Fumonisin B1, B2 and B3 in Muscle and Liver of Broiler Chickens and Turkey Poults Fed with Diets Containing Fusariotoxins at the EU Maximum Tolerable Level
Abstract
:1. Introduction
2. Results and Discussion
2.1. Detection of FB and Treatment of Samples
2.2. Analysis of Muscle and Liver Spiked Samples
2.3. Measure of FB in Muscle and Liver of Animals Fed a Diet Containing FB
3. Material and Methods
3.1. Tissue Samples
3.2. Fumonisins, Reagents and LC-MS/MS Conditions
3.3. Analysis of Standards Solutions and Efficiency of Immunoaffinity Columns
3.4. Treatment of Tissue Samples and Determination of the Recovery Rates
3.5. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FB | Fumonisins B |
FUS | Fusariotoxins |
FB1 | Fumonisin B1 |
FB2 | Fumonisin B2 |
FB3 | Fumonisin B3 |
FA | Fumonisin A |
FP | Fumonisin P |
HFB | Hydrolyzed Fumonisins |
TCA | Tricarballylic acid |
DON | Deoxynivalenol |
ZEN | Zearalenone |
IA | Immunoaffinity |
RSD | Relative Standard Deviation |
BW | Body Weight |
References
- FUMONISINS (JECFA 47, 2001). Available online: http://www.inchem.org/documents/jecfa/jecmono/v47je03.htm (accessed on 18 March 2019).
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; et al. Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA J. 2018, 16, e05242. [Google Scholar]
- Rheeder, J.P.; Marasas, W.F.O.; Vismer, H.F. Production of Fumonisin Analogs by Fusarium Species. Appl. Environ. Microbiol. 2002, 68, 2101–2105. [Google Scholar] [CrossRef] [PubMed]
- IARC. Monographs on the evaluation of carcinogenic risks to humans. FUMONISIN B1. In Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene; International Agency for Research on Cancer: Lyon, France, 2002. [Google Scholar]
- European Food Safety Authority. Opinion of the Scientific Panel on Contaminants in Food Chain on a Request from the Commission Related to Fumonisins as Undesirable Substances in Animal Feed; European Food Safety Authority: Parma, Italy, 2015. [Google Scholar]
- Van der Westhuizen, L.; Shephard, G.S.; Snyman, S.D.; Abel, S.; Swanevelder, S.; Gelderblom, W.C.A. Inhibition of sphingolipid biosynthesis in rat primary hepatocyte cultures by fumonisin B1 and other structurally related compounds. Food Chem. Toxicol. 1998, 36, 497–503. [Google Scholar] [CrossRef]
- Abbas, H.K.; Shier, W.T.; Seo, J.A.; Lee, Y.W.; Musser, S.M. Phytotoxicity and cytotoxicity of the fumonisin C and P series of mycotoxins from Fusarium spp. fungi. Toxicon 1998, 36, 2033–2037. [Google Scholar] [CrossRef]
- Voss, K.A.; Smith, G.W.; Haschek, W.M. Fumonisins: Toxicokinetics, mechanism of action and toxicity. Anim. Feed Sci. Technol. 2007, 137, 299–325. [Google Scholar] [CrossRef]
- FDA. Mycotoxin Regulatory Guidance, August 2011. Available online: https://www.ngfa.org/wp-content/uploads/NGFAComplianceGuide-FDARegulatoryGuidanceforMycotoxins8-2011.pdf (accessed on 11 August 2016).
