Determination of Multi-Class Mycotoxins in Tartary Buckwheat by Ultra-Fast Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of UFLC-QTrap-MS/MS Analysis Condition
2.2. Peak Identification
2.3. Method Validation
2.4. Determination of Tartary Buckwheat Samples
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Sample Collection and Preparation
4.3. UFLC-QTrap-MS/MS Analysis of Multi-Class Mycotoxins
4.4. Method Validation
4.5. Statistical Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhao, J.; Xiang, D.; Peng, L.; Zou, L.; Wang, Y.; Zhao, G. Enhancement of rutin production in Fagopyrum tataricum hairy root cultures with its endophytic fungal elicitors. Prep. Biochem. Biotechnol. 2014, 44, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.L.; Zou, L.; Zhang, C.Q.; Li, Y.Y.; Peng, L.X.; Xiang, D.B.; Zhao, G. Efficient production of flavonoids in Fagopyrum tataricum hairy root cultures with yeast polysaccharide elicitation and medium renewal process. Pharmacogn. Mag. 2014, 10, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Merendino, N.; Molinari, R.; Costantini, L.; Mazzucato, A.; Pucci, A.; Bonafaccia, F.; Esti, M.; Ceccantoni, B.; Papeschi, C.; Bonafaccia, G. A new “functional” pasta containing tartary buckwheat sprouts as an ingredient improves the oxidative status and normalizes some blood pressure parameters in spontaneously hypertensive rats. Food Funct. 2014, 5, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.M.; Wei, P. Anti-fatigue properties of tartary buckwheat extracts in mice. Int. J. Mol. Sci. 2011, 12, 4770–4780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, R.; Li, Y.M.; Liang, N.; Zhao, Y.; Zhu, H.; He, Z.; Liu, J.; Hao, W.; Jiao, R.; et al. Cholesterol-Lowering Activity of Tartary Buckwheat Protein. J. Agric. Food Chem. 2017, 65, 1900–1906. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.X.; Zou, L.; Wang, J.B.; Zhao, J.L.; Xiang, D.B.; Zhao, G. Flavonoids, Antioxidant Activity and Aroma Compounds Analysis from Different Kinds of Tartary Buckwheat Tea. Indian J. Pharm. Sci. 2015, 77, 661–667. [Google Scholar] [PubMed]
- Zhu, F. Chemical composition and health effects of Tartary buckwheat. Food Chem. 2016, 203, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Kovacec, E.; Likar, M.; Regvar, M. Temporal changes in fungal communities from buckwheat seeds and their effects on seed germination and seedling secondary metabolism. Fungal Biol. UK 2016, 120, 666–678. [Google Scholar] [CrossRef] [PubMed]
- Logrieco, A.; Moretti, A.; Solfrizzo, M. Alternaria toxins and plant diseases: An overview of origin, occurrence and risks. World Mycotoxin J. 2009, 2, 129–140. [Google Scholar] [CrossRef]
- Chitarrini, G.; Nobili, C.; Pinzari, F.; Antonini, A.; De Rossi, P.; Del Fiore, A.; Procacci, S.; Tolaini, V.; Scala, V.; Scarpari, M.; et al. Buckwheat achenes antioxidant profile modulates Aspergillus flavus growth and aflatoxin production. Int. J. Food Microbiol. 