The Effects of Aerosol on the Retrieval Accuracy of NO2 Slant Column Density
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. No-Noise Conditions
3.2. Noise Conditions
3.3. Investigation of the Effects of AOD and APH on NO2 SCD Precision Under Real Conditions
3.3.1. Heavily Polluted Regions in Hong Kong-Macau
3.3.2. Heavily and Moderately Polluted Regions in Japan
3.3.3. Clean Regions in Manila
3.3.4. Pixel Co-Adding
4. Discussion
- In moderately polluted and clean regions (NO2 VCD < 2 × 1016 molecules cm−2), high AOD and APH can degrade the accuracy of NO2 SCD retrieval. The effects of high AOD and APH on NO2 SCD precision increase with a decreasing NO2 column. These effects would occur in moderately polluted regions including London and Brussels in Europe and Los Angeles and Atlanta in the United States (Figure 10 and Figure 11).
- Large AOD and APH lead to a decrease in NO2 SCD precision, especially in moderately polluted and clean regions.
- The use of a pixel co-adding technique increases SNR and reduces the effects of AOD and APH on NO2 SCD precision. The R value between NO2 SCDtrue and NO2 SCDretrieved increases from 0.53 to 0.58, and the average APD between NO2 SCDtrue and NO2 SCDretrieved decreases from 15.5% to 2.52% after pixel co-adding (Figure 12).
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Boersma, K.; Jacob, D.J.; Trainic, M.; Rudich, Y.; DeSmedt, I.; Dirksen, R.; Eskes, H. Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities. Atmos. Chem. Phys. 2009, 9, 3867–3879. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.; Begoin, M.; Hilboll, A.; Burrows, J. An improved NO2 retrieval for the GOME-2 satellite instrument. Atmos. Meas. Tech. 2011, 4, 1147–1159. [Google Scholar] [CrossRef]
- Platt, U.; Stutz, J. Differential absorption spectroscopy. In Differential Optical Absorption Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2008; pp. 135–174. [Google Scholar]
- Leue, C.; Wenig, M.; Wagner, T.; Klimm, O.; Platt, U.; Jähne, B. Quantitative analysis of NOx emissions from Global Ozone Monitoring Experiment satellite image sequences. J. Geophys. Res. Atmos. 2001, 106, 5493–5505. [Google Scholar] [CrossRef]
- Russell, A.; Perring, A.; Valin, L.; Bucsela, E.; Browne, E.; Wooldridge, P.; Cohen, R. A high spatial resolution retrieval of NO2 column densities from OMI: Method and evaluation. Atmos. Chem. Phys. 2011, 11, 8543–8554. [Google Scholar] [CrossRef]
- Bucsela, E.; Krotkov, N.; Celarier, E.; Lamsal, L.; Swartz, W.; Bhartia, P.; Boersma, K.; Veefkind, J.; Gleason, J.; Pickering, K. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: Applications to OMI. Atmos. Meas. Tech. 2013, 6, 2607. [Google Scholar] [CrossRef]
- Valks, P.; Pinardi, G.; Richter, A.; Lambert, J.-C.; Hao, N.; Loyola, D.; Van Roozendael, M.; Emmadi, S. Operational total and tropospheric NO2 column retrieval for GOME-2. Atmos. Meas. Tech. 2011, 4, 1491. [Google Scholar] [CrossRef]
- Chance, K. OMI algorithm theoretical basis document, volume IV: OMI trace gas algorithms. Accessed on 2002, 12, 2009. [Google Scholar]
- Boersma, K.; Eskes, H.; Brinksma, E. Error analysis for tropospheric NO2 retrieval from space. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Leitão, J.; Richter, A.; Vrekoussis, M.; Kokhanovsky, A.; Zhang, Q.; Beekmann, M.; Burrows, J. On the improvement of NO2 satellite retrievals–aerosol impact on the airmass factors. Atmos. Meas. Tech. 2010, 3, 475–493. [Google Scholar] [CrossRef]
- Hong, H.; Lee, H.; Kim, J.; Jeong, U.; Ryu, J.; Lee, D.S. Investigation of Simultaneous Effects of Aerosol Properties and Aerosol Peak Height on the Air Mass Factors for Space-Borne NO2 Retrievals. Remote Sens. 2017, 9, 208. [Google Scholar] [CrossRef]
