An Improved Aerosol Optical Depth Retrieval Algorithm for Moderate to High Spatial Resolution Optical Remotely Sensed Imagery
Abstract
:1. Introduction
2. Data and Methodology
2.1. MHSR Remotely Sensed Data
2.2. The Procedure
2.3. The Modified DO Method
- (1)
- Calculate the NDVI of MODIS data using Equation (7).
- (2)
- Based on the criteria defined in the DDV method, use the MODIS band 7 (2.1 µa) to calculate the surface reflectance of the blue band.
- (3)
- Choose the NDVI and surface reflectance with the best quality, which are out of cloud and aerosol contamination.
- (4)
- Utilize the regression analysis between NDVI and the blue band reflectance to obtain the criteria in Equation (6).
2.4. Spatial Extension
- (1)
- The elevation changes suddenly and dramatically and the height difference exceeds the aerosols spreading height so that aerosols cannot move towards areas with higher elevation. This scenario only happens in mountainous areas where human activities are infrequent and aerosols are usually low and homogeneous. Thus, its influence is neglected.
- (2)
- Close to pollution sources, such as industrial emission and large forest fires. The areas with heavy aerosols in this scenario usually cover very small areas of an image, so it does not affect the AOD retrieval unless the land surface simulated from neighbor areas is used to retrieve the AOD for these areas.
- (3)
- Combined with the classification map from unsupervised classification in Section 2.1, the spatial expansion process can be conducted several times until 90% of the pixels are filled with valid AOD values.
2.5. Creation of the LUTs
- (1)
- Solar and viewing geometry. The geometrical relationships among sun, target, and sensor can be described using the solar zenith, solar azimuth, sensor zenith, and sensor azimuth angles. The difference of solar and sensor azimuth angles is the relative azimuth angle. The geometry settings in the LUT were as follows: seven sensor zenith angles with a step of five between 0–30°; 10 solar zenith angles between 0° and 50°; and 19 relative azimuth angles with a step of 10 in the range 0–180°.
- (2)
- Atmospheric model. Mid-latitude summer, mid-latitude winter, tropical, subarctic summer, and subarctic winter were used, which are determined using latitude only.
- (3)
- Aerosol model. Urban, desert and continental models were used for urban, desert and other land surfaces, respectively. The aerosol model was determined using a global land cover map from the Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) project [21].
- (4)
- AOD at 550 nm. The setting was 0.01, 0.05, 0.1, 0.2, 0.4, 0.8, 1.0, 1.5, and 2.0.
- (5)
- Altitude. The setting was 0, 100, 200, 500, 1000, 2000, 3000, 4000, and 5000 m. In this study, the altitude was retrieved from the ASTER digital elevation model [35].
- (6)
- Water vapor. The setting was 0.1, 1.1, 2.1, 3.1, 4.1, and 5.1 g/cm2. The water vapor was derived directly from the MODIS near-infrared water vapor bands (typical accuracy 5–10%) [36].
- (7)
- Surface reflectance. Since this study was for AOD retrieval, the blue band was the only one used for atmospheric correction and AOD retrieval in the procedure; therefore, the maximum surface reflectance of 0.2 for the blue band was set. Lambertian/isotropic land surface was assumed and 11 settings of surface reflectance between 0.0 and 0.2 with an increment of 0.02 were used.
3. Results and Validation
3.1. AOD Retrieval and Atmospheric Correction for Multiple MHSR Remotely Sensed Data
- (1)
- The new algorithm can be applied to the major MHSR remotely sensed imagery.
- (2)
- The new algorithm can be applied at general atmosphere and land surface conditions.
- (3)
- The spatial distribution of the retrieved AOD is visually consistent with the distribution of aerosol, which is obvious in TOA reflectance imagery.
- (4)
- The retrieved AODs for multi-temporal Landsat TM/ETM+ imagery are also consistent, which shows the consistency of the new algorithm over time.
- (5)
- The effect of atmospheric correction for the major MHSR remotely sensed imagery is visually obvious. The correction effect for spatial consistency is very good, such as in Figure 3a,c,g, whose uneven distribution of aerosol are mostly corrected.
