Improving Sea Ice Characterization in Dry Ice Winter Conditions Using Polarimetric Parameters from C- and L-Band SAR Data
Abstract
:1. Introduction
2. SAR Imagery and Ice Conditions
3. Image Processing
- Category 1: includes parameters with some separability: 0.5 < K-S distance < 0.7;
- Category 2: includes parameters with good separability: 0.7 ≤ K-S distance < 0.9;
- Category 3: includes parameters with very good separability: 0.9 ≤ K-S distance.
4. Results Analysis
4.1. Histogram Interpretation
4.2. Separability Estimation
4.3. Correlation Analysis
4.4. Classification and Validation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shokr, M.; Sinha, N.K. Sea Ice: Physics and Remote Sensing; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 978-1-119-02789-8. [Google Scholar]
- Drinkwater, M.R.; Early, D.S.; Long, D.G. ERS-1 Investigations of Southern Ocean Sea Ice Geophysics Using Combined Scatterometer and SAR Images. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; pp. 165–167. [Google Scholar]
- Johannessen, J.A. Overview of ERS-1 Scientific Results Obtained from Ocean and Sea Ice Observations. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Firenze, Italy, 10–14 July 1995; pp. 1035–1037. [Google Scholar]
- Morris, K.; Jeffries, M.O.; Li, S. Sea Ice Characteristics and Seasonal Variability of Ers-1 SAR Backscatter in the Bellingshausen Sea. In Antarctic Sea Ice: Physical Processes, Interactions and Variability; American Geophysical Union: Washington, DC, USA, 1998. [Google Scholar]
- Leppäranta, M.; Sun, Y.; Haapala, J. Comparisons of sea-ice velocity fields from ERS-1 SAR and a dynamic model. J. Glaciol. 1998, 44, 248–262. [Google Scholar] [CrossRef]
- Kaleschke, L.; Lüpkes, C.; Vihma, T.; Haarpaitner, J.; Bochert, A.; Hartmann, J.; Heygster, G. Validation of a high resolved SSM/I sea ice algorithm using airborne and ERS-2 SAR data and atmospheric models. Can. J. Remote Sens. 2001, 27, 526–536. [Google Scholar] [CrossRef]
- Kaleschke, L.; Kern, S. ERS-2 SAR Image Analysis for Sea Ice Classification in the Marginal Ice Zone. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 3038–3040. [Google Scholar]
- Johannessen, O.M.; Alexandrov, V.Y.; Frolov, I.Y.; Bobylev, L.P.; Sandven, S.; Pettersson, L.H.; Kloster, K.; Babich, N.G.; Mironov, Y.U.; Smirnov, V.G. Remote Sensing of Sea Ice in the Northern Sea Route: Studies and Applications; Springer-Praxis: Berlin, Germany, 2007; ISBN 978-3-540-48840-8. [Google Scholar]
- Karvonen, J.; Simila, M.; Makynen, M. Open water detection from Baltic Sea ice Radarsat-1 SAR imagery. IEEE Geosci. Remote Sens. Lett. 2005, 2, 275–279. [Google Scholar] [CrossRef]
- Arkett, M.; Flett, D.; De Abreu, R.; Clemente-Colon, P.; Woods, J.; Melchior, B. Evaluating ALOS-PALSAR for Ice Monitoring—What Can L-Band Do for The North American Ice Service? In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. V-188–V-191. [Google Scholar]
- Barber, D.G.; Yackel, J.J.; Hanesiak, J.M. Sea ice, RADARSAT-1 and arctic climate processes: A review and update. Can. J. Remote Sens. 2014, 27, 51–61. [Google Scholar] [CrossRef]
- Drinkwater, M.R.; Kwok, R.; Winebrenner, D.P.; Rignot, E. Multifrequency polarimetric synthetic aperture radar observations of sea ice. J. Geophys. Res. 1991, 96, 20679–20698. [Google Scholar] [CrossRef]
- Shokr, M.; Dabboor, M. Interannual variability of young ice in the arctic estimated between 2002 and 2009. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3354–3370. [Google Scholar] [CrossRef]
- Johansson, A.M.; King, J.A.; Doulgeris, A.P.; Gerland, S.; Singha, S.; Spreen, G.; Busche, T. Combined observations of Arctic sea ice with near-coincident collocated X-band, C-band, and L-band SAR satellite remote sensing and helicopter-borne measurements. J. Geophys. Res. Oceans 2017, 122, 669–691. [Google Scholar] [CrossRef]
- Lehtiranta, J. Comparison of C- and L-Band Synthetic Aperture Radar Images for Sea Ice Motion Estimation. Master’s Thesis, Aalto University, Helsinki, Finland, 2013. [Google Scholar]
