Seasonal and Interannual Variability of Columbia Glacier, Alaska (2011–2016): Ice Velocity, Mass Flux, Surface Elevation and Front Position
Abstract
:1. Introduction
2. Study Area
3. Data
4. Methods
4.1. Changes in Front Position
4.2. Surface Velocities
4.3. TanDEM-X DEM Generation
4.4. Relative Elevation Changes of the Radar Scattering Phase Center
4.5. Mass Flux (Ice Discharge)
5. Results
5.1. Surface Velocities
5.2. Mass Flux
5.3. Relative Elevation Changes of the Radar Scattering Phase Center
5.4. Changes in Front Position
6. Discussion
6.1. Terminus Change Rates, Velocity, Mass Flux and Elevation Change
6.2. Variations in Ice Dynamics during 2011–2016
7. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Marzeion, B.; Jarosch, A.H.; Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 2012, 6, 1295–1322. [Google Scholar] [CrossRef]
- McNabb, R.W.; Hock, R.; Huss, M. Variations in Alaska tidewater glacier frontal ablation, 1985–2013. J. Geophys. Res. Earth Surf. 2015, 120, 120–136. [Google Scholar] [CrossRef]
- Krimmel, R. Photogrammetric Data Set, 1957–2000 and Bathymetric Measurements for Columbia Glacier, Alaska; Water-Resources Investigations Report 01-4089; U.S. Geological Survey: Reston, VA, USA, 2001; p. 49.
- Pfeffer, W.T.; Harper, J.T.; O’Neel, S. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 2008, 321, 1340–1343. [Google Scholar] [CrossRef] [PubMed]
- Howat, I.M.; Joughin, I.; Fahnestock, M.; Smith, B.E.; Scambos, T.M. Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–2006: Ice dynamics and coupling to climate. J. Glaciol. 2008, 54, 646–660. [Google Scholar] [CrossRef]
- Moon, T.; Joughin, I.; Smith, B.; van den Broeke, M.R.; van de Berg, W.J.; Noël, B.; Usher, M. Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett. 2014, 41, 7209–7216. [Google Scholar] [CrossRef] [PubMed]
- Burgess, E.W.; Larsen, C.F.; Forster, R.R. Summer melt regulates winter glacier flow speeds throughout Alaska. Geophys. Res. Lett. 2013, 40, 6160–6164. [Google Scholar] [CrossRef]
- Sugiyama, S.; Skvarca, P.; Naito, N.; Enomoto, H.; Tsutaki, S.; Tone, K.; Marinsek, S.; Aniya, M. Ice speed of a calving glacier modulated by small fluctuations in basal water pressure. Nat. Geosci. 2011, 4, 597–600. [Google Scholar] [CrossRef]
- Andrews, L.C.; Catania, G.A.; Hoffman, M.J.; Gulley, J.D.; Lüthi, M.P.; Ryser, C.; Hawley, R.L.; Neumann, T.A. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet. Nature 2014, 514, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Tedstone, A.J.; Nienow, P.W.; Gourmelen, N.; Dehecq, A.; Goldberg, D.; Hanna, E. Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming. Nature 2015, 526, 692–695. [Google Scholar] [CrossRef] [PubMed]
- Van der Veen, C.J. Tidewater calving. J. Glaciol. 1996, 42, 375–385. [Google Scholar] [CrossRef]
- McNabb, R.W.; Hock, R.; O’Neel, S.; Rasmussen, L.A.; Ahn, Y.; Braun, M.; Conway, H.; Herreid, S.; Joughin, I.; Pfeffer, W.T.; et al. Using surface velocities to calculate ice thickness and bed topography: A case study at Columbia Glacier, Alaska, USA. J. Glaciol. 2012, 58, 1151–1164. [Google Scholar] [CrossRef]
- Burgess, E.W. Ice Flow Dynamics of Alaska Glaciers. Ph.D. Thesis, Department of Geography, The University of Utah, Salt Lake City, UT, USA, 2013. [Google Scholar]
- Walter, F.; O’Neel, S.; McNamara, D.; Pfeffer, W.T.; Bassis, J.N.; Fricker, H.A. Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- O’Neel, S. Surface Mass Balance of Columbia Glacier, Alaska, 1978 and 2010 Balance Years; U.S. Geological Survey: Reston, VA, USA, 2012; p. 8.
