Analysis of Ocean Tide Loading in Differential InSAR Measurements
Abstract
:1. Introduction
2. Methodology
- Obtain the phase-unwrapped DInSAR interferograms before the baseline re-estimation.
- Estimate the orbit errors in the DInSAR interferograms. Firstly, calculate the 2-hour static PPP solutions using the data from GPS reference stations in the SAR image range and areas nearby. Each PPP solution covers the epoch of one hour before and after the SAR imaging time. These PPP solutions are regarded as the crustal deformations, including the OTL effect, at the each SAR imaging time. The relative displacements of each PPP solution are also calculated, and are then converted to the LOS direction and fitted to the linear surface model using the robust regression model to create the priori parameter. Finally, subtract the corresponding values of the priori parameter from each pixel in the DInSAR interferograms, and fit them by the bilinear ramp function in estimating the orbit errors.
- Remove the orbit errors from the original DInSAR interferograms to reveal the long-wavelength crustal deformation signals, and then use an ocean tide model to eliminate the OTL effect.
3. Data Set and Processing
3.1. DInSAR Interferograms
3.2. PPP Solution
3.3. Ocean Tide Loading Correction
4. Analysis of the OTL Effect in DInSAR Interferograms
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pagiatakis, S.D. The response of a realistic Earth to ocean tide loading. Geophys. J. Int. 1990, 103, 541–560. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Xu, B.; Li, Z.; Feng, G.; Zhang, Z.; Wang, Q.; Hu, J.; Chen, X. Continent-Wide 2-D co-seismic deformation of the 2015 Mw 8.3 Illapel, Chile earthquake derived from Sentinel-1A data: Correction of azimuth co-registration error. Remote Sens. 2016, 8, 376. [Google Scholar] [CrossRef]
- Feng, G.; Li, Z.; Shan, X.; Zhang, L.; Zhang, G.; Zhu, J. Geodetic model of the 2015 April 25 Mw 7.8 Gorkha Nepal earthquake and Mw 7.3 aftershock estimated from InSAR and GPS data. Geophys. J. Int. 2015, 203, 896–900. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, R.; Hu, J.; Wen, L.; Feng, G.; Zhang, Z.; Wang, Q. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils. Sci. Rep. 2015, 5, 15542. [Google Scholar] [CrossRef] [PubMed]
- DiCaprio, C.J.; Simons, M. Importance of ocean tidal load corrections for differential InSAR. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Jolivet, R.; Agram, P.S.; Lin, N.Y.; Simons, M.; Doin, M.P.; Peltzer, G.; Li, Z. Improving InSAR geodesy using global atmospheric models. J. Geophys. Res. Solid Earth 2014, 119, 2324–2341. [Google Scholar] [CrossRef]
- Lin, Y.N.; Jolivet, R.; Simons, M.; Agram, P.S.; Martens, H.R.; Li, Z.; Lodi, S.H. High interseismic coupling in the eastern Makran (Pakistan) subduction zone. Earth Planet. Sci. Lett. 2015, 420, 116–126. [Google Scholar] [CrossRef]
- Tong, X.; Sandwell, D.T.; Smith-Konter, B. High-resolution interseismic velocity data along the San Andreas fault from GPS and InSAR. Can. J. Earth Sci. 2013, 118, 369–389. [Google Scholar] [CrossRef]
- Bähr, H.; Hanssen, R.F. Reliable estimation of orbit errors in spaceborne SAR interferometry. J. Geodesy 2012, 86, 1147–1164. [Google Scholar] [CrossRef]
- Thomas, I.D.; King, M.A.; Clarke, P.J. A comparison of GPS, VLBI and model estimates of ocean tide loading displacements. J. Geod. 2007, 81, 359–368. [Google Scholar] [CrossRef]
- Allinson, C.R.; Clarke, P.J.; Edwards, S.J.; King, M.A.; Baker, T.F.; Cruddace, P.R. Stability of direct GPS estimates of ocean tide loading. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Yuan, L.G.; Ding, X.L.; Zhong, P.; Chen, W.; Huang, D.F. Estimates of ocean tide loading displacements and its impact on position time series in Hong Kong using a dense continuous GPS network. J. Geod. 2009, 83, 999–1015. [Google Scholar] [CrossRef]
- Penna, N.T.; King, M.A.; Stewart, M.P. GPS height time series: Short-period origins of spurious long-period signals. J. Geophys. Res. Solid Earth 2007, 112, 1074–1086. [Google Scholar] [CrossRef]
- Penna, N.T.; Clarke, P.J.; Bos, M.S.; Baker, T.F. Ocean tide loading displacements in western Europe: 1. validation of kinematic GPS estimates. J. Geophys. Res. Solid Earth 2015, 120. [Google Scholar] [CrossRef]
- Pritchard, M.E.; Simons, M.; Rosen, P.A.; Hensley, S.; Webb, F.H. Co-seismic slip from the 1995 July 30 Mw = 8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations. Geophys. J. Int. 2002, 150, 362–376. [Google Scholar] [CrossRef]
- Yang, Z.F.; Li, Z.W.; Zhu, J.J.; Hu, J.; Wang, Y.J.; Chen, G.L. InSAR-based model parameter estimation of probability integral method and its application for predicting mining-induced horizontal and vertical displacements. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4818–4832. [Google Scholar] [CrossRef]
- Holland, P.W.; Welsch, R.E. Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory 1977, 6, 813–827. [Google Scholar] [CrossRef]
- GAMMA Remote Sensing. Available online: http://www.gamma-rs.ch/gamma.html (accessed on 23 January 2017).
- Bernese GNSS Software. Available online: http://www.bernese.unibe.ch (accessed on 23 January 2017).
- RINEX data of the Scripps Orbit and Permanent Array Center (SOPAC). Available online: ftp://garner.ucsd.edu/pub/rinex/ (accessed on 23 January 2017).
- Agnew, D.C. SPOTL: Some Programs for Ocean-Tide Loading; Scripps Institution of Oceanography: La Jolla, CA, USA, 2012. [Google Scholar]
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn. 2006, 56, 394–415. [Google Scholar] [CrossRef]
RMS/mm | |
---|---|
A priori parameter and OTL displacements | 0.9 |
A priori parameter and OTL displacements | 2.3 |
Pixel Values | Linear Slope Variations in D0912 | Linear Slope Variations in D0322 |
---|---|---|
Original observations | 0.1558 | 0.1216 |
After orbit error correction | 0.0404 | −0.0379 |
After orbit error and tide model correction | 0.0028 | −0.0028 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, W.; Wang, Q.; Cao, Y. Analysis of Ocean Tide Loading in Differential InSAR Measurements. Remote Sens. 2017, 9, 101. https://doi.org/10.3390/rs9020101
Peng W, Wang Q, Cao Y. Analysis of Ocean Tide Loading in Differential InSAR Measurements. Remote Sensing. 2017; 9(2):101. https://doi.org/10.3390/rs9020101
Chicago/Turabian StylePeng, Wei, Qijie Wang, and Yunmeng Cao. 2017. "Analysis of Ocean Tide Loading in Differential InSAR Measurements" Remote Sensing 9, no. 2: 101. https://doi.org/10.3390/rs9020101
APA StylePeng, W., Wang, Q., & Cao, Y. (2017). Analysis of Ocean Tide Loading in Differential InSAR Measurements. Remote Sensing, 9(2), 101. https://doi.org/10.3390/rs9020101