Evaluating the Use of DMSP/OLS Nighttime Light Imagery in Predicting PM2.5 Concentrations in the Northeastern United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Ground Measurements
2.2.2. Satellite Observations
2.3. Methods
2.3.1. Data Pre-Processing and Integration
2.3.2. Model Construction
2.3.3. Model Validation
3. Results
3.1. Descriptive Statistics
3.2. Model Validation
3.3. Spatiotemporal Estimation of the PM2.5 Concentration
4. Discussion
4.1. Comparison with an Available Product
4.2. Effect of NTL
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G.J.; Speizer, F.E. An association between air pollution and mortality in six U.S. Cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A. Epidemiology of fine particulate air pollution and human health: Biologic mechanisms and who’s at risk? Environ. Health Perspect. 2000, 108, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.A.; Siscovick, D.S.; Sheppard, L.; Shepherd, K.; Sullivan, J.H.; Anderson, G.L.; Kaufman, J.D. Long-term exposure to air pollution and incidence of cardiovascular events in women. N. Engl. J. Med. 2007, 356, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Rice, M.B.; Ljungman, P.L.; Wilker, E.H.; Gold, D.R.; Schwartz, J.D.; Koutrakis, P.; Washko, G.R.; O’Connor, G.T.; Mittleman, M.A. Short-term exposure to air pollution and lung function in the framingham heart study. Am. J. Respir. Crit. Care Med. 2013, 188, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Rice, M.B.; Ljungman, P.L.; Wilker, E.H.; Dorans, K.S.; Gold, D.R.; Schwartz, J.; Koutrakis, P.; Washko, G.R.; O’Connor, G.T.; Mittleman, M.A.; et al. Long-term exposure to traffic emissions and fine particulate matter and lung function decline in the framingham heart study. Am. J. Respir. Crit. Care Med. 2015, 191, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Engel-Cox, J.A.; Hoff, R.M.; Haymet, A.D.J. Recommendations on the use of satellite remote-sensing data for urban air quality. J. Air Waste Manag. Assoc. 2004, 54, 1360–1371. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.; Kumar, N. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 2006, 40, 5880–5892. [Google Scholar] [CrossRef]
- Hoff, R.M.; Christopher, S.A. Remote sensing of particulate pollution from space: Have we reached the promised land? J. Air Waste Manag. Assoc. 2009, 59, 645–675. [Google Scholar] [PubMed]
- Liu, Y.; Franklin, M.; Kahn, R.; Koutrakis, P. Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the st. Louis area: A comparison between misr and MODIS. Remote Sens. Environ. 2007, 107, 33–44. [Google Scholar] [CrossRef]
- Liu, Y.; Paciorek, C.J.; Koutrakis, P. Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environ. Health Perspect. 2009, 117, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Slater, J.F.; Dibb, J.E.; Campbell, J.W.; Moore, T.S. Physical and chemical properties of surface and column aerosols at a rural new england site during MODIS overpass. Remote Sens. Environ. 2004, 92, 173–180. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.; Pan, X.; Zhang, L.; Chen, D. Estimating PM2.5 in xi’an, china using aerosol optical depth: A comparison between the MODIS and misr retrieval models. Sci. Total Environ. 2015, 505, 1156–1165. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.R.; Sivakumar, V.; Yin, Y.; Reddy, R.R.; Kang, N.; Diao, Y.; Adesina, A.J.; Yu, X. Long-term (2003–2013) climatological trends and variations in aerosol optical parameters retrieved from MODIS over three stations in south africa. Atmos. Environ. 2014, 95, 400–408. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Chu, D.A.; Tsai, T.-C.; Chen, J.-P.; Chang, S.-C.; Jeng, Y.-J.; Chiang, W.-L.; Lin, N.-H. Interpreting aerosol lidar profiles to better estimate surface PM2.5 for columnar aod measurements. Atmos. Environ. 2013, 79, 172–187. [Google Scholar] [CrossRef]
- Hu, X.; Waller, L.A.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G., Jr.; Estes, S.M.; Quattrochi, D.A.; Sarnat, J.A.; Liu, Y. Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression. Environ. Res. 2013, 121, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kloog, I.; Nordio, F.; Coull, B.A.; Schwartz, J. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the mid-atlantic states. Environ. Sci. Technol. 2012, 46, 11913–11921. [Google Scholar] [CrossRef] [PubMed]
- Koelemeijer, R.B.A.; Homan, C.D.; Matthijsen, J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over europe. Atmos. Environ. 2006, 40, 5304–5315. [Google Scholar] [CrossRef]
- Lee, H.J.; Coull, B.A.; Bell, M.L.; Koutrakis, P. Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations. Environ. Res. 2012, 118, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sarnat, J.A.; Kilaru, V.; Jacob, D.J.; Koutrakis, P. Estimating ground-level PM2.5 in the Eastern United States using satellite remote sensing. Environ. Sci. Technol. 2005, 39, 3269–3278. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Pu, Q.; Bilal, M.; Weng, Q.; Zhai, L.; Nichol, J.E. High-resolution satellite mapping of fine particulates based on geographically weighted regression. IEEE Geosci. Remote Sens. Lett. 2016, 13, 495–499. [Google Scholar] [CrossRef]
- Elvidge, C.; Baugh, K.; Hobson, V.; Kihn, E.; Kroehl, H.; Davis, E.; Cocero, D. Satellite inventory of human settlements using nocturnal radiation emissions: A contribution for the global toolchest. Glob. Chang. Biol. 1997, 3, 387–395. [Google Scholar] [CrossRef]