3.2. Validation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allene, R.G.; Andersonf, M.C.; Helderg, D.; Ironsh, J.R.; Johnsoni, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Liang, S.; Fang, H.; Chen, M. Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods. IEEE Trans. Geosci. Remote Sens. 2001, 11, 2490–2498. [Google Scholar] [CrossRef]
- Ouaidrari, H.; Vermote, E.F. Operational atmospheric correction of Landsat TM data. Remote Sens. Environ. 1999, 70, 4–15. [Google Scholar] [CrossRef]
- Yan, X.; Shi, W.Z.; Zhao, W.J.; Luo, N.N. Impact of aerosols and atmospheric particles on plant leaf proteins. Atmos. Environ. 2014, 88, 115–122. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 4, 947–973. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. 1997. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 2004, 3, 557–569. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J. Geophys. Res. 2007, 13, D1321. [Google Scholar] [CrossRef]
- Tang, J.K.; Xue, Y.; Yu, T.; Guan, Y.N. Aerosol optical thickness determination by exploiting the synergy of Terra and Aqua MODIS (SYNTAM). Remote Sens. Environ. 2005, 3, 327–334. [Google Scholar] [CrossRef]
- Wong, M.S.; Nichol, J.E.; Lee, K.H. An operational MODIS aerosol retrieval algorithm at high spatial resolution, and its application over a complex urban region. Atmos. Res. 2011, 3, 579–589. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Bleiweiss, M.P.; Dubois, D. A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces. Remote Sens. Environ. 2013, 136, 135–145. [Google Scholar] [CrossRef]
- Liang, S.; Zhong, B.; Fang, H. Improved estimation of aerosol optical depth from MODIS imagery over land surfaces. Remote Sens. Environ. 2006, 4, 416–425. [Google Scholar] [CrossRef]
- Zhong, B.; Liang, S.; Holben, B. Validating a new algorithm for estimating aerosol optical depths over land from MODIS imagery. Int. J. Remote Sens. 2007, 18, 4207–4214. [Google Scholar] [CrossRef]
- Song, W.W.; Guan, D.S. The distribution of aerosol optical depth retrieved by TM imagery over Guangzhou, China. Acta Sci. Circumst. 2008, 8, 1638–1645. [Google Scholar]
- Suess, D.T.; Prather, K.A. Mass spectrometry of aerosol. Chem. Rev. 1999, 99, 3007–3035. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, Y.J.; Karnieli, A.; Tanre, D. Detection of dust over deserts using satellite data in the solar wavelengths. IEEE Trans. Geosci. Remote Sens. 2000, 38, 525–531. [Google Scholar] [CrossRef]
- Tanre, D.; Legrand, M. On the satellite retrieval of Saharan dust optical thickness over land: Two different approaches. J. Geophys. Res. 1991, 96, 5221–5227. [Google Scholar] [CrossRef]
- Richter, R. A spatially adaptive fast atmospheric correction algorithm. Int. J. Remote Sens. 1996, 17, 1201–1214. [Google Scholar] [CrossRef]
- Luo, N.; Wong, M.S.; Zhao, W.; Yan, X.; Xiao, F. Improved aerosol retrieval algorithm using Landsat images and its application for PM10 monitoring over urban areas. Atmos. Res. 2015, 153, 264–275. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.C.; Thomas, R.L.; Vermote, E.; Zhang, C. Web-enabled Landsat data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 7, 2607–2654. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Trans. Geosci. Remote Sens. Lett. 2006, 1, 68–72. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P.; Vermote, E.; Masek, J.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens. Environ. 2012, 122, 175–184. [Google Scholar] [CrossRef]
- Sun, L.; Sun, C.K.; Liu, Q.H.; Zhong, B. Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data. Sci. China Earth Sci. 2010, 1, 74–80. [Google Scholar] [CrossRef]