- Rasmussen, L.; Conway, H.; Krimmel, R.; Hock, R. Surface mass balance, thinning and iceberg production, Columbia Glacier, Alaska, 1948–2007. J. Glaciol. 2011, 57, 431–440. [Google Scholar] [CrossRef]
- Breit, H.; Fritz, T.; Balss, U.; Niedermeier, A.; Eineder, M.; Yague-Martinez, N.; Rossi, C. Processing of bistatic TanDEM-X data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 2640–2643. [Google Scholar]
- Fritz, T.; Rossi, C.; Yague-Martinez, N.; Rodriguez-Gonzalez, F.; Lachaise, M.; Breit, H. Interferometric processing of TanDEM-X data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 2428–2431. [Google Scholar]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef]
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.; Gardner, A.; Hagen, J.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C.; et al. Randolph Glacier Inventory—A Dataset of Glacier Outlines; Version 4.0; Digital Media; Global Land Ice Measurements from Space (GLIMS): Boulder, CO, USA, 2014. [Google Scholar]
- Kienholz, C.; Herreid, S.; Arendt, A.A.; Hock, R.; Burgess, E. Derivation and analysis of a complete modern-date glacier inventory for Alaska and northwest Canada. J. Glaciol. 2015, 61, 403–420. [Google Scholar] [CrossRef]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmüller, U.; Werner, C.L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005; Volume 7, pp. 4803–4805. [Google Scholar]
- Strozzi, T.; Kouraev, A.; Wiesmann, A.; Wegmüller, U.; Sharov, A.; Werner, C. Estimation of Arctic glacier motion with satellite L-band SAR data. Remote Sens. Environ. 2008, 112, 636–645. [Google Scholar] [CrossRef]
- Seehaus, T.; Marinsek, S.; Helm, V.; Skvarca, P.; Braun, M. Changes in ice dynamics, elevation and mass discharge of Dinsmoor-Bombardier-Edgeworth glacier system, Antarctic Peninsula. Earth Planet. Sci. Lett. 2015, 427, 125–135. [Google Scholar] [CrossRef]
- Ferretti, A.; Monti-Guarnieri, A.; Prati, C.; Rocca, F.; Massonnet, D. InSAR Principles: Guidelines for SAR Interferometry Procesing and Interpretation (TM-19, February 2007); ESA Publications, ESTEC, Postbus: Noordwijk, The Netherlands, 2007. [Google Scholar]
- Müller, K.; Hamran, S.E.; Sinisalo, A.; Hagen, J.O. Phase Center of L-Band Radar in Polar Snow and Ice. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4572–4579. [Google Scholar] [CrossRef]
- Mätzler, C. Applications of the interaction of microwaves with the natural snow cover. Remote Sens. Rev. 1987, 2, 259–387. [Google Scholar] [CrossRef]
- Rignot, E.; Echelmeyer, K.; Krabill, W. Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett. 2001, 28, 3501–3504. [Google Scholar] [CrossRef]
- Rott, H.; Floricioiu, D.; Wuite, J.; Scheiblauer, S.; Nagler, T.; Kern, M. Mass changes of outlet glaciers along the Nordensjköld Coast, northern Antarctic Peninsula, based on TanDEM-X satellite measurements. Geophys. Res. Lett. 2014, 41, 8123–8129. [Google Scholar] [CrossRef]
- Andersen, M.L.; Stenseng, L.; Skourup, H.; Colgan, W.; Khan, S.A.; Kristensen, S.S.; Andersen, S.B.; Box, J.E.; Ahlstrøm, A.P.; Fettweis, X.; et al. Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth Planet. Sci. Lett. 2015, 409, 89–95. [Google Scholar] [CrossRef]
- O’Neel, S.; Pfeffer, W.T.; Krimmel, R.; Meier, M. Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat. J. Geophys. Res. Earth Surf. 2005, 110. [Google Scholar] [CrossRef]
- Vieli, A.; Jania, J.; Blatter, H.; Funk, M. Short-term velocity variations on Hansbreen, a tidewater glacier in Spitsbergen. J. Glaciol. 2004, 50, 389–398. [Google Scholar] [CrossRef]
- Meier, M.; Lundstrom, S.; Stone, D.; Kamb, B.; Engelhardt, H.; Humphrey, N.; Dunlap, W.W.; Fahnestock, M.; Krimmel, R.M.; Walters, R. Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier: 1. Observations. J. Geophys. Res. Solid Earth 1994, 99, 15219–15229. [Google Scholar] [CrossRef]
- Kamb, B.; Engelhardt, H.; Fahnestock, M.; Humphrey, N.; Meier, M.; Stone, D. Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier: 2. Interpretations. J. Geophys. Res. Solid Earth 1994, 99, 15231–15244. [Google Scholar] [CrossRef]
- Boldt, L.K.; Hallet, B.; Pratt, T.; O’Neel, S. Observation and modeling of fjord sedimentation during the 30-year retreat of Columbia Glacier, AK. J. Glaciol. 2016, 62, 778–793. [Google Scholar] [CrossRef]
- Benn, D.I.; Warren, C.R.; Mottram, R.H. Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev. 2007, 82, 143–179. [Google Scholar] [CrossRef]
Acquisition Time | Orbital Pass | Depression Angle () | Az.(m) × Sl.Rg Resolution (m) | Product |
---|---|---|---|---|
2009 | Ascending | 58.98 | 2.06 × 0.90 | SV |
2009 | Descending | 54.55 | 1.89 × 1.36 | SV |
2011–2016 | Ascending | 49.63 | 2.0 × 0.90 | SV, EC, AC, MF |
2011–2016 | Descending | 46.82 | 1.84 × 0.90 | SV, EC, AC, MF |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vijay, S.; Braun, M. Seasonal and Interannual Variability of Columbia Glacier, Alaska (2011–2016): Ice Velocity, Mass Flux, Surface Elevation and Front Position. Remote Sens. 2017, 9, 635. https://doi.org/10.3390/rs9060635
Vijay S, Braun M. Seasonal and Interannual Variability of Columbia Glacier, Alaska (2011–2016): Ice Velocity, Mass Flux, Surface Elevation and Front Position. Remote Sensing. 2017; 9(6):635. https://doi.org/10.3390/rs9060635
Chicago/Turabian StyleVijay, Saurabh, and Matthias Braun. 2017. "Seasonal and Interannual Variability of Columbia Glacier, Alaska (2011–2016): Ice Velocity, Mass Flux, Surface Elevation and Front Position" Remote Sensing 9, no. 6: 635. https://doi.org/10.3390/rs9060635
APA StyleVijay, S., & Braun, M. (2017). Seasonal and Interannual Variability of Columbia Glacier, Alaska (2011–2016): Ice Velocity, Mass Flux, Surface Elevation and Front Position. Remote Sensing, 9(6), 635. https://doi.org/10.3390/rs9060635