Fusarium Toxins in Chinese Wheat since the 1980s
Abstract
:1. Introduction
2. Human Mycotoxicoses Caused by Fusarium Toxins
3. Toxin-Producing Fusarium Strains
4. Natural Occurrence of Fusarium Toxins in Wheat
5. Fusarium Toxin Management
5.1. Expansion of the Basic Knowledge about Toxin Production
5.2. Maturation of Chemical Control Measure of FHB
5.3. Development of Process Control Technology
5.4. Improvement of the Standard System
6. Conclusions and Challenges for the Future
Author Contributions
Funding
Conflicts of Interest
References
- Han, Y.J. Analysis on the development of China’s wheat industry. Agric. Outlook 2006, 3, 3–7. [Google Scholar]
- Cheng, S. Heavy metal pollution in China: Origin, pattern and control. Environ. Sci. Pollut. R. 2003, 10, 192–198. [Google Scholar] [CrossRef]
- Hou, B.; Wang, Z.W.; Ying, R. Pesticide residues and wheat farmer’s cognition: A China scenario. Agric. Res. 2016, 5, 51–63. [Google Scholar] [CrossRef]
- Shi, J.R.; Liu, X.; Qiu, J.B.; Ji, F.; Xu, J.H.; Dong, F. Deoxynivalenol contamination in wheat and its management. Sci. Agric. Sin. 2016, 47, 3641–3654. [Google Scholar]
- Shi, J.R.; Qiu, J.B.; Dong, F.; Xu, J.H.; Ji, F.; Liu, X.; Yu, M.Z. Risk of Fusarium toxins of wheat in China. J. Trit. Crops 2016, 36, 129–135. [Google Scholar]
- Liu, A.; Shen, L.; Tan, Y.; Zeng, Z.; Liu, Y.; Li, C. Food integrity in china: Insights from the national food spot check data in 2016. Food Control 2018, 84, 403–407. [Google Scholar] [CrossRef]
- Bottalico, A.; Perrone, G. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur. J. Plant Pathol. 2002, 108, 1–26. [Google Scholar] [CrossRef]
- Pestka, J.J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 2010, 84, 663–679. [Google Scholar] [CrossRef]
- Pestka, J.J.; Smolinski, A.T. Deoxynivalenol: Toxicology and potential effects on humans. J. Toxicol. Env. Heal. B 2005, 8, 39–69. [Google Scholar] [CrossRef]
- Iverson, F.; Armstrong, C.; Nera, E.; Truelove, J.; Fernie, S.; Scott, P.; Stapley, R.; Hayward, S.; Gunner, S. Chronic feeding study of deoxynivalenol in b6c3f1 male and female mice. Teratog. Carcinog. Mutagen. 1995, 15, 283–306. [Google Scholar] [CrossRef] [PubMed]
- Debouck, C.; Haubruge, E.; Bollaerts, P.; van Bignoot, D.; Brostaux, Y.; Werry, A.; Rooze, M. Skeletal deformities induced by the intraperitoneal administration of deoxynivalenol (vomitoxin) in mice. Int. Orthop. 2001, 25, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Bony, S.; Olivier-Loiseau, L.; Carcelen, M.; Devaux, A. Genotoxic potential associated with low levels of the Fusarium mycotoxins nivalenol and fusarenon X in a human intestinal cell line. Toxicol. In Vitro 2007, 21, 457–465. [Google Scholar] [CrossRef]
- Marin, D.E.; Pistol, G.C.; Neagoe, I.V.; Calin, L.; Taranu, I. Effects of zearalenone on oxidative stress and inflammation in weanling piglets. Food Chem. Toxicol. 2013, 58, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Gromadzka, K.; Waskiewicz, A.; Chelkowski, J.; Golinski, P. Zearalenone and its metabolites: Occurrence, detection, toxicity and guidelines. World Mycotoxin J. 2008, 1, 209–220. [Google Scholar] [CrossRef]