- Guerre, P. Fusariotoxins in Avian Species: Toxicokinetics, Metabolism and Persistence in Tissues. Toxins 2015, 7, 2289–2305. [Google Scholar] [CrossRef] [Green Version]
- Masching, S.; Naehrer, K.; Schwartz-Zimmermann, H.-E.; Sărăndan, M.; Schaumberger, S.; Dohnal, I.; Nagl, V.; Schatzmayr, D. Gastrointestinal degradation of fumonisin B1 by carboxylesterase FumD prevents fumonisin induced alteration of sphingolipid metabolism in turkey and swine. Toxins 2016, 8, 84. [Google Scholar] [CrossRef]
- Grenier, B.; Schwartz-Zimmermann, H.E.; Gruber-Dorninger, C.; Dohnal, I.; Aleschko, M.; Schatzmayr, G.; Moll, W.D.; Applegate, T.J. Enzymatic hydrolysis of fumonisins in the gastrointestinal tract of broiler chickens. Poult. Sci. 2017, 96, 4342–4351. [Google Scholar] [CrossRef]
- Seiferlein, M.; Humpf, H.-U.; Voss, K.A.; Sullards, M.C.; Allegood, J.C.; Wang, E.; Merrill, A.H. Hydrolyzed fumonisins HFB1 and HFB2 are acylated in vitro and in vivo by ceramide synthase to form cytotoxic N-acyl-metabolites. Mol. Nutr. Food Res. 2007, 51, 1120–1130. [Google Scholar] [CrossRef]
- De Baere, S.; Croubels, S.; Novak, B.; Bichl, G.; Antonissen, G. Development and Validation of a UPLC-MS/MS and UPLC-HR-MS Method for the Determination of Fumonisin B1 and Its Hydrolysed Metabolites and Fumonisin B2 in Broiler Chicken Plasma. Toxins 2018, 10, 62. [Google Scholar] [CrossRef]
- Guerre, P. Worldwide mycotoxins exposure in pig and poultry feed formulations. Toxins 2016, 8, 350. [Google Scholar] [CrossRef] [PubMed]
- Goossens, J.; Pasmans, F.; Verbrugghe, E.; Vandenbroucke, V.; De Baere, S.; Meyer, E.; Haesebrouck, F.; De Backer, P.; Croubels, S. Porcine intestinal epithelial barrier disruption by the Fusarium mycotoxins deoxynivalenol and T-2 toxin promotes transepithelial passage of doxycycline and paromomycin. BMC Vet. Res. 2012, 8, 245. [Google Scholar] [CrossRef] [PubMed]
- Pinton, P.; Nougayrède, J.-P.; Del Rio, J.-C.; Moreno, C.; Marin, D.E.; Ferrier, L.; Bracarense, A.-P.; Kolf-Clauw, M.; Oswald, I.P. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicol. Appl. Pharmacol. 2009, 237, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunus, A.W.; Blajet-Kosicka, A.; Kosicki, R.; Khan, M.Z.; Rehman, H.; Böhm, J. Deoxynivalenol as a contaminant of broiler feed: Intestinal development, absorptive functionality, and metabolism of the mycotoxin. Poult. Sci. 2012, 91, 852–861. [Google Scholar] [CrossRef]
- Osselaere, A.; Santos, R.; Hautekiet, V.; De Backer, P.; Chiers, K.; Ducatelle, R.; Croubels, S. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine. PLoS ONE 2013, 8, e69014. [Google Scholar] [CrossRef]
- Bracarense, A.-P.F.L.; Lucioli, J.; Grenier, B.; Drociunas Pacheco, G.; Moll, W.-D.; Schatzmayr, G.; Oswald, I.P. Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. Br. J. Nutr. 2012, 107, 1776–1786. [Google Scholar] [CrossRef]
