Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy
Abstract
:1. Introduction and Objective
2. Study Area, Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Satellite Data: Landsat-7 ETM+, Landsat-8 OLI and Sentinel-2A MSI
2.2.2. Field Data: Instrument, Protocol and Sample Data
2.2.3. Field Data: Campaigns
2.3. Methods
2.3.1. Method 1: ATCOR Based Radiometric Corrections (ATCOR3 and Sen2Cor-SNAP)
2.3.2. Method 2: Semi-Automatic Classification (SAC-QGIS)
2.3.3. Method 3: 6S Based Radiometric Corrections (Landsat Surface Reflectance Code (LaSRC) and Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Atmospheric Correction)
2.3.4. Method 4: Pseudoinvariant Area Radiometric Correction (PIA-MiraMon)
2.3.5. Field Spectroradiometry as a Reference to Compare Radiometric Correction Results
3. Results
3.1. Results for Landsat Platforms
3.2. Results for the Sentinel Platform
3.3. Inter-Sensor Coherence
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- National Aeronautics and Space Administration (NASA). Landsat Data Continuity Mission (LCDM). Available online: https://www.nasa.gov/mission_pages/landsat/main/index.html (accessed on 28 October 2017).
- GEOSS. GEOSS Evolution. Available online: http://www.earthobservations.org/geoss.php (accessed on 28 October 2017).
- European Space Agency (ESA). ESA Sentinel Online. Sentinel-2 Mission. Available online: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2 (accessed on 28 October 2017).
- European Space Agency (ESA). ESA Sentinel Online. Sentinel-2 Mission Objectives. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2/mission-objectives (accessed on 28 October 2017).
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Barsi, J.A.; Kenton, L.; Kvaran, G.; Markham, B.L.; Pedelty, J.A. The Spectral Response of the Landsat-8 Operational Land Imager (OLI). Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef]
- Mishra, N.; Helder, D.; Barsi, J.; Markham, B. Continuous calibration improvement in solar reflective bands: Landsat 5 through Landsat 8. Remote Sens. Environ. 2016, 1185, 7–15. [Google Scholar] [CrossRef]
- Czapla-Myers, J.; McCorkel, J.; Anderson, N.; Thome, K.; Bigar, S.; Helder, D.; Aaron, D.; Leigh, L.; Mishra, N. The Ground-Based Absolute Radiometric Calibration of Landsat 8 OLI. Remote Sens. 2015, 7, 600–626. [Google Scholar] [CrossRef]
- Saunier, S.; Northrop, A.; Lavender, S.; Galli, L.; Ferrara, R.; Mica, S.; Biasutti, R.; Gory, P.; Gascon, F.; Meloni, M.; et al. European Space Agency (ESA) Landsat MSS/TM/ETM+/OLI Archive: 42 Years of our history. In Proceedings of the IEEE 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017. [Google Scholar]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; Languille, F.; et al. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- CEOS-WGCV. CEOSS Cal/Val Portal. Available online: http://calvalportal.ceos.org/ (accessed on 28 October 2017).
- Zhang, Z.; He, G.; Wang, X. A practical DOS model-based atmospheric correction algorithm. Int. J. Remote Sens. 2010, 31, 2837–2852. [Google Scholar] [CrossRef]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 Operational Land Imager Radiometric Calibration and Stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef]
- Claverie, M.; Masek, J. Harmonized Landsat-8 Sentinel-2 (HLS) Product’s Guide. v.1.3. 2017. Available online: https://hls.gsfc.nasa.gov/documents/ (accessed on 28 October 2017).
- Atmospheric Correction Inter-Comparison Exercise (ACIX). Available online: https://earth.esa.int/web/sppa/meetings-workshops/acix (accessed on 28 October 2017).