- Boersma, K.F.; Eskes, H.J.; Veefkind, J.P.; Brinksma, E.J.; Van Der A, R.J.; Sneep, M.; Van Den Oord, G.H.J.; Levelt, P.F.; Stammes, P.; Gleason, J.F.; et al. Near-real time retrieval of tropospheric NO2 from OMI. Atmos. Chem. Phys. 2007, 7, 2103–2118. [Google Scholar] [CrossRef]
- Irie, H.; Iwabuchi, H.; Noguchi, K.; Kasai, Y.; Kita, K.; Akimoto, H. Quantifying the relationship between the measurement precision and specifications of a UV/visible sensor on a geostationary satellite. Adv. Space Res. 2012, 49, 1743–1749. [Google Scholar] [CrossRef]
- Spurr, R.; Christi, M. On the generation of atmospheric property Jacobians from the (V) LIDORT linearized radiative transfer models. J. Quant. Spectrosc. Radiat. Transf. 2014, 142, 109–115. [Google Scholar] [CrossRef]
- Jeong, U.; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P.K.; Spurr, R.J.; Haffner, D.; Chance, K.; Holben, B.N. An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations. Atmos. Chem. Phys. 2016, 16, 177–193. [Google Scholar] [CrossRef]
- Natraj, V.; Liu, X.; Kulawik, S.; Chance, K.; Chatfield, R.; Edwards, D.P.; Eldering, A.; Francis, G.; Kurosu, T.; Pickering, K. Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements. Atmos. Environ. 2011, 45, 7151–7165. [Google Scholar] [CrossRef]
- Fayt, C.; De Smedt, I.; Letocart, V.; Merlaud, A.; Pinardi, G.; Van Roozendael, M.; Roozendael, M. QDOAS Software User Manual; Belgian Institute for Space Aeronomy: Brussels, Belgium, 2011; Volume 1. [Google Scholar]
- Vandaele, A.C.; Hermans, C.; Simon, P.C.; Carleer, M.; Colin, R.; Fally, S.; Merienne, M.-F.; Jenouvrier, A.; Coquart, B. Measurements of the NO2 absorption cross-section from 42,000 cm−1 to 10,000 cm−1 (238–1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transf. 1998, 59, 171–184. [Google Scholar] [CrossRef]
- Bogumil, K.; Orphal, J.; Burrows, J.P. Temperature dependent absorption cross sections of O3, NO2, and other atmospheric trace gases measured with the SCIAMACHY spectrometer. In Proceedings of the ERS-Envisat-Symposium, Goteborg, Sweden, 16–20 October 2000. [Google Scholar]
- Shimizu, A.; Sugimoto, N.; Matsui, I.; Arao, K.; Uno, I.; Murayama, T.; Kagawa, N.; Aoki, K.; Uchiyama, A.; Yamazaki, A. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Hayasaka, T.; Satake, S.; Shimizu, A.; Sugimoto, N.; Matsui, I.; Aoki, K.; Muraji, Y. Vertical distribution and optical properties of aerosols observed over Japan during the Atmospheric Brown Clouds–East Asia Regional Experiment 2005. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Irie, H.; Boersma, K.; Kanaya, Y.; Takashima, H.; Pan, X.; Wang, Z. Quantitative bias estimates for tropospheric NO2 columns retrieved from SCIAMACHY, OMI, and GOME-2 using a common standard for East Asia. Atmos. Meas. Tech. 2012, 5, 2403–2411. [Google Scholar] [CrossRef]
- Van Der A, R.; Peters, D.; Eskes, H.; Boersma, K.; Van Roozendael, M.; De Smedt, I.; Kelder, H. Detection of the trend and seasonal variation in tropospheric NO2 over China. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Li, C.; Lau, A.-H.; Mao, J.; Chu, D.A. Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2650–2658. [Google Scholar]
- Huang, K.; Fu, J.S.; Hsu, N.C.; Gao, Y.; Dong, X.; Tsay, S.-C.; Lam, Y.F. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmos. Environ. 2013, 78, 291–302. [Google Scholar] [CrossRef]
- Russell, A.; Valin, L.; Cohen, R. Trends in OMI NO2 observations over the United States: Effects of emission control technology and the economic recession. Atmos. Chem. Phys. 2012, 12, 12197–12209. [Google Scholar] [CrossRef]
- Stutz, J.; Platt, U. Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods. Appl. Opt. 1996, 35, 6041–6053. [Google Scholar] [CrossRef] [PubMed]
- Jacovides, C.P.; Varotsos, C.; Kaltsounides, N.A.; Petrakis, M.; Lalas, D.P. Atmospheric turbidity parameters in the highly polluted site of Athens basin. Renew. Energy 1994, 4, 465–470. [Google Scholar] [CrossRef]