- Grenier, B.; Dohnal, I.; Shanmugasundaram, R.; Eicher, S.D.; Selvaraj, R.K.; Schatzmayr, G.; Applegate, T.J. Susceptibility of broiler chickens to coccidiosis when fed subclinical doses of deoxynivalenol and fumonisins—Special emphasis on the immunological response and the mycotoxin interaction. Toxins 2016, 8, 231. [Google Scholar] [CrossRef]
- Antonissen, G.; Van Immerseel, F.; Pasmans, F.; Ducatelle, R.; Janssens, G.P.J.; De Baere, S.; Mountzouris, K.C.; Su, S.; Wong, E.A.; De Meulenaer, B.; et al. Mycotoxins Deoxynivalenol and Fumonisins Alter the Extrinsic Component of Intestinal Barrier in Broiler Chickens. J. Agric. Food Chem. 2015, 63, 10846–10855. [Google Scholar] [CrossRef]
- Antonissen, G.; Devreese, M.; Van Immerseel, F.; De Baere, S.; Hessenberger, S.; Martel, A.; Croubels, S. Chronic exposure to deoxynivalenol has no influence on the oral bioavailability of fumonisin B1 in broiler chickens. Toxins 2015, 7, 560–571. [Google Scholar] [CrossRef]
- Zou, Y.; Yang, Z.B.; Yang, W.R.; Jiang, S.Z.; Zhang, G.G.; Chi, F. Effect of purified zearalenone on nutrient digestibility in broilers fed 2 levels of fumonisin from naturally contaminated corn (Zea mays). J. Appl. Poult. Res. 2012, 21, 251–258. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Safety evaluation of certain food additives and contaminants. WHO Food Addit. Ser. 1998, 40, 532. [Google Scholar]
- Dilkin, P.; Direito, G.; Simas, M.M.S.; Mallmann, C.A.; Corrêa, B. Toxicokinetics and toxicological effects of single oral dose of fumonisin B1 containing Fusarium verticillioides culture material in weaned piglets. Chem. Biol. Interact. 2010, 185, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.T.; Torres, O.; Showker, J.L.; Zitomer, N.C.; Matute, J.; Voss, K.A.; Gelineau-van Waes, J.; Maddox, J.R.; Gregory, S.G.; Ashley-Koch, A.E. The kinetics of urinary fumonisin B1 excretion in humans consuming maize-based diets. Mol. Nutr. Food Res. 2012, 56, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Fodor, J.; Balogh, K.; Weber, M.; Miklós, M.; Kametler, L.; Pósa, R.; Mamet, R.; Bauer, J.; Horn, P.; Kovács, F.; et al. Absorption, distribution and elimination of fumonisin B1 metabolites in weaned piglets. Food Addit. Contam. 2008, 25, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Pagliuca, G.; Zironi, E.; Ceccolini, A.; Matera, R.; Serrazanetti, G.P.; Piva, A. Simple method for the simultaneous isolation and determination of fumonisin B1 and its metabolite aminopentol-1 in swine liver by liquid chromatography—Fluorescence detection. J. Chromatogr. B 2005, 819, 97–103. [Google Scholar] [CrossRef]
- Hahn, I.; Nagl, V.; Schwartz-Zimmermann, H.E.; Varga, E.; Schwarz, C.; Slavik, V.; Reisinger, N.; Malachová, A.; Cirlini, M.; Generotti, S.; et al. Effects of orally administered fumonisin B1 (FB1), partially hydrolysed FB1, hydrolysed FB₁ and N-(1-deoxy-D-fructos-1-yl) FB1 on the sphingolipid metabolism in rats. Food Chem. Toxicol. 2015, 76, 11–18. [Google Scholar] [CrossRef]