- Sutton, P.C.; Elvidge, C.; Obremski, T. Building and evaluating models to estimate ambient population density. Photogramm. Eng. Remote Sens. 2003, 69, 545–553. [Google Scholar] [CrossRef]
- Yuyu, Z.; Steven, J.S.; Kaiguang, Z.; Marc, I.; Allison, T.; Ben, B.-L.; Ghassem, R.A.; Xuesong, Z.; Chunyang, H.; Christopher, D.E.; et al. A global map of urban extent from nightlights. Environ. Res. Lett. 2015, 10, 054011. [Google Scholar]
- Zhou, N.; Hubacek, K.; Roberts, M. Analysis of spatial patterns of urban growth across south asia using dmsp-ols nighttime lights data. Appl. Geogr. 2015, 63, 292–303. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from dmsp/ols nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Li, R.; Liu, X.; Li, X. Estimation of the PM2.5 pollution levels in beijing based on nighttime light data from the defense meteorological satellite program-operational linescan system. Atmosphere 2015, 6, 607–622. [Google Scholar] [CrossRef]
- Xu, Z.; Xia, X.; Liu, X.; Qian, Z. Combining dmsp/ols nighttime light with echo state network for prediction of daily PM2.5 average concentrations in shanghai, china. Atmosphere 2015, 6, 1507–1520. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Redman, C.; Foster, D.R. Agrarian Landscapes in Transition: Comparisons of Long-Term Ecological & Cultural Change; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- US Environmental Protection Agency. Air Quality System Data Mart. Available online: http://www.epa.gov/ttn/airs/aqsdatamart (accessed on 14 June 2017).
- The Phase 2 North America Land Data Assimilation System (NLDAS-2). Available online: https://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php (accessed on 14 June 2017).
- Atmosphere Archive and Distribution System. Available online: http://ladsweb.nascom.nasa.gov (accessed on 14 June 2017).
- Remer, L.A.; Kleidman, R.G.; Levy, R.C.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Martins, J.V.; Ichoku, C.; Koren, I.; Yu, H.; et al. Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Defense Meteorological Satellite Program (DMSP). Available online: https://ngdc.noaa.gov/eog/dmsp.html (accessed on 14 June 2017).
- National Aeronautics and Space Administration (NASA)’s Earth Observations (NEO). Available online: https://neo.sci.gsfc.nasa.gov/ (accessed on 14 June 2017).
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Lee, H.; Liu, Y.; Coull, B.; Schwartz, J.; Koutrakis, P. A novel calibration approach of MODIS aod data to predict PM2.5 concentrations. Atmos. Chem. Phys. 2011, 11, 7991–8002. [Google Scholar] [CrossRef]
- Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [Google Scholar] [CrossRef]
- Lin, G.; Fu, J.; Jiang, D.; Hu, W.; Dong, D.; Huang, Y.; Zhao, M. Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in china. Int. J. Environ. Res. Public Health 2014, 11, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Jia, H.; Huang, J.; Zhang, Y. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the pearl river delta region in china. Remote Sens. Environ. 2014, 154, 1–7. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Li, W. Predictive mapping of soil total nitrogen at a regional scale: A comparison between geographically weighted regression and cokriging. Appl. Geogr. 2013, 42, 73–85. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Civco, D. Application of geographically weighted regression to fill gaps in slc-off landsat etm+ satellite imagery. Int. J. Remote Sens. 2014, 35, 7650–7672. [Google Scholar] [CrossRef]
- Zhang, Q.; Schaaf, C.; Seto, K.C. The vegetation adjusted ntl urban index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.R.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J.; et al. The nightsat mission concept. Int. J. Remote Sens. 2007, 28, 2645–2670. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Oshan, T.M. Geographically weighted regression and multicollinearity: Dispelling the myth. J. Geogr. Syst. 2016, 18, 303–329. [Google Scholar] [CrossRef]
- Kloog, I.; Koutrakis, P.; Coull, B.A.; Lee, H.J.; Schwartz, J. Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos. Environ. 2011, 45, 6267–6275. [Google Scholar] [CrossRef]
- Di, Q.; Kloog, I.; Koutrakis, P.; Lyapustin, A.; Wang, Y.; Schwartz, J. Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Environ. Sci. Technol. 2016, 50, 4712–4721. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Kloog, I.; Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Melly, S.; Coull, B.; Koutrakis, P.; Schwartz, J. Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the southeastern US 2003–2011. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wu, J.; Li, W.; Peng, J.; Liu, H. Evaluating saturation correction methods for dmsp/ols nighttime light data: A case study from china’s cities. Remote Sens. 2014, 6, 9853–9872. [Google Scholar] [CrossRef]
- Hu, X.; Waller, L.A.; Lyapustin, A.; Wang, Y.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G., Jr.; Estes, S.M.; Quattrochi, D.A.; Puttaswamy, S.J.; et al. Estimating ground-level PM2.5 concentrations in the Southeastern United States using maiac aod retrievals and a two-stage model. Remote Sens. Environ. 2014, 140, 220–232. [Google Scholar] [CrossRef]
- Air quality: Epa’s 2013 Changes to the Particulate Matter (Pm) Standard. Available online: http://www.nationalaglawcenter.org/wp-content/uploads/assets/crs/RL33254.pdf (accessed on 3 May 2017).
