Visual Non-Instrumental On-Site Detection of Fumonisin B1, B2, and B3 in Cereal Samples Using a Clean-Up Combined with Gel-Based Immunoaffinity Test Column Assay
Abstract
:1. Introduction
2. Results and Discussion
2.1. Development of IATC Assay
2.2. Specificity of IATC Assay
2.3. Sample Analysis
2.3.1. Maize Samples
2.3.2. Barley Samples
2.3.3. Oat and Millet Samples
2.4. Comparison of IATC and Commercial ELISA Test Kits for the Analysis of Cereal Samples
2.5. Determination of Fumonisins in Real Maize Samples
3. Conclusions
4. Materials and Methods
4.1. Materials and Buffers
4.2. Preparation of Antibody
4.3. Preparation of Enzyme Conjugate (FB1-HRP)
4.4. Preparation of Anti-FB1 Antibody Gel and Anti-HRP Antibody Gel
4.5. Preparation of Blocked Gel
4.6. Assembly of IATC
4.7. Preparation of Clean-Up Column For IATC
4.8. LC-MS/MS Analysis
4.9. Sample Preparation
4.10. IATC Assay Test Procedure
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gelderblom, W.C.A.; Jaskiewicz, K.; Marasas, W.F.O.; Thiel, P.G.; Horak, R.M.; Vleggaar, R.; Kriek, N.P.J. Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl. Environ. Microbiol. 1988, 54, 1806–1811. [Google Scholar]
- Howard, P.C.; Couch, L.H.; Patton, R.E.; Eppley, R.M.; Doerge, D.R.; Churchwell, M.I.; Marques, M.M.; Okerberg, C.V. Comparison of the toxicity of several fumonisin derivatives in a 28-day feeding study with female B6C3F1 mice. Toxicol. Appl. Pharmacol. 2002, 185, 153–165. [Google Scholar] [CrossRef]
- Placinta, C.M.; D’mello, J.P.F.; Macdonald, A.M.C. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 1999, 78, 21–37. [Google Scholar] [CrossRef]
- Karbancioglu-Güler, F.; Heperkan, D. Natural occurrence of fumonisin B1 in dried figs as an unexpected hazard. Food Chem. Toxicol. 2009, 47, 289–292. [Google Scholar] [CrossRef]
- Marín, S.; Ramos, A.J.; Vázquez, C.; Sanchis, V. Contamination of pine nuts by fumonisin produced by strains of Fusarium proliferatum isolated from Pinus pinea. Lett. Appl. Microbiol. 2007, 44, 68–72. [Google Scholar] [CrossRef] [PubMed]
- García-Moraleja, A.; Font, G.; Mañes, J.; Ferrer, E. Analysis of mycotoxins in coffee and risk assessment in Spanish adolescents and adults. Food Chem. Toxicol. 2015, 86, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.L.; Martins, H.M.; Bernardo, F. Fumonisins B1 and B2 in black tea and medicinal plants. J. Food Prot. 2001, 64, 1268–1270. [Google Scholar] [CrossRef] [PubMed]
- Dutton, M.F. Fumonisins, mycotoxins of increasing importance: Their nature and their effects. Pharmacol. Ther. 1996, 70, 137–161. [Google Scholar] [CrossRef]
- Ross, P.F.; Nelson, P.E.; Richard, J.L.; Osweiler, G.D.; Rice, L.G.; Plattner, R.D.; Wilson, T.M. Production of fumonisins by Fusarium moniliforme and Fusarium proliferatum isolates associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Appl. Environ. Microbiol. 1990, 56, 3225–3226. [Google Scholar] [PubMed]
- Voss, K.A.; Smith, G.W.; Haschek, W.M. Fumonisins: Toxicokinetics, mechanism of action and toxicity. Anim. Feed Sci. Technol. 2007, 137, 299–325. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds. Available online: https://www.fda.gov/food/guidanceregulation/ guidancedocumentsregulatoryinformation/ucm109231.htm (accessed on 10 November 2017).