- Luo, X.Y. Food poisoning caused by Fusarium toxins. In Proceedings of the Second Asian Conference on Food Safety, Chatuchak, Bangkok, Thailand; International Life Sciences Institute: Washington, DC, USA, 1994; pp. 129–136. [Google Scholar]
- Tang, S.D.; Su, C.Y.; Guo, S.W. Investigation report of food poisoning caused by scabby wheat in Xintian, Lingtao. Prog. Food Hygi. 1988, 5, 69. [Google Scholar]
- Luo, X.Y.; Li, Y.W.; Wen, S.F.; Hu, X. Determination of Fusarium mycotoxins in scabby wheat associated with human red-mold intoxication. J. Hygiene Res. 1987, 16, 33–37. [Google Scholar]
- He, X.M.; Chen, Z.Q. Four outbreaks of human mycotoxicoses associated with the consumption of corn or wheat powder contaminated with deoxynivalenol. Guangxi Med. J. 1990, 12, 205–206. [Google Scholar]
- Liu, J.R.; Tan, Q.Y.; Luo, X.Y. An outbreak of food poisoning caused by scab wheat. Chin. J. Food Hygi. 1989, 1, 62–63. [Google Scholar]
- Xu, Z.Z.; Yang, T.Z.; Zeng, X.G. An outbreak of food poisoning caused by scab wheat. J. Nanjing Med. Univ. 1991, 11, 48–50. [Google Scholar]
- Luo, X.Y. Fusarium toxins contamination of cereals in China. Proc. Jpn. Assoc. Mycotoxicol. 1991, 33, 11–15. [Google Scholar] [CrossRef]
- Guo, B.H.; Wei, T.; Wang, Z.Z.; Wang, H.; Dong, C.J.; Zhou, S.T.; Liu, X.N.; Li, Y.H.; He, X.Y.; Fang, C.H. Epidemiological investigation report on diarrhea and other main disease in xincai county, Henan Province after flood. Henan J. Prev. Med. 1991, 2, 882–886. [Google Scholar]
- Yang, C.H.; Luo, X.Y.; Li, W.Y.; Liu, C.; Li, Y.P. Survey on pollution of mycotoxin in moldy grains. J. Hygiene Res. 1992, 21, 258–260. [Google Scholar]
- Yuan, B.J.; Cao, Y.J.; Chen, L.Q.; Gao, Z.S.; Kuang, Y.H. A survey of food poisoning of scab wheat in Xuyi county during disaster period. Chin. J. Food Hygi. 1993, 5, 44–46. [Google Scholar]
- Chen, Y.Q.; Cheng, F.J.; Cai, J.L.; Yao, Z.F. Investigation on a food poisoning caused by eating scabby wheat. Strait J. Prev. Med. 1998, 4, 31–32. [Google Scholar]
- Sun, L.J.; Tain, X.C.; Yao, S.S. An outbreak of food poisoning caused by scab wheat flour. Heilongjiang Med. J. 2001, 25, 304. [Google Scholar]
- Chen, G.S.; Wu, K.H.; Chang, J.L. An outbreak of food poisoning caused by scab wheat. Henan J. Prev. Med. 2003, 14, 366. [Google Scholar]
- Shi, H.G.; Zhou, H.Y. Investigation on the poisoning cause of eating scabby wheat. Mod. Prev. Med. 2005, 32, 1165. [Google Scholar]
- Li, F.Q.; Li, Y.W.; Luo, X.Y.; Yoshizawa, T. Fusarium toxins in wheat from an area in Henan Province, PR China, with a previous human red mould intoxication episode. Food Addit. Contam. 2002, 19, 163–167. [Google Scholar] [CrossRef]
- Lv, S.Q.; Wang, L.J.; Wang, Z.L. T-2 Toxin and Kashin-Beck disease. Chin. J. Control Endem. Dis. 2000, 15, 35–39. [Google Scholar]
- Luo, Y.; Zheng, J.S.; Yang, J.S.; Liu, F.; Yoshizawa, T.; Zhang, S.Y.; Zhang, B.J.; Liu, K.C.; Zhai, S.S.; Sha, R.; et al. Determination of Fusarium mycotoxins in corn and wheat from Kaschin-Beck disease areas. Chin. J. Control Endem. Dis. 1992, 7, 71–75. [Google Scholar]