2014, 189, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Alshannaq, A.; Yu, J.H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Chu, X.; Ling, Y.; Huang, J.; Chang, J. Multi-mycotoxin analysis in dairy products by liquid chromatography coupled to quadrupole orbitrap mass spectrometry. J. Chromatogr. A 2014, 1345, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Muller, J.; Vanlauwe, B.; Bandyopadhyay, R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application—A review. Food Control 2017, 76, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Krysinska-Traczyk, E.; Perkowski, J.; Dutkiewicz, J. Levels of fungi and mycotoxins in the samples of grain and grain dust collected from five various cereal crops in eastern Poland. Ann. Agric. Environ. Med. 2007, 14, 159–167. [Google Scholar] [PubMed]
- Zangheri, M.; Di Nardo, F.; Anfossi, L.; Giovannoli, C.; Baggiani, C.; Roda, A.; Mirasoli, M. A multiplex chemiluminescent biosensor for type B-fumonisins and aflatoxin B1 quantitative detection in maize flour. Analyst 2015, 140, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Luci, G.; Intorre, L.; Ferruzzi, G.; Mani, D.; Giuliotti, L.; Pretti, C.; Tognetti, R.; Bertini, S.; Meucci, V. Determination of ochratoxin A in tissues of wild boar (Sus scrofa L.) by enzymatic digestion (ED) coupled to high-performance liquid chromatography with a fluorescence detector (HPLC-FLD). Mycotoxin Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Hong, S.Y.; Kang, J.W.; Cho, S.M.; Lee, K.R.; An, T.K.; Lee, C.; Chung, S.H. Simultaneous Determination of Multi-Mycotoxins in Cereal Grains Collected from South Korea by LC/MS/MS. Toxins 2017, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Hamed, A.M.; Arroyo-Manzanares, N.; Garcia-Campana, A.M.; Gamiz-Gracia, L. Determination of Fusarium toxins in functional vegetable milks applying salting-out-assisted liquid-liquid extraction combined with ultra-high-performance liquid chromatography tandem mass spectrometry. Food Addit. Contam. A 2017, 34, 2033–2041. [Google Scholar] [CrossRef] [PubMed]
- Rico-Yuste, A.; Walravens, J.; Urraca, J.L.; Abou-Hany, R.A.G.; Descalzo, A.B.; Orellana, G.; Rychlik, M.; De Saeger, S.; Moreno-Bondi, M.C. Analysis of alternariol and alternariol monomethyl ether in foodstuffs by molecularly imprinted solid-phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry. Food Chem. 2018, 243, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Amirkhizi, B.; Arefhosseini, S.R.; Ansarin, M.; Nemati, M. Aflatoxin B1 in eggs and chicken livers by dispersive liquid-liquid microextraction and HPLC. Food Addit. Contam. B 2015, 8, 245–249. [Google Scholar]
- Zhang, L.; Dou, X.; Kong, W.; Liu, C.; Han, X.; Yang, M. Assessment of critical points and development of a practical strategy to extend the applicable scope of immunoaffinity column cleanup for aflatoxin detection in medicinal herbs. J. Chromatogr. A 2017, 1483, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Miro-Abella, E.; Herrero, P.; Canela, N.; Arola, L.; Borrull, F.; Ras, R.; Fontanals, N. Determination of mycotoxins in plant-based beverages using QuEChERS and liquid chromatography-tandem mass spectrometry. Food Chem. 2017, 229, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, H.; Ying, G.; Yang, M.; Nian, Y.; Liu, J.; Kong, W. Relationship of Mycotoxins Accumulation and Bioactive Components Variation in Ginger after Fungal Inoculation. Front. Pharmacol. 2017, 8, 331. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Kong, W.; Li, Y.; Liu, H.; Liu, Q.; Dou, X.; Ou-Yang, Z.; Yang, M. High-throughput determination of multi-mycotoxins in Chinese yam and related products by ultra fast liquid chromatography coupled with tandem mass spectrometry after one-step extraction. J. Chromatogr. B 2016, 1022, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Monbaliu, S.; Van Poucke, C.; Detavernier, C.; Dumoulin, F.; Van De Velde, M.; Schoeters, E.; Van Dyck, S.; Averkieva, O.; Van Peteghem, C.; De Saeger, S. Occurrence of mycotoxins in feed as analyzed by a multi-mycotoxin LC-MS/MS method. J. Agric. Food Chem. 2010, 58, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Kong, W.; Guo, W.; Yang, M. Multi-class mycotoxins analysis in Angelica sinensis by ultra fast liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B 2015, 988, 175–181. [Google Scholar] [CrossRef] [PubMed]
Analyte | RTW (min) | Precursor Ion (m/z) | Molecular Ion | Product Ions (m/z) a | Product Ions Ratio b (mean ± RSD) | DP c | EP c | CE c | CXP c |
---|---|---|---|---|---|---|---|---|---|
AFG2 | 4.15–4.46 | 331.1 | [M + H]+ | 245.1 (Q) | 1.75 ± 0.03 | 130 | 10 | 40 | 17 |
217.0 (q) | 130 | 10 | 48 | 15 | |||||
AFB2 | 4.38–4.69 | 315.0 | [M + H]+ | 287.1 (Q) | 1.32 ± 0.02 | 170 | 10 | 36 | 16 |
259.1 (q) | 170 | 10 | 40 | 16 | |||||
AFG1 | 4.39–4.70 | 329.0 | [M + H]+ | 243.1 (Q) | 2.13 ± 0.05 | 130 | 10 | 37 | 14 |
215.0 (q) | 130 | 10 | 44 | 14 | |||||
AFB1 | 4.60–4.90 | 313.0 | [M + H]+ | 285.1 (Q) | 2.09 ± 0.02 | 110 | 10 | 32 | 17 |
269.0 (q) | 110 | 10 | 43 | 17 | |||||
FB1 | 4.26–4.56 | 722.5 | [M + H]+ | 334.5 (Q) | 1.06 ± 0.03 | 120 | 10 | 52 | 14 |
352.4 (q) | 120 | 10 | 48 | 13 | |||||
FB2 | 4.71–5.02 | 706.5 | [M + H]+ | 336.2 (Q) | 3.51 ± 0.02 | 110 | 10 | 47 | 15 |
318.5 (q) | 110 | 10 | 43 | 15 | |||||
HT-2 | 4.78–5.09 | 425.1 | [M + H]+ | 263.0 (Q) | 1.48 ± 0.15 | 90 | 10 | 15 | 13 |
215.0 (q) | 90 | 10 | 15 | 10 | |||||
T-2 | 5.60–5.85 | 467.2 | [M + H]+ | 215.0 (Q) | 1.16 ± 0.12 | 110 | 10 | 20 | 11 |
185.1 (q) | 110 | 10 | 24 | 13 | |||||
OTA | 5.91–6.18 | 404.2 | [M + H]+ | 239.1 (Q) | 3.93 ± 0.05 | 110 | 10 | 30 | 13 |
358.0 (q) | 110 | 10 | 26 | 13 | |||||
DON | 1.09–1.60 | 341.0 | [M − H]− | 265.2 (Q) | 1.15 ± 0.03 | −70 | 10 | −16 | −11 |
295.2 (q) | −70 | 10 | −15 | −12 | |||||
ZON | 5.92–6.28 | 317.1 | [M − H]− | 131.0 (Q) | 1.94 ± 0.02 | −70 | 10 | −41 | −11 |
175.0 (q) | −70 | 10 | −25 | −7 | |||||
ZAN | 5.87–6.15 | 319.1 | [M − H]− | 205.0 (Q) | 5.18 ± 0.14 | −180 | 10 | −34 | −15 |
275.0 (q) | −180 | 10 | −40 | −15 |
Mycotoxin | Linear Equation | r | Linear Range (ng·mL−1) | LOQ (ng·mL−1) | LOD (ng·mL−1) | SSE (%) |
---|---|---|---|---|---|---|
AFG2 | Y = 1.58 × 104X − 405 | 0.9993 | 0.5–25 | 0.5 | 0.25 | 119.21 |
AFB2 | Y = 3.85 × 104X − 182 | 0.9997 | 0.25–25 | 0.25 | 0.125 | 95.20 |
AFG1 | Y = 4.58 × 104X − 9.55 × 103 | 0.9992 | 1–100 | 1 | 0.5 | 114.85 |
AFB1 | Y = 6.05 × 104X + 3.06 × 104 | 0.9993 | 1–100 | 0.1 | 0.05 | 111.82 |
FB1 | Y = 2.2 × 103X − 1.4 × 103 | 0.9988 | 5–500 | 5 | 2.5 | 102.47 |
FB2 | Y = 4.35 × 103X − 729 | 0.9989 | 5–500 | 1 | 0.5 | 113.20 |
HT-2 | Y = 201X + 512 | 0.9982 | 50–500 | 50 | 20 | 103.68 |