- America’s Health Rankings. Available online: http://cdnfiles.americashealthrankings.org/SiteFiles/Reports/Americas-Health-Rankings-2012-v1.pdf (accessed on 3 May 2017).
- van Donkelaar, A.; Martin, R.V.; Spurr, R.J.D.; Burnett, R.T. High-resolution satellite-derived PM2.5 from optimal estimation and geographically weighted regression over north america. Environ. Sci. Technol. 2015, 49, 10482–10491. [Google Scholar] [CrossRef] [PubMed]
- Kloog, I.; Coull, B.A.; Zanobetti, A.; Koutrakis, P.; Schwartz, J.D. Acute and chronic effects of particles on hospital admissions in new-england. PLoS ONE 2012, 7, e34664. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Chen, S.; Lü, H.; Liu, Y.; Wu, J. Spatiotemporal patterns of remotely sensed PM2.5 concentration in china from 1999 to 2011. Remote Sens. Environ. 2016, 174, 109–121. [Google Scholar] [CrossRef]
- AirData Download Files Documentation. Available online: https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/FileFormats.html (accessed on 14 June 2017).
- Kloog, I.; Chudnovsky, A.A.; Just, A.C.; Nordio, F.; Koutrakis, P.; Coull, B.A.; Lyapustin, A.; Wang, Y.; Schwartz, J. A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data. Atmos. Environ. 2014, 95, 581–590. [Google Scholar] [CrossRef]
GWR Model | Model Predictors * |
---|---|
GWR-basic | AOD, PBLH, WS |
GWR-NDVI | AOD, PBLH, WS, NDVI |
GWR-VANUI | AOD, PBLH, WS, VANUI |
Mean | Std. Dev. | Min | Max | Median | |
---|---|---|---|---|---|
PM2.5 (μg/m3) | 8.49 | 4.36 | 2.1 | 29.79 | 7.36 |
Aerosol optical depth | 0.13 | 0.12 | 0.001 | 0.67 | 0.09 |
Vegetation adjusted NTL urban index | 0.52 | 0.18 | 0.14 | 0.98 | 0.50 |
Normalized difference vegetation index | 0.45 | 0.17 | 0.01 | 0.83 | 0.45 |
Planetary boundary layer height (m) | 420.17 | 357.01 | 71.12 | 1997.97 | 270.32 |
Wind speed (m/s) | 3.23 | 1.64 | 0.018 | 10.53 | 3.00 |
Spring (N = 543) | Mean | Std. Dev. | Min | Max | Median |
---|---|---|---|---|---|
PM2.5 (μg/m3) | 7.56 | 3.48 | 2.15 | 24.96 | 6.70 |
Aerosol optical depth | 0.13 | 0.10 | 0.001 | 0.57 | 0.09 |
Vegetation adjusted NTL urban index | 0.55 | 0.17 | 0.15 | 0.88 | 0.55 |
Normalized difference vegetation index | 0.42 | 0.15 | 0.11 | 0.76 | 0.41 |
Planetary boundary layer height (m) | 469.13 | 424.40 | 72.13 | 1997.97 | 285.18 |
Wind speed (m/s) | 3.17 | 1.86 | 0.018 | 10.53 | 2.89 |
Summer (N = 467) | Mean | Std. Dev. | Min | Max | Median |
PM2.5 (μg/m3) | 10.12 | 5.05 | 2.5 | 29.79 | 9.25 |
Aerosol optical depth | 0.18 | 0.14 | 0.001 | 0.67 | 0.15 |
Vegetation adjusted NTL urban index | 0.44 | 0.16 | 0.14 | 0.96 | 0.41 |
Normalized difference vegetation index | 0.54 | 0.16 | 0.03 | 0.83 | 0.54 |
Planetary boundary layer height (m) | 694.85 | 525.03 | 105.47 | 1417.28 | 727.27 |