- Lei, R.; Jiang, N.; Zhang, Q.; Hu, S.; Dennis, B.S.; He, S.; Guo, X. Prevalence of selenium, T-2 toxin, and deoxynivalenol in kashin-beck disease areas in Qinghai Province, northwest China. Biol. Trace Elem. Res. 2016, 171, 34–40. [Google Scholar] [CrossRef]
- Hou, H.F.; Chen, L.M.; Han, J.J.; Li, J.P.; Ding, G.Y.; Qiu, J.; Li, Q.W. Report of deoxynivalenol and selenium in high incidence areas with kaschin-beck disease. Chin. J. Prev. Med. 2010, 44, 663–664. [Google Scholar]
- Liu, H.; Zhou, L.W.; Liu, Y.Q. Analysis of national surveillance on kashin-beck disease condition from 2000 to 2007. Chin. J. Control Endem. Dis. 2009, 28, 554–558. [Google Scholar]
- Luo, Y.; Yoshizawa, T.; Katayama, T. Comparative study on the natural occurrence of Fusarium mycotoxins (trichothecenes and zearalenone) in corn and wheat from high-and low-risk areas for human esophageal cancer in China. Appl. Environ. Microb. 1990, 56, 3723–3726. [Google Scholar]
- Gao, H.P.; Yoshizawa, T. Further study on Fusarium mycotoxins in corn and wheat from a high-risk area for human esophageal cancer in China. Mycotoxins 1997, 45, 51–55. [Google Scholar] [CrossRef]
- Yoshizawa, T.; Gao, H.P. Risk assessment of mycotoxins in staple foods from the high-risk area for human esophageal cancer in China. Mycotoxins 1999, (Suppl. 2), 55–62. [Google Scholar] [CrossRef]
- Hou, H.F.; Chen, L.M.; Qiu, J.; Li, J.P.; Dong, F.; Li, Q.W. Determination of deoxynivalenol and selenium in high incidence areas with esophageal cancer in Shandong. China Cancer 2011, 20, 406–408. [Google Scholar]
- Hsia, C.C.; Wu, Z.Y.; Li, Y.S.; Zhang, F.; Sun, Z.T. Nivalenol, a main Fusarium toxin in dietary foods from high-risk areas of cancer of esophagus and gastric cardia in China, induced benign and malignant tumors in mice. Oncol. Rep. 2004, 12, 449–456. [Google Scholar] [CrossRef]
- Sydenham, E.W.; Thiel, P.G.; Marasas, W.F.; Shephard, G.S.; van Schalkwyk, D.J.; Koch, K.R. Natural occurrence of some Fusarium mycotoxins in corn from low and high esophageal cancer prevalence areas of the Transkei, Southern Africa. J. Agr. Food Chem. 1990, 38, 1900–1903. [Google Scholar] [CrossRef]
- Xu, Y.G.; Chen, L.F. Wheat Scab: Theory and Practice on Control; Jiangsu Sci. Tech. Publ. House: Nanjing, China, 1993; pp. 201–216. [Google Scholar]
- Miller, J.D.; Greenhalgh, R.; Wang, Y.Z.; Lu, M. Trichothecene mycotoxin chemotypes of three Fusarium species. Mycologia 1991, 83, 121–130. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Miller, J.D. Toxin producing potential of Fusarium graminearum from China. Acta Mycologica Sinica 1994, 13, 229–234. [Google Scholar]
- All China Corporation of Research on Wheat Scab. Fusarium species distribution and pathogenicity from scabby heads in China. J. Shanghai Normal Univ. (Nat. Sci.) 1984, 3, 69–82. [Google Scholar]
- Zhang, R.T.; Huang, L.H.; Lei, G.X.; Dong, C.S.; Liu, C.F. Preliminary study on identification of pathogen causing wheat head blight in Qinghai Province. J. Hunan Agric. Univ. (Nat. Sci.) 1983, 2, 71–78. [Google Scholar]