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Pons, X.; Solé-Sugrañes, L. A simple radiometric correction model to improve automatic mapping of vegetation from multispectral satellite data. Remote Sens. Environ. 1994, 45, 317–332. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; de Leeuw, G. Satellite Aerosol Remote Sensing over Land, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2009; p. 388. [Google Scholar]
- Liou, K.N. An Introduction to Atmospheric Radiation, 2nd ed.; Academic Press: San Diego, CA, USA, 2002; p. 583. [Google Scholar]
- Hadjimitsis, D.G.; Clayton, C.R.I.; Retalis, A. The use of selected Pseudoinvariant targets for the application of atmospheric correction in multi-temporal studies using satellite remotely sensed imagery. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 192–200. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote Sens. 1988, 9, 1357–1381. [Google Scholar] [CrossRef]
- Chavez, P.S., Jr. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Turner, R.E.; Malila, W.A.; Nalepha, R.F. Importance of atmospheric scattering in remote sensing. In Proceedings of the Seventh International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 17–21 May 1971; Volume 3, pp. 1651–1697. [Google Scholar]
- Rozanov, V.V.; Rozanov, A.V. User’s Guide for the Software Package SCIATRAN (Radiative Transfer Model and Retrieval Algorithm V.3.5); Institute of Remote Sensing, University of Bremen: Bremen, Germany, 2016; pp. 1–166. Available online: http://www.iup.uni-bremen.de/sciatran/free_downloads/users_guide_sciatran.pdf (accessed on 6 September 2017).
- Rozanov, A.; Rozanov, V.; Buchwitz, M.; Kokhanovsky, A.A.; Burrows, J.P. SCIATRAN 2.0–A new radiative transfer model for geophysical applications in the 175–2400 nm spectral region. Adv. Space Res. 2005, 36, 1015–1019. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Klemm, F.J., Jr. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 2006, 26, 6762–6774. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II: Homogeneous Lambertian and anisotropic surfaces. Appl. Opt. 2007, 46, 4455–4464. [Google Scholar] [CrossRef] [PubMed]
- Stamnes, K.; Tsay, S.-C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef] [PubMed]
- Stamnes, K.; Tsay, S.-C.; Wiscombe, W.; Laszlo, I. DISORT, a General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology (Version 1.1); Tech. Rep.; Department of Physics and Engineering Physics, Stevens Institute of Technology: Hoboken, NJ, USA, 2000; p. 112. [Google Scholar]
- Eriksson, P.; Buehler, S.A.; Davis, C.P.; Emde, C.; Lemke, O. ARTS, the atmospheric radiative transfer Simulator, version 2. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1551–1558. [Google Scholar] [CrossRef]
- Scott, N.A.; Chedin, A. A fast line-by-line method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas. J. Appl. Meteorol. 1981, 20, 802–812. [Google Scholar] [CrossRef]
- Berk, A.; Conforti, P.; Kennett, R.; Perkins, T.; Hawes, F.; van den Bosch, J. MODTRAN6: A major upgrade of the MODTRAN radiative transfer code. In Proceedings of the SPIE 9088, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, Baltimore, MD, USA, 13 June 2014. [Google Scholar]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software Package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Breon, F.-M.; Cacciari, A.; Carboni, E.; Diner, D.; Di Nicolantonio, W.; Grainger, R.G.; Grey, W.M.F.; Höller, R.; Lee, K.H.; et al. Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments. Atmos. Res. 2007, 85, 372–394. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A. Light Scattering Media Optics. Problems and Solutions, 3rd ed.; Willey-Praxis: Chichester, UK, 2004; p. 320. ISBN 978-3-540-21184-6. [Google Scholar]
- Kokhanovsky, A.A. Polarization Optics of Random Media, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2003; p. 224. ISBN 978-3-540-42635-6. [Google Scholar]
- European Space Agency (ESA). ESA Missions. ENVISAT Instruments. SCIAMACHY. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/sciamachy (accessed on 28 October 2017).
- Aerosol Robotic Network (AERONET). Aeronet Data Download Tool. Version 3 Direct Sun Algorithm. Available online: https://aeronet.gsfc.nasa.gov/ (accessed on 28 October 2017).