- Thomas, C.; Briottet, X.; Santer, R. OSIS: Remote sensing code for estimating aerosol optical properties in urban areas from very high spatial resolution images. Appl. Opt. 2011, 50, 5408–5421. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q.; Quattrochi, D.A. Urban Remote Sensing; CRC Press: Abingdon, UK, 2006. [Google Scholar]
- Thomas, C.; Doz, S.; Briottet, X.; Santer, R.; Boldo, D.; Mathieu, S. Remote sensing of aerosols in urban areas: Sun/shadow retrieval procedure from airborne very high spatial resolution images. Urban Remote Sens. Event 2009. [Google Scholar] [CrossRef]
- Thomas, C.; Briottet, X.; Santer, R. Remote sensing of aerosols in urban areas from very high spatial resolution images: Application of the OSIS code to multispectral PELICAN airborne data. Int. J. Remote Sens. 2013, 34, 919–937. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Sendra, C. Automatic atmospheric correction. Int. J. Remote Sens. 1988, 9, 1357–1381. [Google Scholar] [CrossRef]
- Liang, S.; Fallah-Adl, H.; Kalluri, S.; JaJa, J.; Kaufman, Y.J.; Townshend, J. Development of an operational atmospheric correction algorithm for TM imagery. J. Geophys. Res. 1997, 102, 17173–17186. [Google Scholar] [CrossRef]
- Popp, T. Correcting atmospheric masking to retrieve the spectral albedo of land surface from satellite measurements. Int. J. Remote Sens. 1995, 16, 3483–3508. [Google Scholar] [CrossRef]
- Adeline, K.R.M.; Chen, M.; Briottet, X.; Pang, S.K.; Paparoditis, N. Shadow detection in very high spatial resolution aerial images: A comparative study. ISPRS J. Photogramm. Remote Sens. 2013, 80, 21–38. [Google Scholar] [CrossRef]
- Nagao, M.; Matsuyama, T.; Ikeda, Y. Region extraction and shape analysis in aerial photographs. Comput. Graph. Image Process. 1979, 10, 195–223. [Google Scholar] [CrossRef]
- Kotchenova, S.; Vermote, E.R.; Matarrese, R.; Klemm, F., Jr. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef] [PubMed]
- ASTER Global Digital Elevation Map. Available online: https://lpdaac.usgs.gov/dataset_discovery/aster/aster_products_table/astgtm (accessed on 2 June 2017).
- Vermote, E.F.; Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Zhong, B.; Zhang, Y.; Du, T.; Yang, A.; Lv, W.; Liu, Q. Cross-calibration of HJ-1/CCD over a desert site using Landsat ETM+ imagery and ASTER GDEM product. IEEE Trans. Geosci. Remote Sens. 2014, 11, 7247–7263. [Google Scholar] [CrossRef]
Sensor(s) | Platform(s) | Spatial Resolution | Swath | Spectra for AOD Retrieval | Nation |
---|---|---|---|---|---|
TM, ETM+, OLI | Landsat series | 30 m | 185 km | VIS *, NIR †, SWIR ‡ | USA |
CCD | HJ-1/A&B | 30 m | 700 km (2 cameras) | VIS, NIR | China |
CCD HR | CBERS-02B | 20 m 2.36 m | 113 km 27 km | VIS, NIR | China |
CCD WFV | GF-1 | 8 m 16 m | 60 km 800 km (4 cameras) | VIS, NIR | China |
MSI | ZY-3 | 5.8 m | 52 km | VIS, NIR | China |
MSI | GeoEye-1 | 1.65 m | 15.2 km | VIS, NIR | USA |
MSI | THEOS | 15 m | 90 km | VIS, NIR | Thailand |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, B.; Wu, S.; Yang, A.; Liu, Q. An Improved Aerosol Optical Depth Retrieval Algorithm for Moderate to High Spatial Resolution Optical Remotely Sensed Imagery. Remote Sens. 2017, 9, 555. https://doi.org/10.3390/rs9060555
Zhong B, Wu S, Yang A, Liu Q. An Improved Aerosol Optical Depth Retrieval Algorithm for Moderate to High Spatial Resolution Optical Remotely Sensed Imagery. Remote Sensing. 2017; 9(6):555. https://doi.org/10.3390/rs9060555
Chicago/Turabian StyleZhong, Bo, Shanlong Wu, Aixia Yang, and Qinhuo Liu. 2017. "An Improved Aerosol Optical Depth Retrieval Algorithm for Moderate to High Spatial Resolution Optical Remotely Sensed Imagery" Remote Sensing 9, no. 6: 555. https://doi.org/10.3390/rs9060555
APA StyleZhong, B., Wu, S., Yang, A., & Liu, Q. (2017). An Improved Aerosol Optical Depth Retrieval Algorithm for Moderate to High Spatial Resolution Optical Remotely Sensed Imagery. Remote Sensing, 9(6), 555. https://doi.org/10.3390/rs9060555