- Zheng, Y.M.; Lin, Z.F.; Zhu, Z.D. Study of pathogen species and forms wheat scab fungi in Fujian Province. Acta Phytopathol. Sin. 1983, 13, 53–59. [Google Scholar]
- Hu, G.L.; Zhou, L.H. Identification of pathogen causing wheat head blight in Henan Province. J. Henan Univ. Sci. Technol. (Agric. Sci.) 1992, 4, 395–399. [Google Scholar]
- Xie, Y.S.; Mu, Y.S.; Qiu, Y. Identification and pathogenicity of pathogen causing wheat head blight in Ningxia. J. Agric.Sci. 1989, 10, 33–38. [Google Scholar]
- Sarver, B.A.; Ward, T.J.; Gale, L.R.; Broz, K.; Kistler, H.C.; Aoki, T.; Nicholson, P.; Carter, J.; O’Donnell, K. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet. Biol. 2011, 48, 1096–1107. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Ward, T.J.; Aberra, D.; Kistler, H.C.; Aoki, T.; Orwig, N.; Kimura, M.; Bjornstad, S.; Klemsdal, S.S. Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genet. Biol. 2008, 45, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Suga, H.; Karugia, G.W.; Ward, T.; Gale, L.R.; Tomimura, K.; Nakajima, T.; Miyasaka, A.; Koizumi, S.; Kageyama, K.; Hyakumachi, M. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 2008, 98, 159–166. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Jeon, J.J.; Kim, H.S.; Zeller, K.A.; Carter, L.L.; Leslie, J.F.; Lee, Y.W. Population structure of and mycotoxin production by Fusarium graminearum from maize in South Korea. Appl. Environ. Microbiol. 2012, 78, 2161–2167. [Google Scholar] [CrossRef]
- Desjardins, A.E. Fusarium. Mycotoxins: Chemistry, Genetics, and Biology; APS Press: St. Paul, MN, USA, 2006. [Google Scholar]
- Ward, T.J.; Bielawski, J.P.; Kistler, H.C.; Sullivan, E.; O’Donnell, K. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. Natl. Acad. Sci. USA 2002, 99, 9278–9283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.B.; Li, H.P.; Dang, F.J.; Qu, B.; Liao, Y.C. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from china. Mycol. Res. 2007, 111, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Karugia, G.W.; Suga, H.; Gale, L.R.; Nakajima, T.; Ueda, A.; Hyakumachi, M. Population structure of Fusarium asiaticum from two Japanese regions and eastern China. J. Gen. Plant Pathol. 2009, 75, 110–118. [Google Scholar] [CrossRef]
- Puri, K.D.; Saucedo, E.S.; Zhong, S. Molecular characterization of Fusarium head blight pathogens sampled from a naturally infected disease nursery used for wheat breeding programs in China. Plant Dis. 2012, 96, 1280–1285. [Google Scholar] [CrossRef]
- Pan, X.J.; Chen, N.; Yao, Y.; Liu, X.; Gao, Z.G. Population and pathogenicity of Fusarium spp. causing wheat head blight in northeast of China. Acta Agric. Boreali-Sin. 2015, 30, 205–210. [Google Scholar]
- Liu, X.X.; Wang, Y.; Qiu, J.F.; Meng, F.L.; Wei, C.Y. Analysis of toxin contamination in spring wheat, species and mycotoxin chemotypes of Fusarium spp. in northern China. Jiangsu Agric. Sci. 2018, 46, 199–202. [Google Scholar]