Wind speed (m/s) | 2.89 | 1.05 | 0.40 | 6.68 | 2.83 |
Fall (N = 427) | Mean | Std. Dev. | Min | Max | Median |
PM2.5 (μg/m3) | 7.75 | 3.80 | 2.1 | 25.10 | 7.04 |
Aerosol optical depth | 0.07 | 0.05 | 0.001 | 0.36 | 0.06 |
Vegetation adjusted NTL urban index | 0.55 | 0.19 | 0.14 | 0.98 | 0.54 |
Normalized difference vegetation index | 0.41 | 0.17 | 0.01 | 0.74 | 0.38 |
Planetary boundary layer height (m) | 465.74 | 373.10 | 71.12 | 1583.02 | 273.92 |
Wind speed (m/s) | 3.61 | 1.73 | 0.18 | 10.14 | 3.24 |
Winter (N = 180) | Mean | Std. Dev. | Min | Max | Median |
PM2.5 (μg/m3) | 9.59 | 5.62 | 3.21 | 20.20 | 6.75 |
Aerosol optical depth | 0.07 | 0.04 | 0.023 | 0.20 | 0.08 |
Vegetation adjusted NTL urban index | 0.68 | 0.15 | 0.46 | 0.98 | 0.70 |
Normalized difference vegetation index | 0.27 | 0.13 | 0.01 | 0.50 | 0.26 |
Planetary boundary layer height (m) | 310.99 | 173.94 | 72.51 | 1016.89 | 256.89 |
Wind speed (m/s) | 4.94 | 2.28 | 2.19 | 8.53 | 3.74 |
VANUI | NDVI | HPBL | WS | |
---|---|---|---|---|
AOD | 0.025 | 0.034 | −0.197 | −0.135 |
VANUI | −0.879 * | 0.105 | 0.074 | |
NDVI | −0.180 | −0.117 | ||
HPBL | 0.295 |
Season | Error Index | GWR-Basic | GWR-NDVI | GWR-VANUI | |||
---|---|---|---|---|---|---|---|
Value | Value | Improvement (%) over GWR-Basic | Value | Improvement (%) over GWR-Basic | Improvement (%) over GWR-NDVI | ||
Warm season | RMSE | 2 | 1.79 | 10.5 | 1.66 | 17 | 7.26 |
MAE | 1.54 | 1.48 | 3.9 | 1.41 | 8.44 | 4.73 | |
RRMSE (%) | 11.9 | 10.7 | 10.08 | 9.8 | 17.65 | 8.41 | |
RMAE (%) | 9.2 | 8.9 | 3.26 | 8.4 | 8.7 | 5.62 | |
Cold season | RMSE | 2.22 | 2.18 | 1.8 | 2.14 | 3.6 | 1.83 |
MAE | 1.7 | 1.68 | 1.18 | 1.65 | 2.94 | 1.79 | |
RRMSE (%) | 13.3 | 13 | 2.26 | 12.8 | 3.76 | 1.54 | |
RMAE (%) | 10.2 | 10.1 | 0.98 | 9.8 | 3.92 | 2.97 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, C.; Li, W.; Liu, K. Evaluating the Use of DMSP/OLS Nighttime Light Imagery in Predicting PM2.5 Concentrations in the Northeastern United States. Remote Sens. 2017, 9, 620. https://doi.org/10.3390/rs9060620
Li X, Zhang C, Li W, Liu K. Evaluating the Use of DMSP/OLS Nighttime Light Imagery in Predicting PM2.5 Concentrations in the Northeastern United States. Remote Sensing. 2017; 9(6):620. https://doi.org/10.3390/rs9060620
Chicago/Turabian StyleLi, Xueke, Chuanrong Zhang, Weidong Li, and Kai Liu. 2017. "Evaluating the Use of DMSP/OLS Nighttime Light Imagery in Predicting PM2.5 Concentrations in the Northeastern United States" Remote Sensing 9, no. 6: 620. https://doi.org/10.3390/rs9060620
APA StyleLi, X., Zhang, C., Li, W., & Liu, K. (2017). Evaluating the Use of DMSP/OLS Nighttime Light Imagery in Predicting PM2.5 Concentrations in the Northeastern United States. Remote Sensing, 9(6), 620. https://doi.org/10.3390/rs9060620