- Chavez, P.S., Jr. Image-Based Atmospheric Corrections—Revisited and Improved. PE&RS 1996, 62, 1025–1036. Available online: https://www.unc.edu/courses/2008spring/geog/577/001/www/Chavez96-PERS.pdf (accessed on 28 October 2017).
- Hall, F.G.; Strebel, D.E.; Nickeson, J.E.; Goetz, S.J. Radiometric rectification: Toward a common radiometric response among multidate, multisensor images. Remote Sens. Environ. 1991, 35, 11–27. [Google Scholar] [CrossRef]
- Pons, X.; Pesquer, L.; Cristóbal, J.; González-Guerrero, O. Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 243–254. [Google Scholar] [CrossRef]
- Vidal-Macua, J.J.; Zabala, A.; Ninyerola, M.; Pons, X. Developing spatially and thematically detailed backdated maps for land cover studies. Int. J. Digit. Earth 2016, 10, 175–206. [Google Scholar] [CrossRef]
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Xu, J.-F.; Huang, J.-F. Empirical Line Method Using Spectrally Stable Targets to Calibrate IKONOS Imagery. Pedosphere 2007, 18, 124–130. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.C. Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Satellite Imagery (ATCOR-2/3 User Guide, Version 9.0.2, March 2016). 2016. Available online: http://www.rese.ch/pdf/atcor3_manual.pdf (accessed on 28 October 2017).
- Congedo, L. Semi-Automatic Classification Plugin Documentation. Release 5.3.2.1. 2016, pp. 161–164. Available online: https://media.readthedocs.org/pdf/semiautomaticclassificationmanual-v4/latest/semiautomaticclassificationmanual-v4.pdf (accessed on 6 September 2017).
- Masek, J.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. LEDAPS Calibration, Reflectance, Atmospheric Correction Preprocessing Code, Version 2. Model Product. Available online: https://daac.ornl.gov/MODELS/guides/LEDAPS_V2.html (accessed on 28 October 2017).
- United States Geological Survey (USGS). Product Guide. Provisional Landsat 8 Surface Reflectance Code (LaSRC) Product. Version 4.0; Department of the Interior: Reston, VA, USA, 2016; p. 36. Available online: https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf (accessed on 28 October 2017).
- Richter, R.; Louis, J.; Müller-Wilm, U. [L2A-ATBD] Sentinel-2 Level-2A Products Algorithm Theoretical Basis Document. Version 2.0. 2012, pp. 1–72. Available online: https://earth.esa.int/c/document_library/get_file?folderId=349490&name=DLFE-4518.pdf (accessed on 28 October 2017).
- United States Geological Survey (USGS). WRS-2 Scene Boundaries (Worldwide). Available online: https://landsat.usgs.gov/sites/default/files/documents/WRS-2_bound_world.kml (accessed on 28 October 2017).
- European Space Agency (ESA). SENTINEL-2 Relative Orbits. Available online: https://sentinel.esa.int/documents/247904/685211/S2A_rel_orbit_groundtrack_10Sec/57bcb79f-2696-4859-8292-07ac7166e884 (accessed on 28 October 2017).
- United States Geological Survey (USGS). EarthExplorer Download Tool. Available online: https://earthexplorer.usgs.gov/ (accessed on 28 October 2017).
- European Space Agency (ESA). Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 28 October 2017).
- United States Geological Survey (USGS). Using the USGS Spectral Viewer. Landsat 7 ETM+. Available online: https://landsat.usgs.gov/sites/default/files/documents/L7_RSR.xlsx (accessed on 28 October 2017).
- National Aeronautics and Space Administration (NASA). Landsat Science, Spectral Response of the Operational Land Imager In-Band. Available online: http://landsat.gsfc.nasa.gov/preliminary-spectral-response-of-the-operational-land-imager-in-band-band-average-relative-spectral-response/ (accessed on 28 October 2017).
