [CrossRef]
- Schumacher, C.; Houze, R.A., Jr. Comparison of Radar Data from the TRMM Satellite and Kwajalein Oceanic Validation Site. J. Appl. Meteorol. 2000, 39, 2151–2164. [Google Scholar] [CrossRef]
- Ikai, J.; Nakamura, K. Comparison of rain rates over the ocean derived from TRMM microwave imager and precipitation radar. J. Atmos. Ocean. Technol. 2003, 20, 1709–1726. [Google Scholar] [CrossRef]
- Kim, J.-H.; Ou, M.-L.; Park, J.-D.; Morris, K.R.; Schwaller, M.R.; Wolff, D.B. Global precipitation measurement (GPM) ground validation (GV) prototype in the Korean Peninsula. J. Atmos. Ocean. Technol. 2014, 31, 1902–1921. [Google Scholar] [CrossRef]
- Chen, S.; Kirstetter, P.; Hong, Y.; Gourley, J.; Tian, Y.; Qi, Y.; Cao, Q.; Zhang, J.; Howard, K.; Hu, J. Evaluation of spatial errors of precipitation rates and types from TRMM spaceborne radar over the southern CONUS. J. Hydrometeorol. 2013, 14, 1884–1896. [Google Scholar] [CrossRef]
- Kubota, T.; Yoshida, N.; Urita, S.; Iguchi, T.; Seto, S.; Meneghini, R.; Awaka, J.; Hanado, H.; Kida, S.; Oki, R. Evaluation of precipitation estimates by at-launch codes of GPM/DPR algorithms using synthetic data from TRMM/PR observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3931–3944. [Google Scholar] [CrossRef]
- Le, M.; Chandrasekar, V.; Biswas, S. Evaluation and Validation of GPM Dual-Frequency Classification Module after Launch. J. Atmos. Ocean. Technol. 2016, 33, 2699–2716. [Google Scholar] [CrossRef]
- Qing, H.; Chu, Y.; Zhao, Z.; Su, C.; Zhou, C.; Zhang, Y. Observation and analysis of atmospheric rainfall based on the very high frequency radar. IET Radar Sonar Navig. 2016, 11, 616–620. [Google Scholar] [CrossRef]
- Heymsfield, G.M.; Tian, L.; Li, L.; McLinden, M.; Cervantes, J.I. Airborne radar observations of severe hailstorms: Implications for future spaceborne radar. J. Appl. Meteorol. Climatol. 2013, 52, 1851–1867. [Google Scholar] [CrossRef]
- Thurai, M.; Iguchi, T. Rain height information from TRMM precipitation radar. Electron. Lett. 2000, 36, 1059–1061. [Google Scholar] [CrossRef]
- Thurai, M.; Deguchi, E.; Iguchi, T.; Okamoto, K. Freezing height distribution in the tropics. Int. J. Satell. Commun. Netw. 2003, 21, 533–545. [Google Scholar] [CrossRef]
- Meneghini, R.; Kim, H.; Liao, L.; Jones, J.A.; Kwiatkowski, J.M. An initial assessment of the surface reference technique applied to data from the Dual-Frequency Precipitation Radar (DPR) on the GPM satellite. J. Atmos. Ocean. Technol. 2015, 32, 2281–2296. [Google Scholar] [CrossRef]
- Haddada, Z.S.; Perala, E.; Tanellia, S.; Sya, O.; Stephensa, G. RaInCube: A proposed constellation of atmospheric profiling radars in cubesat. SPIE Asia-Pac. Remote Sens. Int. Soc. Opt. Photonics 2016, 9876. [Google Scholar] [CrossRef]
- McCabe, M.F.; Rodell, M.; Alsdorf, D.E.; Miralles, D.G.; Uijlenhoet, R.; Wagner, W.; Lucieer, A.; Houborg, R.; Verhoest, N.E.; Franz, T.E. The future of earth observation in hydrology. Hydrol. Earth Syst. Sci 2017, 21, 3879–3914. [Google Scholar] [CrossRef]
- Allamano, P.; Croci, A.; Laio, F. Toward the camera rain gauge. Water Resour. Res. 2015, 51, 1744–1757. [Google Scholar] [CrossRef]