- Senyuva, H.Z.; Gilbert, J.; Stroka, J.; Biselli, S.; De Girolamo, A.; De Rijk, T.; De Saeger, S.; Köppen, R.; MacDonald, S.; Neumann, G.; et al. Determination of fumonisins B1 and B2 in corn by LC/MS with immunoaffinity column cleanup: Interlaboratory study. J. AOAC Int. 2010, 93, 611–621. [Google Scholar]
- Solfrizzo, M.; De Girolamo, A.; Gambacorta, L.; Visconti, A.; Stroka, J.; Van Egmond, H.P. Determination of fumonisins B1 and B2 in corn-based foods for infants and young children by LC with immunoaffinity column cleanup: Interlaboratory validation study. J. AOAC Int. 2011, 94, 900–908. [Google Scholar]
- Tardieu, D.; Auby, A.; Bluteau, C.; Bailly, J.D.; Guerre, P. Determination of Fumonisin B1 in animal tissues with immunoaffinity purification. J. Chromatogr. B 2008, 870, 140–144. [Google Scholar] [CrossRef]
- Metayer, J.-P.; Travel, A.; Mika, A.; Bailly, J.-D.; Cleva, D.; Boissieu, C.; Guennec, J.L.; Froment, P.; Albaric, O.; Labrut, S.; et al. Lack of Toxic Interaction between Fusariotoxins in Broiler Chickens Fed throughout Their Life at the Highest Level Tolerated in the European Union. Toxins 2019, 11, 455. [Google Scholar] [CrossRef]
- Travel, A.; Metayer, J.-P.; Mika, A.; Bailly, J.-D.; Cleva, D.; Boissieu, C.; Guennec, J.L.; Albaric, O.; Labrut, S.; Lepivert, G.; et al. Toxicity of fumonisins, deoxynivalenol and zearalenone alone and in combination in turkeys fed with the maximum EU tolerated level. Avian Dis. 2019. [Google Scholar] [CrossRef]
- Daško, L.; Rauová, D.; Belajová, E.; Kováč, M. Determination of fumonisins B1 and B2 in beer. Czech. J. Food Sci. 2005, 23, 20–26. [Google Scholar] [CrossRef]
- Sewram, V.; Shephard, G.S.; Marasas, W.F.; de CASTRO, M.F.P.M. Improving extraction of fumonisin mycotoxins from Brazilian corn-based infant foods. J. Food Prot. 2003, 66, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Spanjer, M.C.; Rensen, P.M.; Scholten, J.M. LC-MS/MS multi-method for mycotoxins after single extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs. Food Addit. Contam. 2008, 25, 472–489. [Google Scholar] [CrossRef]
- Scott, P.M. Recent research on fumonisins: A review. Food Addit. Contam. Part A 2012, 29, 242–248. [Google Scholar] [CrossRef]
- Romero-González, R.; Martínez Vidal, J.L.; Aguilera-Luiz, M.M.; Garrido Frenich, A. Application of conventional solid-phase extraction for multimycotoxin analysis in beers by ultrahigh-performance liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2009, 57, 9385–9392. [Google Scholar] [CrossRef]
- Tiwari, G.; Tiwari, R. Bioanalytical method validation: An updated review. Pharm. Methods 2010, 1, 25–38. [Google Scholar] [CrossRef]
- Gazzotti, T.; Zironi, E.; Lugoboni, B.; Barbarossa, A.; Piva, A.; Pagliuca, G. Analysis of fumonisins B1, B2 and their hydrolysed metabolites in pig liver by LC–MS/MS. Food Chem. 2011, 125, 1379–1384. [Google Scholar] [CrossRef]
- Maragos, C.M.; Bennett, G.A.; Richard, J.L. Affinity column clean-up for the analysis of fumonisins and their hydrolysis products in corn. Food Agric. Immunol. 1997, 9, 3–12. [Google Scholar] [CrossRef]