- European Space Agency (ESA). Sentinel Online, Sentinel-2A Document Library, Sentinel-2AA (S2A-SRF). Available online: https://earth.esa.int/documents/247904/685211/Sentinel-2+MSI+Spectral+Responses/ (accessed on 28 October 2017).
- United States Geological Survey (USGS). Landsat-8 Data User Handbook. Version 2.0. Available online: https://landsat.usgs.gov/landsat-8-l8-data-users-handbook (accessed on 28 October 2017).
- European Space Agency (ESA). Sentinel-2A User Handbook. Released 24/07/2015. Rev. 2. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/document-library/-/asset_publisher/xlslt4309D5h/content/sentinel-2-user-handbook (accessed on 28 October 2017).
- National Aeronautics and Space (NASA). Landsat Science, Spectral Response of the Multispectral Scanner System In-Band. Available online: http://landsat.gsfc.nasa.gov/spectral-response-of-the-multispectral-scanner-system-in-band-band-average-relative-spectral-response/ (accessed on 28 October 2017).
- United States Geological Survey (USGS). Using the USGS Spectral Viewer. Landsat 5 TM. Available online: https://landsat.usgs.gov/sites/default/files/documents/L5_TM_RSR.xlsx (accessed on 28 October 2017).
- Jiménez, M.; Díaz-Delgado, R. Towards a Standard Plant Species Spectral Library Protocol for Vegetation Mapping: A Case Study in the Shrubland of Doñana National Park. ISPRS Int. J. Geo-Inf. 2015, 4, 2472–2495. [Google Scholar] [CrossRef]
- De Miguel, E.; Fernández-Renau, A.; Prado, E.; Jiménez, M.; Gutiérrez de la Cámara, O.; Linés, C.; Gómez, J.A.; Martín, A.I.; Muñoz, F. A review of INTA AHS PAF. EARSeL eProc. 2014, 13, 20–29. [Google Scholar] [CrossRef]
- Jiménez, M.; Díaz-Delgado, R.; Vaughan, P.; De Santis, A.; Fernández-Renau, A.; Prado, E.; Gutiérrez de la Cámara, O. Airborne hyperspectral scanner (AHS) mapping capacity simulation for the Doñana biological reserve scrublands. In Proceedings of the 10th International Symposium on Physical Measurements and Signatures in Remote Sensing, Davos, Switzerland, 12–14 March 2007; Schaepman, M., Liang, S., Groot, N., Kneubühler, M., Eds.; Available online: http://www.isprs.org/proceedings/XXXVI/7-C50/papers/P81.pdf (accessed on 28 October 2017).
- Hatchell, D.C. (Ed.) Analytical Spectral Devices, Inc. (ASD) Technical Guide, 3rd ed.; Analytical Spectral Devices, Inc.: Boulder, CO, USA, 1999. [Google Scholar]
- Peña-Martinez, R.; Domínguez Gómez, J.A.; Ruiz-Verdú, A. Mapping of Photosynthetic Pigments in Spanish Reservoirs. In Proceedings of the MERIS User Workshop (ESA SP-549), ESA-ESRIN, Frascati, Italy, 10–13 November 2003. [Google Scholar]
- Mueller, J.L.; Brown, S.W.; Clark, D.K.; Johnson, B.C.; Yoon, H.; Lykke, K.R.; Flora, S.J.; Feinholz, M.E.; Souaidia, N.; Pietras, C.; et al. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. In Revision 2 NASA; Fargion, G.S., Mueller, J.L., Eds.; Goddard Space Flight Center: Greenbelt, MD, USA, 2000. [Google Scholar]
- Milton, E.J.; Schaepmann, M.E.; Anderson, K.; Kneubühler, M.; Fox, N. Progress in field spectroscopy. Remote Sens. Environ. 2009, 113, S92–S109. [Google Scholar] [CrossRef]
- Meroni, M.; Colombo, R. 3S: A novel program for field spectroscopy. Comput. Geosci. 2009, 35, 1491–1496. [Google Scholar] [CrossRef]
- Mira, M.; Niclòs, R.; Valor, E.; Pons, X.; Cea, C.; García-Santos, V.; Caselles, D.; Caselles, V. Espectroradiometría de campo del visible al infrarrojo térmico de muestras con características espectrales singulares. In Proceedings of the XVI Congreso de la Asociación Española de Teledetección, Sevilla, Spain, 21–22 October 2015; pp. 213–219. Available online: http://www.aet.org.es/congresos/xvi/XVI_Congreso_AET_actas.pdf (accessed on 28 October 2017).