- Dierking, W.; Busche, T. Sea ice monitoring by L-band SAR: An assessment based on literature and comparisons of JERS-1 and ERS-1 imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 957–970. [Google Scholar] [CrossRef]
- Eriksson, L.E.B.; Borenäs, K.; Dierking, W.; Berg, A.; Santoro, M.; Pemberton, P.; Lindh, H.; Karlson, B. Evaluation of new spaceborne SAR sensors for sea-ice monitoring in the Baltic Sea. Can. J. Remote Sens. 2010, 36, S56–S73. [Google Scholar] [CrossRef]
- Lehtiranta, J.; Siiri, S.; Karvonen, J. Comparing C- and L-band SAR images for sea ice motion estimation. Cryosphere 2015, 9, 357–366. [Google Scholar] [CrossRef]
- Dierking, W. Mapping of different sea ice regimes using images from Sentinel-1 and ALOS synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1045–1058. [Google Scholar] [CrossRef]
- Scheuchl, B.; Caves, R.; Cumming, I.; Staples, G. H/A/a-Based Classification of Sea Ice Using SAR Polarimetry. In Proceedings of the 23rd Canadian Symposium on Remote Sensing, Sainte-Foy, QC, Canada, 21–24 August 2001. [Google Scholar]
- Berg, A. Spaceborne Synthetic Aperture Radar for Sea Ice Observations, Concentration and Dynamics. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2014. [Google Scholar]
- Casey, J.A.; Howell, S.E.; Tivy, A.; Haas, C. Separability of sea ice types from wide swath C- and L-band synthetic aperture radar imagery acquired during the melt season. Remote Sens. Environ. 2016, 174, 314–328. [Google Scholar] [CrossRef]
- Nakamura, K.; Wakabayashi, H.; Naoki, K.; Nishio, F.; Moriyama, T.; Uratsuka, S. Observation of sea-ice thickness in the Sea of Okhotsk by using dual-frequency and fully polarimetric airborne SAR (Pi-SAR) data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2460–2469. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Matsuoka, T.; Nakamura, K.; Nishio, F. Polarimetric characteristics of sea ice in the sea of Okhotsk observed by airborne L-band SAR. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2412–2425. [Google Scholar] [CrossRef]
- Kaleschke, L.; Maaß, N.; Haas, C.; Hendricks, S.; Heygster, G.; Tonbøe, A. A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice. Cryosphere 2010, 4, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Huntemann, M.; Heygster, G.; Kaleschke, L.; Krumpen, T.; Mäkynen, M.; Drusch, M. Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations. Cryosphere 2014, 8, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Cunningham, G.F. Seasonal ice area and volume production of the Arctic Ocean: November 1996 through April 1997. J. Geophys. Res. 2002, 107, 8038. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Li, X.; Pichel, W.G. Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image. Geophys. Res. Lett. 2011, 38, L10602. [Google Scholar] [CrossRef]
- Shimada, M.; Watanabe, M.; Motooka, T.; Kankaku, Y.; Suzuki, S. Calibration and validation of the PALSAR-2. In Proceedings of the 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 23–27 September 2013. [Google Scholar]
- Meteorological Service of Canada. MANICE: Manual of Standard Procedures for Observing and Reporting Ice Conditions, 9th ed.; Canadian Ice Service, Environment Canada: Ottawa, ON, Canada, 2005. [Google Scholar]
- Haas, C.; Howell, S. Ice thickness in the Northwest Passage. Geophys. Res. Lett. 2015, 42, 7673–7680. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basic to Applications; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Duda, R.; Hart, P.; Stork, D. Pattern Classification, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2000; ISBN 978-0-471-05669-0. [Google Scholar]
- Ko, K.T. A Hybrid Road Identification System Using Image Processing Techniques and Back-Propagation Neural Networks. Master’s Thesis, Mississippi State University, Oktibbeha County, MS, USA, 1995. [Google Scholar]
- Desbordes, P.; Ruan, S.; Modzelewski, R.; Pineau, P.; Vauclin, S.; Gouel, P.; Michel, P.; Di Fiore, F.; Vera, P.; Gardin, I. Predictive value of initial FDG-PET features for treatment response and survival in esophageal cancer patients treated with chemo-radiation therapy using a random forest classifier. PLoS ONE 2017, 12, e0173208. [Google Scholar] [CrossRef] [PubMed]