- Tardieu, D.; Bailly, J.-D.; Skiba, F.; Grosjean, F.; Guerre, P. Toxicokinetics of fumonisin B1 in turkey poults and tissue persistence after exposure to a diet containing the maximum European tolerance for fumonisins in avian feeds. Food Chem. Toxicol. 2008, 46, 3213–3218. [Google Scholar] [CrossRef] [Green Version]
- Goossens, J.; Vandenbroucke, V.; Pasmans, F.; De Baere, S.; Devreese, M.; Osselaere, A.; Verbrugghe, E.; Haesebrouck, F.; De Saeger, S.; Eeckhout, M.; et al. Influence of mycotoxins and a mycotoxin adsorbing agent on the oral bioavailability of commonly used antibiotics in pigs. Toxins 2012, 4, 281–295. [Google Scholar] [CrossRef] [PubMed]
FB1 | FB2 | FB3 | C13FB1 | C13FB2 | |
---|---|---|---|---|---|
Precursor * (M+1) | 722.4 | 706 | 706 | 756.4 | 740 |
Quantifier * | 334.4 | 336.4 | 336.4 | 356.5 | 358.6 |
Fragmentation/Collision (V) | 190/41 | 190/37 | 190/37 | 190/40 | 160/36 |
Qualifier 1 * (Abundance, %) | 352.4(94) | 318.4(56) | 318.4(44) | 738.6(40) | 340.5(97) |
Fragmentation/Collision (V) | 190/37 | 190/41 | 190/29 | 190/28 | 160/40 |
Qualifier 2 *(Abundance, %) | 704.4(41) | 354.5(22) | 354.5(30) | - | - |
Fragmentation/Collision (V) | 190/29 | 190/33 | 190/25 | - | - |
Retention time (min) | 6.02 | 6.95 | 6.58 | 6.01 | 6.97 |
FB1 | FB2 | FB3 | C13FB1 | C13FB2 | ||
---|---|---|---|---|---|---|
Recovery after IA | (%)1,2 | 75 ± 9 A | 49 ± 13 B | 62 ± 13 A,B | 78 ± 11 A | 50 ± 14 B |
slope | 0.7943 | 0.4784 | 0.6279 | - | - | |
Matrix interaction, muscle | (%) 1,3 | 104 ± 5 A | 59 ± 4 B | 92 ± 6 A | 98 ± 6 A | 58 ± 7 |
slope | 1.0722 | 0.6103 | 0.9658 | - | - | |
Matrix interaction, liver | (%) 1,3 | 97 ± 16 A | 46 ± 6 B | 83 ± 7 A | 95 ± 14 A | 51 ± 5 B |
slope 3 | 0.9203 | 0.4423 | 0.8088 | - | - | |
Recovery muscle 0.25 | (µg/kg) 4 | 0.28 ± 0.04 | 0.28 ± 0.03 | 0.29 ± 0.04 | 42 ± 4 | 17 ± 2 |
% | 112 | 115 | 110 | |||
Recovery muscle 1 | (µg/kg) 4 | 1.16 ± 0.04 | 1.13 ± 0.14 | 1.19 ± 0.09 | ||
% | 116 | 113 | 119 | |||
Recovery muscle 5 | (µg/kg) 4 | 4.51 ± 0.36 | 5.07 ± 0.38 | 4.56 ± 0.39 | ||
% | 90 | 101 | 91 | |||
Recovery muscle 25/5/5 | (µg/kg) 4 | 30.12 ± 4.47 | 4.13 ± 0.85 | 6.06 ± 0.99 | ||
% | 120 | 83 | 121 | |||
Recovery liver 0.25 | (µg/kg) 4 | 0.26 ± 0.03 | 0.28 ± 0.03 | 0.28 ± 0.03 | 75 ± 8 | 37 ± 4 |
% | 103 | 111 | 110 | |||
Recovery liver 1 | (µg/kg) 4 | 1.12 ± 0.19 | 1.05 ± 0.16 | 1.20 ± 0.22 | ||
% | 112 | 102 | 120 | |||
Recovery liver 5 | (µg/kg) 4 | 5.54 ± 0.19 | 5.77 ± 0.86 | 5.68 ± 0.38 | ||
% | 111 | 115 | 114 | |||
Recovery liver 25/5/5 | (µg/kg) 4 | 28.81 ± 4.1 | 6.42 ± 0.4 | 4.24 ± 0.71 | ||
% | 115 | 128 | 85 | |||
Recovery liver 100/5/5 | (µg/kg) 4 | 122.96 ± 6.37 | 6.29 ± 0.68 | 3.92 ± 0.77 | ||
% | 123 | 126 | 78 |
FB1 | FB2 | FB3 | ||
---|---|---|---|---|
Duration of exposure (days) | 35 | 35 | 35 | |
Feed Control (µg/kg) | 1 to 10 d | 35 | <10 | <10 |
11 to 35 d | 25 | <10 | <10 | |
Liver | positive/total | 1/8 | 1/8 | 1/8 |
max; min (µg/kg) | 0.59; <0.25 | 0.33; <0.25 | 0.25; <0.25 | |