T-2 | Y = 278X + 339 | 0.9974 | 50–500 | 50 | 20 | 112.40 |
OTA | Y = 3.45 × 104X − 1.78 × 103 | 0.9998 | 1–100 | 0.25 | 0.1 | 116.88 |
DON | Y = 358X + 1.2 × 103 | 0.9999 | 50–1000 | 50 | 25 | 121.80 |
ZON | Y = 1.06 × 104X − 1.25 × 104 | 0.9994 | 5–500 | 1 | 0.5 | 112.09 |
ZAN | Y = 1.68 × 103X − 2.6 × 103 | 0.9999 | 10–500 | 10 | 5 | 113.22 |
Mycotoxins | High Level (50 μg·kg−1) | Medium Level (10 μg·kg−1) | Low Level (5 μg·kg−1) | |||
---|---|---|---|---|---|---|
Mean (%) | RSD (%) | Mean (%) | RSD (%) | Mean (%) | RSD (%) | |
AFG2 | 79.77 | 11.25 | 80.20 | 10.49 | 79.52 | 13.85 |
AFB2 | 82.52 | 9.66 | 87.66 | 12.62 | 83.05 | 10.71 |
AFG1 | 88.58 | 6.94 | 90.48 | 7.40 | 95.20 | 5.29 |
AFB1 | 100.79 | 5.62 | 103.25 | 6.91 | 104.24 | 4.80 |
FB1 | 102.45 | 11.28 | 99.68 | 14.05 | 105.24 | 13.92 |
FB2 | 92.82 | 10.29 | 86.86 | 12.54 | 96.16 | 12.92 |
HT-2 | 103.60 | 13.77 | 105.27 | 12.58 | 108.92 | 12.94 |
T-2 | 96.97 | 10.61 | 89.81 | 9.42 | 94.70 | 11.38 |
OTA | 95.39 | 4.35 | 98.50 | 5.77 | 106.85 | 5.28 |
DON | 103.27 | 9.56 | 106.75 | 13.52 | 108.39 | 14.27 |
ZON | 96.71 | 4.78 | 93.28 | 6.93 | 94.61 | 8.54 |
ZAN | 94.62 | 4.96 | 87.05 | 8,55 | 90.52 | 7.62 |
Sample | Origin | Mycotoxin Detected | Mycotoxin Residue (μg·kg−1) | MRL Suggested (μg·kg−1) |
---|---|---|---|---|
Cultivar Haizige | Yanyuan city, Sichuan Province | ND a | - | |
Meigu No. 2 | Meigu city, Sichuan Province | AFB1 | 5.62 | ˂2.0 μg·kg−1 for AFB1˂4.0 μg·kg−1 for sum of Afs b |
Da’anben No. 3 | Meigu city, Sichuan Province | ND | - | |
Liuku No. 3 | Jintang city, Sichuan Province | ND | - | |
Yunku No. 1 | Jintang city, Sichuan Province | ND | - | |
Jinku No. 2 | Jintang city, Sichuan Province | ND | - | |
Xiqiao No. 3 | Jintang city, Sichuan Province | ND | - | |
Jiujiang buckwheat | Dayi city, Sichuan Province | ND | - | |
Yunnan huaku | Meigu city, Sichuan Province | ND | - | |
Tongliao buckwheat | Yanyuan city, Sichuan Province | ND | - | |
Chuanqiao No. 2 | Jintang city, Sichuan Province | ND | - | |
Heifeng No. 1 | Dayi city, Sichuan Province | ND | - | |
Dianning No. 1 | Yanyuan city, Sichuan Province | ND | - | |
Qianku No. 5 of F. tataricum | Dayi city, Sichuan Province | ND | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, G.; Hu, Y.; Zhang, J.; Zou, L.; Zhao, G. Determination of Multi-Class Mycotoxins in Tartary Buckwheat by Ultra-Fast Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Toxins 2018, 10, 28. https://doi.org/10.3390/toxins10010028
Ren G, Hu Y, Zhang J, Zou L, Zhao G. Determination of Multi-Class Mycotoxins in Tartary Buckwheat by Ultra-Fast Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Toxins. 2018; 10(1):28. https://doi.org/10.3390/toxins10010028
Chicago/Turabian StyleRen, Guixing, Yichen Hu, Jinming Zhang, Liang Zou, and Gang Zhao. 2018. "Determination of Multi-Class Mycotoxins in Tartary Buckwheat by Ultra-Fast Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry" Toxins 10, no. 1: 28. https://doi.org/10.3390/toxins10010028
APA StyleRen, G., Hu, Y., Zhang, J., Zou, L., & Zhao, G. (2018). Determination of Multi-Class Mycotoxins in Tartary Buckwheat by Ultra-Fast Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Toxins, 10(1), 28. https://doi.org/10.3390/toxins10010028