- Zhu, X.; Liu, D.; Chen, J. A new geostatistical approach for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2012, 124, 49–60. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Mueller-Wilm, U. Sen2Cor Configuration and User Manual V2.4; European Space Agency: Paris, Frence, 2017; pp. 1–53. Available online: http://step.esa.int/thirdparties/sen2cor/2.4.0/Sen2Cor_240_Documenation_PDF/S2-PDGS-MPC-L2A-SUM-V2.4.0.pdf (accessed on 28 October 2017).
- Pflug, B. Sentinel-2 L2A Processor Sen2Cor. In Proceedings of the EUFAR/ESA Expert Workshop on Atmospheric Correction of Remote Sensing Data, Berlin, Germany, 26–28 October 2016. [Google Scholar]
- Instituto Geográfico Nacional. Plan Nacional de Ortofotografía aérea. Modelos Digitales del Terreno Obtenidos a Partir de Nubes de Puntos LIDAR. Available online: http://centrodedescargas.cnig.es/CentroDescargas/index.jsp (accessed on 28 October 2017).
- NASA Jet Propulsion Laboratory (JPL). NASA Shuttle Radar Topography Mission United States 1 Arc Second; Version 3; NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2013. Available online: https://lpdaac.usgs.gov (accessed on 28 October 2017).
- Moran, M.; Jackson, R.; Slater, P.; Teillet, P. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sens. Environ. 1992, 41, 169–184. [Google Scholar] [CrossRef]
- Hale, S.R.; Rock, B.N. Impact of topographic normalization on land-cover classification accuracy. Photogram. Eng. Remote Sens. 2003, 69, 785–791. [Google Scholar] [CrossRef]
- Chance, C.M.; Hermosilla, T.; Coops, N.C.; Wulder, M.A.; White, J.C. Effect of topographic correction on forest change detection using spectral trend analysis of Landsat pixel-based composites. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 186–194. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanre, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An Overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Feng, M.; Huang, C.; Channan, S.; Vermote, E.F.; Masek, J.G.; Townshend, J.R. Quality assessment of Landsat surface reflectance products using MODIS data. Comp. Geosci. 2012, 38, 9–22. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.; Huang, C.; Masek, J.; Vermote, E.F.; Gao, F.; Narasimhan, R.; Channan, S.; Wolfe, R.E.; Townshend, J.R. Global surface reflectance products from Landsat: Assessment using coincident MODIS observations. Remote Sens. Environ. 2013, 134, 276–293. [Google Scholar] [CrossRef]
- Vermote, E.F.; Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. Atmos. 2008, 113, 2156–2202. [Google Scholar] [CrossRef]
- Pons, X. MiraMon. Geographical Information System and Remote Sensing Software, Version 8.01b; Centre for Ecological Research and Forestry Applications (CREAF). Bellaterra. 2004. Available online: http://www.creaf.uab.cat/miramon/Index_usa.htm (accessed on 28 October 2017).