- Asimakopoulos, D.; Deligiorgi, D.; Drakopoulos, C.; Helmis, C.; Kokkori, K.; Lalas, D.; Sikiotis, D.; Varotsos, C. An experimental study of nightime air-pollutant transport over complex terrain in Athens. Atmos. Environ. Part B Urban Atmos. 1992, 26, 59–71. [Google Scholar] [CrossRef]
- Sanders, A.F.; De Haan, J.F.; Veefkind, J.P. Retrieval of aerosol height from the oxygen A band with TROPOMI. In Proceedings of the Advances in Atmospheric Science and Applications, Bruges, Belgium, 18–22 June 2012. [Google Scholar]
- Hollstein, A.; Fischer, J. Retrieving aerosol height from the oxygen A band: A fast forward operator and sensitivity study concerning spectral resolution, instrumental noise, and surface inhomogeneity. Atmos. Meas. Tech. 2014, 7, 1429–1441. [Google Scholar] [CrossRef]
- Varotsos, C.; Alexandris, D.; Chronopoulos, G.; Tzanis, C. Aircraft observations of the solar ultraviolet irradiance throughout the troposphere. J. Geophys. Res. Atmos. 2001, 106, 14843–14854. [Google Scholar] [CrossRef]
Variables | Value |
---|---|
NO2 VCD | 5 × 1016 molec. cm−2 |
1 × 1016 molec. cm−2 | |
7.5 × 1015 molec. cm−2 | |
5 × 1015 molec. cm−2 | |
2.5 × 1015 molec. cm−2 | |
1 × 1015 molec. cm−2 | |
9 × 1014 molec. cm−2 | |
8 × 1014 molec. cm−2 | |
7 × 1014 molec. cm−2 | |
6 × 1014 molec. cm−2 | |
5 × 1014 molec. cm−2 | |
AOD | 0.1, 0.5, 1 |
SSA | 0.999, 0.900, 0.820 |
APH | 0 km, 2 km, 4 km |
AMFG (SZA or VZA) = sec(SZA) + sec(VZA) | 2.3 (20°, 40°), 2.6 (40°, 40°), 4.2 (40°, 70°) |
RAA | 0°, 90°, 180° |
SFR | 0.04, 0.08, 0.12 |
Category | NO2 Column Range | Case Study Area | Low-AOD Condition | High-AOD Condition |
---|---|---|---|---|
Heavily polluted regions | >2 × 1016 molecules cm−2 | Hong Kong-Macau | 0.16 < AOD < 0.24 | 0.8 < AOD < 1.2 |
APH = 0 km | APH = 4 km | |||
Tokyo, Osaka | 0.09 < AOD < 0.12 | 0.9 < AOD < 1.2 | ||
APH = 0 km | APH = 4 km | |||
Moderately polluted regions | >5 × 1015 molecules cm−2 | Japan (except Tokyo and Osaka) | 0.09 < AOD < 0.12 | 0.9 < AOD < 1.2 |
<2 × 1016 molecules cm−2 | APH = 0 km | APH = 4 km | ||
Clean regions | <5 × 1015 molecules cm−2 | Manila | AOD = 0.02 | AOD = 1.0 |
APH = 0 km | APH = 4 km |
Category | Case Study Area | Conditions | Averaged NO2 SCDtrue (1016 molecules cm−2) | Averaged NO2 SCDretrieved | Absolute Percentage Difference (%) | Root Mean Square Error (1014 molecules cm−2) |
---|---|---|---|---|---|---|
Heavily polluted regions | Hong Kong-Macau | In low AOD condition | 3.3 | 3.3 | 3.2 | 9.8 |
In high AOD condition | 1.5 | 1.3 | 9.5 | 13.4 | ||
Tokyo, Osaka | In low AOD condition | 4.0 | 4.4 | 11.4 | 44.8 | |
In high AOD condition | 1.3 | 1.3 | 16.1 | 38.0 | ||
Moderately polluted regions | Japan (except Tokyo and Osaka) | In low AOD condition | 1.7 | 1.9 | 12.0 | 6.1 |
In high AOD condition | 0.9 | 0.9 | 16.4 | 4.9 | ||
Clean regions | Manila | In low AOD condition | 0.8 | 0.8 | 15.4 | 3.0 |
In high AOD condition | 0.7 | 0.7 | 15.5 | 3.7 | ||
In high AOD condition (pixel co-adding) | 0.8 | 0.8 | 2.5 | 2.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, H.; Kim, J.; Jeong, U.; Han, K.-s.; Lee, H. The Effects of Aerosol on the Retrieval Accuracy of NO2 Slant Column Density. Remote Sens. 2017, 9, 867. https://doi.org/10.3390/rs9080867
Hong H, Kim J, Jeong U, Han K-s, Lee H. The Effects of Aerosol on the Retrieval Accuracy of NO2 Slant Column Density. Remote Sensing. 2017; 9(8):867. https://doi.org/10.3390/rs9080867
Chicago/Turabian StyleHong, Hyunkee, Jhoon Kim, Ukkyo Jeong, Kyung-soo Han, and Hanlim Lee. 2017. "The Effects of Aerosol on the Retrieval Accuracy of NO2 Slant Column Density" Remote Sensing 9, no. 8: 867. https://doi.org/10.3390/rs9080867
APA StyleHong, H., Kim, J., Jeong, U., Han, K. -s., & Lee, H. (2017). The Effects of Aerosol on the Retrieval Accuracy of NO2 Slant Column Density. Remote Sensing, 9(8), 867. https://doi.org/10.3390/rs9080867