Muscle | positive/total | 2/8 | 2/8 | 2/8 |
max; min (µg/kg) | 13.59; <0.25 | 2.4; <0.25 | 0.95; <0.25 | |
Feed FB (µg/kg) | 1 to 10 d | 19,500 | 1600 | 2000 |
11 to 33 d | 21,000 | 2130 | 2300 | |
Liver (µg/kg) | mean ± SD | 44.7 ± 20.61 | 2.61 ± 1.39 | 0.79 ± 0.31 |
max; min | 85.64; 27.99 | 5.4; 1.32 | 1.17; 0.36 | |
Muscle (µg/kg) | mean ± SD | 17.5 ± 16.84 | 3.39 ± 2.58 | 1.26 ± 1.02 |
max; min | 48.13; 3 | 7.68; 0.58 | 3.05; 0.35 | |
Feed FBDONZEN (µg/kg) 1 | 1 to 10 d | 17,600 | 1440 | 2050 |
11 to 35 d | 17,700 | 1530 | 2030 | |
Liver (µg/kg) | mean ± SD | 65.98 ± 13.12 | 4.19 ± 1.45 | 1.63 ± 0.39 |
max; min | 87.05; 50.82 | 6.87; 2.8 | 2.19; 1.32 | |
Muscle (µg/kg) | mean ± SD | 20.39 ± 21.17 | 3.3 ± 4.02 | 1.41 ± 1.71 |
max; min | 50.56; 4.62 | 9.32; 0.92 | 3.95; 0.34 |
FB1 | FB2 | FB3 | ||
---|---|---|---|---|
Duration of exposure (days) | 14 | 14 | 14 | |
Feed Control (µg/kg) | 20 | <10 | <10 | |
Liver | positive/total | 1/8 | 0/8 | 1/8 |
max; min (µg/kg) | 0.60; <0.25 | <0.25 | 0.32<0.25 | |
Muscle | positive/total | 1/8 | 1/8 | 1/8 |
max; min (µg/kg) | 19.74; <0.25 | 4.89; <0.25 | 1.52; <0.25 | |
Feed FB (µg/kg) | 16,200 | 3980 | 5,180 | |
Liver (µg/kg) | mean ± SD | 41.47 ± 13.57 | 4.23 ± 2.78 | 1.41 ± 0.69 |
max; min | 63.09; 27.61 | 10.03; 0.91 | 2.77; 0.65 | |
Muscle (µg/kg) | mean ± SD | 5.77 ± 3.79 | 1.52 ± 0.69 | 0.54 ± 0.32 |
max; min | 10.01; 1 | 2.28; 0.51 | 0.88; <0.25 | |
Feed FBDONZEN (µg/kg) 1 | 21,500 | 4200 | 6010 | |
Liver (µg/kg) | mean ± SD | 53.8 ± 20.14 | 4.11± 2.89 | 1.86 ± 0.99 |
max; min | 94.25; 35.74 | 9.75; 2 | 3.79; 0.92 | |
Muscle (µg/kg) | mean ± SD | 13.94 ± 14 | 3.02 ± 3.49 | 1.22 ± 1.29 |
max; min | 32.82; 2.19 | 8.01; 0.51 | 2.96; <0.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tardieu, D.; Travel, A.; Metayer, J.-P.; Le Bourhis, C.; Guerre, P. Fumonisin B1, B2 and B3 in Muscle and Liver of Broiler Chickens and Turkey Poults Fed with Diets Containing Fusariotoxins at the EU Maximum Tolerable Level. Toxins 2019, 11, 590. https://doi.org/10.3390/toxins11100590
Tardieu D, Travel A, Metayer J-P, Le Bourhis C, Guerre P. Fumonisin B1, B2 and B3 in Muscle and Liver of Broiler Chickens and Turkey Poults Fed with Diets Containing Fusariotoxins at the EU Maximum Tolerable Level. Toxins. 2019; 11(10):590. https://doi.org/10.3390/toxins11100590
Chicago/Turabian StyleTardieu, Didier, Angelique Travel, Jean-Paul Metayer, Celeste Le Bourhis, and Philippe Guerre. 2019. "Fumonisin B1, B2 and B3 in Muscle and Liver of Broiler Chickens and Turkey Poults Fed with Diets Containing Fusariotoxins at the EU Maximum Tolerable Level" Toxins 11, no. 10: 590. https://doi.org/10.3390/toxins11100590
APA StyleTardieu, D., Travel, A., Metayer, J. -P., Le Bourhis, C., & Guerre, P. (2019). Fumonisin B1, B2 and B3 in Muscle and Liver of Broiler Chickens and Turkey Poults Fed with Diets Containing Fusariotoxins at the EU Maximum Tolerable Level. Toxins, 11(10), 590. https://doi.org/10.3390/toxins11100590