- Pesquer, L.; Domingo, C.; Pons, X. A Geostatistical Approach for Selecting the Highest Quality MODIS Daily Images. In Proceedings of the Pattern Recognition and Image Analysis: 6th Iberian Conference, IbPRIA 2013, Funchal, Madeira, Portugal, 5–7 June 2013; pp. 608–615. [Google Scholar]
- Marcello, J.; Eugenio, F.; Perdomo, U.; Medina, A. Assessment of Atmospheric Algorithms to Retrieve Vegetation in Natural Protected Areas Using Multispectral High Resolution Imagery. Sensors 2016, 60, 1624. [Google Scholar] [CrossRef] [PubMed]
- Feilhauer, H.; Thonfeld, F.; Faude, U.; He, K.S.; Rocchini, D.; Schmidtlein, S. Assessing floristic composition with multispectral sensors—A comparison based on monotemporal and multiseasonal field spectra. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 218–229. [Google Scholar] [CrossRef]
- Vuolo, F.; Zółtak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C. Data Service Platform for Sentinel-2 Surface Reflectance and Value-Added Products: System Use and Examples. Remote Sens. 2017, 8, 938. [Google Scholar] [CrossRef]
Path/Orbit | Row/Granule | Date of Acquisition | Sun Elevation (Plot Area) | Sun Azimuth (Plot Area) | View Zenith Angle (Plot Area) | Start Time (UTC) | Source | Sensor |
---|---|---|---|---|---|---|---|---|
203 | 034 | 20 May 2016 | 65.72° | 130.47° | 3.16° | 11:08:03 | USGS | OLI |
R037 | T29SPB | 68.70° | 140.77° | 8.72° | 11:29:04 | ESA | MSI | |
202 | 034 | 4 October 2016 | 45.12° | 153.91° | 0.90° | 11:02:33 | USGS | OLI |
R137 | T29SQB | 45.72° | 156.32° | 2.73° | 11:09:12 | ESA | MSI | |
202 | 034 | 22 April 2017 | 59.59° | 139.03° | 0.61° | 11:04:57 | USGS | ETM+ |
R137 | T29SQB | 59.90° | 140.01° | 2.49° | 11:06:51 | ESA | MSI | |
202 | 034 | 1 June 2017 | 66.60° | 124.39° | 0.89° | 11:02:09 | USGS | OLI |
R137 | T29SQB | 67.77° | 126.71° | 2.50° | 11:06:51 | ESA | MSI |
Bandwidths (nm) (#: Band Number) | ||||||
---|---|---|---|---|---|---|
Sensor | Blue | Green | Red | NIR | SWIR1 | SWIR2 |
MSS 1 | 504–602 (#4) | 605–701 (#5) | 811–990 (#7) | |||
TM 2 | 452–518 (#1) | 528–626 (#2) | 626–710 (#3) | 776–904 (#4) | 1567–1785 (#5) | 2096–2350 (#7) |
ETM+ 3 | 441–514 (#1) | 519–611 (#2) | 631–692 (#3) | 772–898 (#4) | 1547–1748 (#5) | 2064–2346 (#7) |
OLI 4 | 452–512 (#2) | 533–590 (#3) | 636–673 (#4) | 851–879 (#5) | 1567–1651 (#6) | 2107–2294 (#7) |
MSI 5 | 470–524 (#2) | 543–578 (#3) | 649–680 (#4) | 782–898 (#8) 855–875 (#8a) | 1569–1658 (#11) | 2113–2286 (#12) |