- Press, W.; Teukolsky, S.A.; Vetterling, W.; Flannery, B. Numerical Recipes, The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007; ISBN 0521880688. [Google Scholar]
- Geldsetzer, T.; Arkett, M.; Zagon, T.; Charbonneau, F.; Yackel, J.; Scharien, R. All-season compact-polarimetry C-band SAR observations of sea ice. Can. J. Remote Sens. 2015, 41, 485–504. [Google Scholar] [CrossRef]
- Todorova, L.; Vassilev, P.; Surchev, J. Using Phi Coefficient to Interpret Results Obtained by InterCriteria Analysis. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2016; Volume 401, pp. 231–239. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Gill, J.; Yackel, J.J.; Geldsetzer, T. Analysis of consistency in first-year sea ice classification potential of C-band SAR polarimetric parameters. Can. J. Remote Sens. 2013, 39, 101–117. [Google Scholar] [CrossRef]
Image | Acquisition Date and Time | Location | Orbit Direction | Incidence Angle | Pixel Spacing (rng × az) | Swath |
---|---|---|---|---|---|---|
RADARSAT-2 Fine Quad-Pol | 23 April 2015 13:08:56 UTC | Victoria Strait | Descending | 40.9° | 4.7 m × 5.1 m | 27.3 km |
ALOS-2 PALSAR-2 | 5 April 2015 05:51:34 UTC | Victoria Strait | Ascending | 36.6° | 2.9 m × 2.8 m | 41.5 km |
ALOS-2 PALSAR-2 | 28 April 2015 05:44:36 UTC | Victoria Strait | Ascending | 31.1° | 2.9 m × 3.1 m | 41.5 km |
ALOS-2 PALSAR-2 | 22 April 2015 05:14:04 UTC | Hudson Bay | Ascending | 33.9° | 2.9 m × 3.2 m | 41.5 km |
Short Form | Description |
---|---|
, , | Sigma naught backscattering coefficients—linear horizontal or vertical transmit and horizontal or vertical receive polarization |
SPAN | Total backscattering power, which is equal to the sum of the diagonal elements of the polarimetric coherency matrix (T11 + T22 + T33) |
, , | Co- and cross-polarized ratios |
HH VV correlation coefficient [32] | |
H | Entropy [32] |
A | Anisotropy [32] |
α | Mean alpha angle [32] |
HH VV phase difference [32] |
Polarimetric Parameters | RADARSAT-2 θ = 40.9° | ALOS-2 (5 April Image) θ = 36.6° | ALOS-2 (28 April Image) θ = 31.1° |
---|---|---|---|
0.80 | 0.33 | 0.36 | |
0.79 | 0.04 | 0.11 | |
0.83 | 0.40 | 0.37 | |
SPAN | 0.97 | 0.55 | 0.55 |
0.11 | 0.15 | 0.06 | |
0.11 | 0.24 | 0.25 | |
0.18 | 0.33 | 0.24 | |
0.09 | 0.03 | 0.05 | |
H | 0.02 | 0.60 | 0.53 |
A | 0.11 | 0.04 | 0.07 |
α | 0.02 | 0.54 | 0.43 |
0.01 | 0.11 | 0.09 |
RADARSAT-2 | ALOS-2 (5 April Image) | ALOS-2 (28 April Image) | ||
---|---|---|---|---|
Strongly correlated Parameters | Independent Parameters | Strongly correlated Parameters | Independent Parameters | Independent Parameters |
SPAN | H α | SPAN | SPAN H |
RADARSAT-2 (%) | ALOS-2 (5 April Image) (%) | ALOS-2 (28 April Image) (%) | ||||
---|---|---|---|---|---|---|
OI | FYI | OI | FYI | OI | FYI | |
OI | 99.30 | 1.64 | 93.29 | 23.41 | 90.80 | 33.47 |
FYI | 0.70 | 98.36 | 6.71 | 76.59 | 9.20 | 66.53 |
Overall accuracy | 98.99 | 82.17 | 81.85 | |||
Kappa coefficient | 0.977 | 0.636 | 0.595 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabboor, M.; Montpetit, B.; Howell, S.; Haas, C. Improving Sea Ice Characterization in Dry Ice Winter Conditions Using Polarimetric Parameters from C- and L-Band SAR Data. Remote Sens. 2017, 9, 1270. https://doi.org/10.3390/rs9121270
Dabboor M, Montpetit B, Howell S, Haas C. Improving Sea Ice Characterization in Dry Ice Winter Conditions Using Polarimetric Parameters from C- and L-Band SAR Data. Remote Sensing. 2017; 9(12):1270. https://doi.org/10.3390/rs9121270
Chicago/Turabian StyleDabboor, Mohammed, Benoit Montpetit, Stephen Howell, and Christian Haas. 2017. "Improving Sea Ice Characterization in Dry Ice Winter Conditions Using Polarimetric Parameters from C- and L-Band SAR Data" Remote Sensing 9, no. 12: 1270. https://doi.org/10.3390/rs9121270
APA StyleDabboor, M., Montpetit, B., Howell, S., & Haas, C. (2017). Improving Sea Ice Characterization in Dry Ice Winter Conditions Using Polarimetric Parameters from C- and L-Band SAR Data. Remote Sensing, 9(12), 1270. https://doi.org/10.3390/rs9121270