Toxicity Assay for Citrinin, Zearalenone and Zearalenone-14-Sulfate Using the Nematode Caenorhabditis elegans as Model Organism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Metabolization of Mycotoxins In Vivo
2.2. Lifespan Assay
2.3. Brood Size Assay
2.4. Oxidative and Thermal Stress Resistance Assay
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Substances
4.2. Strains and Conditions
4.3. Lifespan Assay
4.4. Brood Size Assay
4.5. Thermal and Oxidative Stress Resistance Assay
4.6. Cultivation and Extraction of Nematodes for Metabolite Analysis
4.7. HPLC–MS/MS Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Van Egmond, H.P.; Jonker, M.A. Worldwide Regulations for Mycotoxins in Food and Feed in 2003; FAO Food and Nutrition Paper; FAO: Rome, Italy, 2004; Volume 81. [Google Scholar]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, Toxicology, and Exposure Assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulations Relating to Mycotoxins in Food. Anal. Bioanal. Chem. 2007, 389, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Petroczi, A.; Nepusz, T.; Taylor, G.; Naughton, D.P. Network Analysis of the Rasff Database: A Mycotoxin Perspective. World Mycotoxin J. 2011, 4, 329–338. [Google Scholar] [CrossRef]
- Caldwell, R.W.; Tuite, J.; Stob, M.; Baldwin, R. Zearalenone Production by Fusarium Species. Appl. Microbiol. 1970, 20, 31–34. [Google Scholar] [PubMed]
- Schollenberger, M.; Muller, H.M.; Rufle, M.; Suchy, S.; Plank, S.; Drochner, W. Natural Occurrence of 16 Fusarium Toxins in Grains and Feedstuffs of Plant Origin from Germany. Mycopathologia 2006, 161, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Zinedine, A.; Soriano, J.M.; Molto, J.C.; Manes, J. Review on the Toxicity, Occurrence, Metabolism, Detoxification, Regulations and Intake of Zearalenone: An Oestrogenic Mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lioi, M.B.; Santoro, A.; Barbieri, R.B.; Salzano, S.S.; Ursini, M.V. Ochratoxin A and Zearalenone: A Comparative Study on Genotoxic Effects and Cell Death Induced in Bovine Lymphocytes. Mutat. Res. 2004, 557, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Pfohlleszkowicz, A.; Chekirghedira, L.; Bacha, H. Genotoxicity of Zearalenone, an Estrogenic Mycotoxin—DNA Adduct Formation in Female Mouse-Tissues. Carcinogenesis 1995, 16, 2315–2320. [Google Scholar] [CrossRef]
- Abid-Essefi, S.; Ouanes, Z.; Hassen, W.; Baudrimont, I.; Creppy, E.; Bacha, H. Cytotoxicity, Inhibition of DNA and Protein Syntheses and Oxidative Damage in Cultured Cells Exposed to Zearalenone. Toxicol. In Vitro 2004, 18, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Malekinejad, H.; Maas-Bakker, R.; Fink-Gremmels, J. Species Differences in the Hepatic Biotransformation of Zearalenone. Vet. J. 2006, 172, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, E.; Schebb, N.H.; Podlech, J.; Metzler, M. Novel Oxidative In Vitro Metabolites of the Mycotoxins Alternariol and Alternariol Methyl Ether. Mol. Nutr. Food Res. 2007, 51, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Binder, S.B.; Schwartz-Zimmermann, H.E.; Varga, E.; Bichl, G.; Michlmayr, H.; Adam, G.; Berthiller, F. Metabolism of Zearalenone and Its Major Modified Forms in Pigs. Toxins 2017, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Benford, D.; Boobis, A.; Ceccatelli, S.; Cottrill, B.; Cravedi, J.P.; Di Domenico, A.; Doerge, D.; Dogliotti, E.; Edler, L.; et al. Scientific Opinion on the Risks for Public Health Related to the Presence of Zearalenone in Food EFSA Panel on Contaminants in the Food Chain. EFSA J. 2011, 9. [Google Scholar] [CrossRef]
- Plasencia, J.; Mirocha, C.J. Isolation and Characterization of Zearalenone Sulfate Produced by Fusarium spp. Appl. Environ. Microb. 1991, 57, 146–150. [Google Scholar]
- De Boevre, M.; Di Mavungu, J.D.; Landschoot, S.; Audenaert, K.; Eeckhout, M.; Maene, P.; Haesaert, G.; De Saeger, S. Natural Occurrence of Mycotoxins and Their Masked Forms in Food and Feed Products. World Mycotoxin J. 2012, 5, 207–219. [Google Scholar] [CrossRef]