Instrument | GPM DPR | TRMM PR | |
---|---|---|---|
KaPR | KuPR | ||
Operating time | 27 February 2014—now | 27 February 2014—now | 27 November 1997—8 April 2015 |
Altitude (km) | 407 | 407 | 403 1 |
Inclination angle (°) | 65 | 65 | 35 |
Frequency (GHz) | 35.547 and 35.553 | 13.597 and 13.603 | 13.796 and 13.802 |
Horizontal resolution at nadir (km) (Swath width (km)) | 5 (120) | 5 (245) | 5 1 (247) 1 |
Vertical resolution (m) | 250/500 | 250 | 250 |
Minimal detectability (R, mm/h) | 0.2 | 0.5 | 0.7 |
Minimal detectability (Ze, dBz) | 12 (Ka_HS) 18 (Ka_MS) | 18 | 18 |
Measurement Accuracy (dBz) | <±1 | <±1 | <±1 |
Time Interval (min) | Coincident Events | r | RMSD 1 (mm/h) | MD 1 (mm/h) | RD 1 (%) | POD 1 | FOH 1 | FAR 1 | CSI 1 |
---|---|---|---|---|---|---|---|---|---|
20 | 6,384,259 | 0.50 | 1.41 | 0.00 | 3.62 | 0.79 | 0.61 | 0.39 | 0.52 |
15 | 996,415 | 0.52 | 1.28 | 0.01 | 6.63 | 0.80 | 0.43 | 0.57 | 0.39 |
10 | 691,488 | 0.54 | 1.24 | 0.01 | 8.22 | 0.87 | 0.40 | 0.59 | 0.54 |
5 | 348,145 | 0.66 | 0.49 | 0.00 | 0.23 | 0.89 | 0.35 | 0.65 | 0.49 |
Matchup Groups | r | RMSD (mm/h) | MD (mm/h) | RD (%) | POD | FOH | FAR | CSI |
---|---|---|---|---|---|---|---|---|
One | 0.50 | 1.41 | 0.00 | 3.62 | 0.79 | 0.61 | 0.39 | 0.52 |
Two | 0.38 | 1.42 | 0.00 | −4.46 | 0.76 | 0.59 | 0.41 | 0.49 |
Three | 0.53 | 1.19 | 0.00 | 5.00 | 0.80 | 0.61 | 0.39 | 0.53 |
Instruments | Matchup Groups | Total | Stratiform | Convective | Other | No Rain | Missing |
---|---|---|---|---|---|---|---|
PR | Group 1 | 6,384,259 | 133,199 | 54,671 | 647,592 | 5,161,757 | 387,040 |
2.09% | 0.86% | 10.14% | 80.85% | 6.06% | |||
Group 2 | 1,237,875 | 28,515 | 13,104 | 168,146 | 959,708 | 68,402 | |
2.30% | 1.06% | 13.58% | 77.53% | 5.53% | |||
DPR | Group 1 | 6,384,259 | 188,988 | 101,698 | 32,571 | 6,061,002 | 0 |
2.96% | 1.59% | 0.51% | 94.94% | 0.00% | |||
Group 2 | 1,237,875 | 32,920 | 19,545 | 6189 | 1,179,221 | 0 | |
2.66% | 1.58% | 0.50% | 95.26% | 0.00% |
DPR (All NS Swath, Group 1) | ||||
---|---|---|---|---|
Stratiform | Convective | Other | ||
PR (All NS swath, Group 1) | Stratiform | 82.89% | 16.07% | 1.04% |
Convective | 28.45% | 71.02% | 0.53% | |
Other | 37.88% | 24.62% | 37.50% |
DPR (Inner 25 Beams, Group 2) | ||||
---|---|---|---|---|
Stratiform | Convective | Other | ||
PR (Inner 25 beams, Group 2) | Stratiform | 82.83% | 16.02% | 1.15% |
Convective | 24.91% | 74.17% | 0.92% | |
Other | 45.20% | 28.76% | 26.02% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Tang, G.; Hong, Y. Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling. Remote Sens. 2017, 9, 1142. https://doi.org/10.3390/rs9111142
Gao J, Tang G, Hong Y. Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling. Remote Sensing. 2017; 9(11):1142. https://doi.org/10.3390/rs9111142
Chicago/Turabian StyleGao, Jinyu, Guoqiang Tang, and Yang Hong. 2017. "Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling" Remote Sensing 9, no. 11: 1142. https://doi.org/10.3390/rs9111142
APA StyleGao, J., Tang, G., & Hong, Y. (2017). Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling. Remote Sensing, 9(11), 1142. https://doi.org/10.3390/rs9111142