- Scientific Committee on Food. SCF/CS/CNTM/MYC/28 Final. Updated Opinion of the Scientific Committee on Food on Fumonisin B1, B2 and B3; Scientific Committee on Food: Brussels, Belgium, 2003. [Google Scholar]
- AOAC Official Method 995.15. Fumonisins B1, B2, and B3 in Corn. Liquid Chromatographic Method; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AOAC Official Method 2001.04. Determination of Fumonisins B1 and B2 in Corn and Corn Flakes. Liquid Chromatography with Immunoaffinity Column Cleanup; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Kaltner, F.; Rampl, C.; Rychlik, M.; Zimmermann, T.; Rohe, A. Development and validation of a cost-effective HPLC-FLD method for routine analysis of fumonisins B1 and B2 in corn and corn products. Food Anal. Methods 2017, 10, 1349–1358. [Google Scholar] [CrossRef]
- Ren, Y.P.; Zhang, Y.; Han, S.Y.; Han, Z.; Wu, Y.N. Simultaneous determination of fumonisins B1, B2 and B3 contaminants in maize by ultra high-performance liquid chromatography tandem mass spectrometry. Anal. Chim. Acta 2011, 692, 138–145. [Google Scholar] [CrossRef]
- Pestka, J.J.; Azcona-Olivera, J.I.; Plattner, R.D.; Minervini, F.; Doko, M.B.; Visconti, A. Comparative assessment of fumonisin in grain-based foods by ELISA, GC-MS, and HPLC. J. Food Prot. 1994, 57, 169–172. [Google Scholar] [CrossRef]
- Ling, S.M.; Pang, J.; Yu, J.J.; Wang, R.Z.; Liu, L.C.; Ma, Y.L.; Zhang, Y.M.; Jin, N.; Wang, S.H. Preparation and identification of monoclonal antibody against fumonisin B1 and development of detection by Ic-ELISA. Toxicon 2014, 80, 64–72. [Google Scholar] [CrossRef]
- Wang, Y.K.; Shi, Y.B.; Zou, Q.; Sun, J.H.; Chen, Z.F.; Wang, H.A.; Li, S.Q.; Yan, Y.X. Development of a rapid and simultaneous immunochromatographic assay for the determination of zearalenone and fumonisin B1 in corn, wheat and feed stuff samples. Food Control 2013, 31, 180–188. [Google Scholar] [CrossRef]
- Burmistrova, N.A.; Rusanova, T.Y.; Yurasov, N.A.; Goryacheva, I.Y.; De Saeger, S. Multi-detection of mycotoxins by membrane based flow-through immunoassay. Food Control 2014, 46, 462–469. [Google Scholar] [CrossRef]
- Axén, R.; Porath, J.; Ernback, S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature 1967, 214, 1302–1304. [Google Scholar] [CrossRef]
- Goryacheva, I.Y.; Beloglazova, N.V.; Eremin, S.A.; Mikhirev, D.A.; Niessner, R.; Knopp, D. Gel-based immunoassay for non-instrumental detection of pyrene in water samples. Talanta 2008, 75, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Goryacheva, I.Y.; Basova, E.Y.; Van Peteghem, C.; Eremin, S.A.; Pussemier, L.; Motte, J.C.; De Saeger, S. Novel gel-based rapid test for non-instrumental detection of ochratoxin A in beer. Anal. Bioanal. Chem. 2008, 390, 723–727. [Google Scholar] [CrossRef]
- Yuan, M.; Sheng, W.; Zhang, Y.; Wang, J.P.; Yang, Y.J.; Zhang, S.G.; Goryacheva, I.Y.; Wang, S. A gel-based visual immunoassay for non-instrumental detection of chloramphenicol in food samples. Anal. Chim. Acta 2012, 751, 128–134. [Google Scholar] [CrossRef]
- Wang, X.M.; Luo, P.J.; Chen, J.L.; Huang, Y.T.; Jiang, W.X. Development of a quantitative immuno-affinity test column assay for on-site screening of clindamycin residues in milk. Int. Dairy J. 2016, 55, 59–63. [Google Scholar] [CrossRef]
- Goryacheva, I.Y.; De Saeger, S.; Nesterenko, I.S.; Eremin, S.A.; Van Peteghem, C. Rapid all-in-one three-step immunoassay for non-instrumental detection of ochratoxin A in high-coloured herbs and spices. Talanta 2007, 72, 1230–1234. [Google Scholar] [CrossRef]