Field vs. Landsat | Blue r2 | Green r2 | Red r2 | NIR r2 | SWIR1 r2 | SWIR2 r2 | All Bands r2 | |
---|---|---|---|---|---|---|---|---|
May 2016 | ATCOR3 | 0.998 | 0.998 | 0.999 | 0.993 | 0.997 | 0.992 | 0.987 |
SAC-QGIS | 0.996 | 0.998 | 0.998 | 0.995 | 0.996 | 0.991 | 0.961 | |
6S-LaSRC | 0.999 | 0.998 | 0.999 | 0.995 | 0.996 | 0.992 | 0.982 | |
PIA-MM | 0.996 | 0.998 | 0.998 | 0.995 | 0.996 | 0.991 | 0.989 | |
October 2016 | ATCOR3 | 0.950 | 0.916 | 0.940 | 0.902 | 0.954 | 0.967 | 0.918 |
SAC-QGIS | 0.940 | 0.909 | 0.936 | 0.902 | 0.956 | 0.968 | 0.862 | |
6S-LaSRC | 0.992 | 0.942 | 0.948 | 0.906 | 0.955 | 0.968 | 0.892 | |
PIA-MM | 0.939 | 0.907 | 0.935 | 0.895 | 0.953 | 0.968 | 0.922 | |
April 2017 | ATCOR3 | 0.956 | 0.941 | 0.950 | 0.972 | 0.979 | 0.964 | 0.908 |
SAC-QGIS | 0.958 | 0.936 | 0.949 | 0.973 | 0.979 | 0.962 | 0.871 | |
6S-LEADAPS | 0.958 | 0.936 | 0.949 | 0.973 | 0.979 | 0.962 | 0.919 | |
PIA-MM | 0.958 | 0.937 | 0.950 | 0.973 | 0.979 | 0.962 | 0.918 | |
June 2017 | ATCOR3 | 0.935 | 0.934 | 0.916 | 0.989 | 0.959 | 0.929 | 0.948 |
SAC-QGIS | 0.933 | 0.934 | 0.917 | 0.989 | 0.959 | 0.929 | 0.907 | |
6S-LaSRC | 0.939 | 0.939 | 0.919 | 0.989 | 0.959 | 0.929 | 0.941 | |
PIA-MM | 0.933 | 0.935 | 0.918 | 0.990 | 0.962 | 0.931 | 0.954 |
Field vs. Landsat | Blue RMSE | Green RMSE | Red RMSE | NIR RMSE | SWIR1 RMSE | SWIR2 RMSE | Mean RMSE |
---|---|---|---|---|---|---|---|
ATCOR3 | 2.392 | 2.956 | 3.588 | 3.745 | 4.764 | 6.019 | 3.911 |
SAC-QGIS | 5.871 | 5.987 | 5.755 | 5.083 | 5.710 | 7.199 | 5.934 |
6S | 3.768 | 4.150 | 4.490 | 4.484 | 4.987 | 6.037 | 4.653 |
PIA-MM | 1.588 | 2.645 | 3.384 | 3.948 | 3.988 | 5.350 | 3.484 |
Field vs. Sentinel-2A | Blue r2 | Green r2 | Red r2 | NIR r2 | SWIR1 r2 | SWIR2 r2 | All Bands r2 | |
---|---|---|---|---|---|---|---|---|
May 2016 | ATCOR3 | 0.987 | 0.981 | 0.978 | 0.987 | 0.969 | 0.945 | 0.960 |
SAC-QGIS | 0.994 | 0.997 | 0.998 | 0.988 | 0.967 | 0.943 | 0.939 | |
Sen2Cor-SNAP | 0.999 | 0.998 | 0.999 | 0.986 | 0.968 | 0.942 | 0.961 | |
PIA-MM | 0.994 | 0.997 | 0.997 | 0.987 | 0.969 | 0.944 | 0.966 | |
October 2016 | ATCOR3 | 0.995 | 0.994 | 0.996 | 0.955 | 0.975 | 0.982 | 0.952 |
SAC-QGIS | 0.989 | 0.975 | 0.986 | 0.952 | 0.971 | 0.982 | 0.886 | |
Sen2Cor-SNAP | 0.986 | 0.970 | 0.983 | 0.951 | 0.970 | 0.981 | 0.963 | |
PIA-MM | 0.986 | 0.972 | 0.984 | 0.950 | 0.972 | 0.983 | 0.958 | |
April 2017 | ATCOR3 | 0.911 | 0.920 | 0.902 | 0.982 | 0.991 | 0.907 | 0.942 |
SAC-QGIS | 0.922 | 0.917 | 0.915 | 0.983 | 0.988 | 0.985 | 0.907 | |