- Xu, B.J.; Jia, X.Q.; Gu, L.J.; Sung, C.K. Review on the Qualitative and Quantitative Analysis of the Mycotoxin Citrinin. Food Control 2006, 17, 271–285. [Google Scholar] [CrossRef]
- Scott, P.M.; Vanwalbe, W.; Kennedy, B.; Anyeti, D. Mycotoxins (Ochratoxin-A, Citrinin, and Sterigmatocystin) and Toxigenic Fungi in Grains and Other Agricultural Products. J. Agric. Food Chem. 1972, 20, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.T.; Tozovanu, M.; Tran, T.L.; Pfohl-Leszkowicz, A. Occurrence of Aflatoxin B1, Citrinin and Ochratoxin A in Rice in Five Provinces of the Central Region of Vietnam. Food Chem. 2007, 105, 42–47. [Google Scholar] [CrossRef]
- Molinie, A.; Faucet, V.; Castegnaro, P.; Pfohl-Leszkowicz, A. Analysis of Some Breakfast Cereals on the French Market for Their Contents of Ochratoxin A, Citrinin and Fumonisin B-1: Development of a Method for Simultaneous Extraction of Ochratoxin A and Citrinin. Food Chem. 2005, 92, 391–400. [Google Scholar] [CrossRef]
- Böhm, J.; De Saeger, S.; Edler, L.; Fink-Gremmels, J.; Mantle, P.; Peraica, M.; Stetina, R.; Vrabcheva, T. Scientific Opinion on the Risks for Public and Animal Health Related to the Presence of Citrinin in Food and Feed. EFSA 2012, 10, 1–82. [Google Scholar]
- Fraeyman, S.; Croubels, S.; Devreese, M.; Antonissen, G. Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics. Toxins 2017, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S. The Genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [PubMed]
- Sengupta, P.; Samuel, A.D.T. Caenorhabditis elegans: A Model System for Systems Neuroscience. Curr. Opin. Neurobiol. 2009, 19, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.R. The C-Elegans Model in Toxicity Testing. J. Appl. Toxicol. 2017, 37, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Koelle, M.R.; Horvitz, H.R. EGL-10 Regulates G Protein Signaling in the C-Elegans Nervous System and Shares a Conserved Domain with Many Mammalian Proteins. Cell 1996, 84, 115–125. [Google Scholar] [CrossRef]
- Brose, N.; Hofmann, K.; Hata, Y.; Sudhof, T.C. Mammalian Homologs of Caenorhabditis-Elegans Unc-13 Gene Define Novel Family of C-2-Domain Proteins. J. Biol. Chem. 1995, 270, 25273–25280. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.D.; Xue, K.S.; Sun, X.L.; Tang, L.L.; Wang, J.S. Multi-Toxic Endpoints of the Foodborne Mycotoxins in Nematode Caenorhabditis elegans. Toxins 2015, 7, 5224–5235. [Google Scholar] [CrossRef] [PubMed]
- Gowrinathan, Y.; Pacan, J.C.; Hawke, A.; Zhou, T.; Sabour, P.M. Toxicity Assay for Deoxynivalenol Using Caenorhabditis elegans. Food Addit. Contam. A 2011, 28, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.H.; Xue, K.S.; Tang, L.L.; Williams, P.L.; Wang, J.S. Aflatoxin B-1-Induced Developmental and DNA Damage in Caenorhabditis elegans. Toxins 2017, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Follmann, W.; Behm, C.; Degen, G.H. Toxicity of the Mycotoxin Citrinin and Its Metabolite Dihydrocitrinone and of Mixtures of Citrinin and Ochratoxin A in Vitro. Arch. Toxicol. 2014, 88, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Flajs, D.; Peraica, M. Toxicological Properties of Citrinin. Arhiv za Higijenu Rada i Toksikologiju 2009, 60, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Minervini, F.; Dell’aquila, M.E. Zearalenone and Reproductive Function in Farm Animals. Int. J. Mol. Sci. 2008, 9, 2570–2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildebrand, A.A.; Pfeiffer, E.; Rapp, A.; Metzler, M. Hydroxylation of the Mycotoxin Zearalenone at Aliphatic Positions: Novel Mammalian Metabolites. Mycotoxin Res. 2012, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dall’erta, A.; Cirlini, M.; Dall’asta, M.; Del Rio, D.; Galaverna, G.; Dall’asta, C. Masked Mycotoxins Are Efficiently Hydrolyzed by Human Colonic Microbiota Releasing Their Aglycones. Chem. Res. Toxicol. 2013, 26, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Blaszkewicz, M.; Munoz, K.; Degen, G.H. Methods for Analysis of Citrinin in Human Blood and Urine. Arch. Toxicol. 