- Goryacheva, I.Y.; De Saeger, S.; Delmulle, B.; Lobeau, M.; Eremin, S.A.; Barna-Vetró, I.; Van Peteghem, C. Simultaneous non-instrumental detection of aflatoxin B1 and ochratoxin A using a clean-up tandem immunoassay column. Anal. Chim. Acta 2007, 590, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Rusanova, T.Y.; Beloglazova, N.V.; Goryacheva, I.Y.; Lobeau, M.; Van Peteghem, C.; De Saeger, S. Non-instrumental immunochemical tests for rapid ochratoxin A detection in red wine. Anal. Chim. Acta 2009, 653, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.Y.; Chu, F.S. Production and characterization of monoclonal antibodies against fumonisin B1. Food Agric. Immunol. 1999, 11, 297–306. [Google Scholar] [CrossRef]
- Marschik, S.; Hepperle, J.; Lauber, U.; Schnaufer, R.; Maier, S.; Kühn, C.; Schwab-Bohnert, G. Extracting fumonisins from maize: Efficiency of different extraction solvents in multi-mycotoxin analytics. Mycotoxin Res. 2013, 29, 119–129. [Google Scholar] [CrossRef] [PubMed]
Samples | Spiked Concentration (µg kg−1) | IATC (n = 3) | ELISA Test Kit (µg kg−1) |
---|---|---|---|
Means ± SD (n = 3) | |||
Maize | 0 | −, −, − 1 | ND 3 |
20 | +, +, + 2 | ND | |
100 | +, +, + | 99.33 ± 2.52 | |
500 | +, +, + | 492.31 ± 4.16 | |
Barley | 0 | −, −, − | ND |
20 | +, +, + | ND | |
100 | +, +, + | 99.67 ± 3.06 | |
500 | +, +, + | 491.67 ± 4.04 | |
Oat | 0 | −, −, − | ND |
20 | +, +, + | ND | |
100 | +, +, + | 98.34 ± 2.72 | |
500 | +,+, + | 494.51 ± 5.86 | |
Millet | 0 | −, −, − | ND |
20 | +, +, + | ND | |
100 | +, +, + | 97.76 ± 1.53 | |
500 | +, +, + | 489.62 ± 4.51 |
IATC | ELISA Test Kit | ||||
---|---|---|---|---|---|
Test Procedure | Test Time | LOD | Test Procedure | Test Time | LOD |
Sample extraction | 2 min | 20 µg kg−1 | Sample extraction | 35 min | 100 µg kg−1 |
Clean-up | 2 min | Sample adding | 5 min | ||
Incubation and wash | 1.5 min | Incubation and wash | 45 min | ||
Color development | 4.5 min | Color development | 10–15 min | ||
Measure | - 1 | Measure | 5 min | ||
Total test time | 10 min | Total test time | 100–105 min |
Sample | LC-MS/MS (μg kg−1)Means ± SD (n = 3) | IATC (μg kg−1) | ||||
---|---|---|---|---|---|---|
FB1 | FB2 | FB3 | FBs (FB1 + FB2 + FB3) | FBs (FB1 + FB2 + FB3) | ||
Maize No. 1 | 574.82 ± 12.70 | 159.88 ± 6.10 | 71.23 ± 0.65 | 805.94 ± 18.95 | + 1, 500–1000 | |
Maize No. 2 | 1057.24 ± 29.33 | 247.89 ± 18.47 | 197.51 ± 9.44 | 1502.65 ± 40.00 | +, 1000–2000 | |
Maize No. 3 | 1917.25 ± 105.50 | 623.98 ± 13.90 | 136.64 ± 6.43 | 2677.88 ± 114.13 | +, 2000–4000 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, W.; Wu, H.; Ji, W.; Li, Z.; Chu, F.; Wang, S. Visual Non-Instrumental On-Site Detection of Fumonisin B1, B2, and B3 in Cereal Samples Using a Clean-Up Combined with Gel-Based Immunoaffinity Test Column Assay. Toxins 2018, 10, 165. https://doi.org/10.3390/toxins10040165
Sheng W, Wu H, Ji W, Li Z, Chu F, Wang S. Visual Non-Instrumental On-Site Detection of Fumonisin B1, B2, and B3 in Cereal Samples Using a Clean-Up Combined with Gel-Based Immunoaffinity Test Column Assay. Toxins. 2018; 10(4):165. https://doi.org/10.3390/toxins10040165
Chicago/Turabian StyleSheng, Wei, Hesen Wu, Weihong Ji, Zhi Li, Fangyu Chu, and Shuo Wang. 2018. "Visual Non-Instrumental On-Site Detection of Fumonisin B1, B2, and B3 in Cereal Samples Using a Clean-Up Combined with Gel-Based Immunoaffinity Test Column Assay" Toxins 10, no. 4: 165. https://doi.org/10.3390/toxins10040165
APA StyleSheng, W., Wu, H., Ji, W., Li, Z., Chu, F., & Wang, S. (2018). Visual Non-Instrumental On-Site Detection of Fumonisin B1, B2, and B3 in Cereal Samples Using a Clean-Up Combined with Gel-Based Immunoaffinity Test Column Assay. Toxins, 10(4), 165. https://doi.org/10.3390/toxins10040165