Sen2Cor-SNAP | 0.916 | 0.913 | 0.915 | 0.984 | 0.989 | 0.986 | 0.948 | |
PIA-MM | 0.922 | 0.917 | 0.914 | 0.982 | 0.985 | 0.983 | 0.897 | |
June 2017 | ATCOR3 | 0.925 | 0.931 | 0.929 | 0.992 | 0.970 | 0.953 | 0.953 |
SAC-QGIS | 0.979 | 0.982 | 0.991 | 0.991 | 0.967 | 0.952 | 0.939 | |
Sen2Cor-SNAP | 0.992 | 0.991 | 0.995 | 0.992 | 0.968 | 0.953 | 0.961 | |
PIA-MM | 0.979 | 0.982 | 0.992 | 0.992 | 0.968 | 0.953 | 0.932 |
Field vs. Sentinel-2A | Blue RMSE | Green RMSE | Red RMSE | NIR RMSE | SWIR1 RMSE | SWIR2 RMSE | Mean RMSE |
---|---|---|---|---|---|---|---|
ATCOR3 | 1.991 | 2.339 | 3.381 | 3.569 | 5.772 | 7.393 | 4.074 |
SAC-QGIS | 4.262 | 7.217 | 5.068 | 5.129 | 6.621 | 7.736 | 6.006 |
Sen2Cor-SNAP | 2.317 | 2.881 | 3.190 | 3.519 | 4.764 | 5.352 | 3.671 |
PIA-MM | 1.727 | 2.284 | 3.070 | 3.973 | 4.383 | 5.370 | 3.468 |
Sentinel-2A vs. Landsat | Blue r2 | Green r2 | Red r2 | NIR r2 | SWIR1 r2 | SWIR2 r2 | All Bands r2 | |
---|---|---|---|---|---|---|---|---|
ALL DATES | ATCOR3 | 0.908 | 0.916 | 0.927 | 0.986 | 0.979 | 0.927 | 0.960 |
SAC-QGIS | 0.298 | 0.799 | 0.928 | 0.981 | 0.982 | 0.972 | 0.955 | |
Official products | 0.901 | 0.939 | 0.931 | 0.976 | 0.976 | 0.967 | 0.929 | |
PIA-MM | 0.916 | 0.961 | 0.966 | 0.972 | 0.975 | 0.970 | 0.964 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padró, J.-C.; Pons, X.; Aragonés, D.; Díaz-Delgado, R.; García, D.; Bustamante, J.; Pesquer, L.; Domingo-Marimon, C.; González-Guerrero, Ò.; Cristóbal, J.; et al. Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy. Remote Sens. 2017, 9, 1319. https://doi.org/10.3390/rs9121319
Padró J-C, Pons X, Aragonés D, Díaz-Delgado R, García D, Bustamante J, Pesquer L, Domingo-Marimon C, González-Guerrero Ò, Cristóbal J, et al. Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy. Remote Sensing. 2017; 9(12):1319. https://doi.org/10.3390/rs9121319
Chicago/Turabian StylePadró, Joan-Cristian, Xavier Pons, David Aragonés, Ricardo Díaz-Delgado, Diego García, Javier Bustamante, Lluís Pesquer, Cristina Domingo-Marimon, Òscar González-Guerrero, Jordi Cristóbal, and et al. 2017. "Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy" Remote Sensing 9, no. 12: 1319. https://doi.org/10.3390/rs9121319
APA StylePadró, J. -C., Pons, X., Aragonés, D., Díaz-Delgado, R., García, D., Bustamante, J., Pesquer, L., Domingo-Marimon, C., González-Guerrero, Ò., Cristóbal, J., Doktor, D., & Lange, M. (2017). Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy. Remote Sensing, 9(12), 1319. https://doi.org/10.3390/rs9121319