2013, 87, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Gems, D.; Partridge, L. Stress-Response Hormesis and Aging: “That Which Does Not Kill Us Makes Us Stronger”. Cell Metab. 2008, 7, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Gruber, J.; Ng, L.F.; Poovathingal, S.K.; Halliwell, B. Deceptively Simple but Simply Deceptive–Caenorhabditis elegans Lifespan Studies: Considerations for Aging and Antioxidant Effects. FEBS Lett. 2009, 583, 3377–3387. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.-H. Effects of Citrinin on Maturation of Mouse Oocytes, Fertilization, and Fetal Development in Vitro and in Vivo. Toxicol. Lett. 2008, 180, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Yu, L.; Guo, Y.; Liu, S. Toxic Effects of Citrinin on the Male Reproductive System in Mice. Exp. Toxicol. Pathol. 2012, 64, 465–469. [Google Scholar]
- Drzymala, S.S.; Binder, J.; Brodehl, A.; Penkert, M.; Rosowski, M.; Garbe, L.-A.; Koch, M. Estrogenicity of Novel Phase I and Phase II Metabolites of Zearalenone and Cis-Zearalenone. Toxicon 2015, 105, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Ahuir, A.; Vanacloig-Pedros, E.; Proft, M. Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model. Nutrients 2014, 6, 2077–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassen, W.; Ayed-Boussema, I.; Oscoz, A.A.; Lopez, A.D.C.; Bacha, H. The Role of Oxidative Stress in Zearalenone-Mediated Toxicity in Hep G2 Cells: Oxidative DNA Damage, Gluthatione Depletion and Stress Proteins Induction. Toxicology 2007, 232, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.; Henderson, S.; Murakami, S.; De Castro, E.; De Castro, S.H.; Cypser, J.; Rikke, B.; Tedesco, P.; Link, C. Longevity Genes in the Nematode Caenorhabditis elegans Also Mediate Increased Resistance to Stress and Prevent Disease. J. Inherit. Metab. Dis. 2002, 25, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Cypser, J.R.; Tedesco, P.; Johnson, T.E. Hormesis and Aging in Caenorhabditis elegans. Exp. Gerontol. 2006, 41, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Munoz, M.J.; Riddle, D.L. Positive Selection of Caenorhabditis elegans Mutants with Increased Stress Resistance and Longevity. Genetics 2003, 163, 171–180. [Google Scholar] [PubMed]
- Doonan, R.; Mcelwee, J.J.; Matthijssens, F.; Walker, G.A.; Houthoofd, K.; Back, P.; Matscheski, A.; Vanfleteren, J.R.; Gems, D. Against the Oxidative Damage Theory of Aging: Superoxide Dismutases Protect against Oxidative Stress but Have Little or No Effect on Life Span in Caenorhabditis elegans. Gene Dev. 2008, 22, 3236–3241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borzekowski, A.; Drewitz, T.; Keller, J.; Pfeifer, D.; Kunte, H.-J.; Koch, M.; Rohn, S.; Maul, R. Biosynthesis and Characterization of Zearalenone-14-Sulfate, Zearalenone-14-Glucoside and Zearalenone-16-Glucoside Using Common Fungal Strains. Toxins 2018, 10, 104. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keller, J.; Borzekowski, A.; Haase, H.; Menzel, R.; Rueß, L.; Koch, M. Toxicity Assay for Citrinin, Zearalenone and Zearalenone-14-Sulfate Using the Nematode Caenorhabditis elegans as Model Organism. Toxins 2018, 10, 284. https://doi.org/10.3390/toxins10070284
Keller J, Borzekowski A, Haase H, Menzel R, Rueß L, Koch M. Toxicity Assay for Citrinin, Zearalenone and Zearalenone-14-Sulfate Using the Nematode Caenorhabditis elegans as Model Organism. Toxins. 2018; 10(7):284. https://doi.org/10.3390/toxins10070284
Chicago/Turabian StyleKeller, Julia, Antje Borzekowski, Hajo Haase, Ralph Menzel, Liliane Rueß, and Matthias Koch. 2018. "Toxicity Assay for Citrinin, Zearalenone and Zearalenone-14-Sulfate Using the Nematode Caenorhabditis elegans as Model Organism" Toxins 10, no. 7: 284. https://doi.org/10.3390/toxins10070284
APA StyleKeller, J., Borzekowski, A., Haase, H., Menzel, R., Rueß, L., & Koch, M. (2018). Toxicity Assay for Citrinin, Zearalenone and Zearalenone-14-Sulfate Using the Nematode Caenorhabditis elegans as Model Organism. Toxins, 10(7), 284. https://doi.org/10.3390/toxins10070284