- Qiu, J.; Xu, J.; Shi, J. Molecular characterization of the Fusarium graminearum species complex in Eastern China. Eur. J. Plant Pathol. 2014, 139, 811–823. [Google Scholar] [CrossRef]
- Qiu, J.B.; Sun, J.T.; Yu, M.Z.; Xu, J.H.; Shi, J.R. Temporal dynamics, population characterization and mycotoxins accumulation of Fusarium graminearum in Eastern China. Sci. Rep.-UK 2016, 6, 36350. [Google Scholar] [CrossRef]
- Ward, T.J.; Clear, R.M.; Rooney, A.P.; O’Donnell, K.; Gaba, D.; Patrick, S.; Starkey, D.E.; Gilbert, J.; Geiser, D.M.; Nowicki, T.W. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 2008, 45, 473–484. [Google Scholar] [CrossRef]
- Puri, K.D.; Zhong, S. The 3ADON population of Fusarium graminearum found in North Dakota is more aggressive and produces a higher level of DON than the prevalent 15ADON population in spring wheat. Phytopathology 2010, 100, 1007–1014. [Google Scholar] [CrossRef]
- Kelly, A.C.; Clear, R.M.; O’Donnell, K.; McCormick, S.; Turkington, T.K.; Tekauz, A.; Gilbert, J.; Kistler, H.C.; Busman, M.; Ward, T.J. Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal Genet. Biol. 2015, 82, 22–31. [Google Scholar] [CrossRef]
- Liang, J.M.; Xayamongkhon, H.; Broz, K.; Dong, Y.; McCormick, S.P.; Abramova, S.; Ward, T.J.; Ma, Z.H.; Kistler, H.C. Temporal dynamics and population genetic structure of Fusarium graminearum in the upper Midwestern United States. Fungal Genet. Biol. 2014, 73, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Z.; Van der Lee, T.; Chen, W.Q.; Xu, J.; Xu, J.S.; Yang, L.; Yu, D.; Waalwijk, C.; Feng, J. Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in southern China. Phytopathology 2010, 100, 328–336. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, H.; Kong, X.; van der Lee, T.; Waalwijk, C.; van Diepeningen, A.; Xu, J.; Chen, W.Q.; Feng, J. Host and cropping system shape the Fusarium population: 3ADON-producers are ubiquitous in wheat whereas NIV-producers are more prevalent in rice. Toxins 2018, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.F.; Zhao, Y.J. Identification of pathogen causing wheat head blight in Qinghai Province. J. Nanjing Agric. Univ. 1996, 19, 116–118. [Google Scholar]
- Zhao, Y.J. Identification and pathogenicity of pathogen causing wheat head blight in Haidong district in Qinghai Province. Plant Protection 2001, 27, 1–19. [Google Scholar]
- Xu, F.; Yang, G.Q.; Wang, J.M.; Song, J.L.; Liu, L.L.; Zhang, J.J. Composition and variation in aggressiveness of populations causing wheat head blight in Henan Province. Acta Phytopathol. Sin. 2016, 46, 294–303. [Google Scholar]
- Zhang, H.; van der Lee, T.; Waalwijk, C.; Chen, W.; Xu, J.; Xu, J.; Zhang, Y.; Feng, J. Population analysis of the Fusarium graminearum species complex from wheat in china show a shift to more aggressive isolates. PLoS ONE 2012, 2, e31722. [Google Scholar]
- Shi, W.Q.; Yang, L.J.; Feng, J.; Zhang, X.; Zeng, F.S.; Xiang, L.B.; Wang, H.; Yu, D.Z. Analysis on the population structure of Fusarium pathogenic spp. and its mycotoxin chemotypes in Fusarium head blight epidemic region. Acta Phytopathol. Sin. 2011, 41, 486–494. [Google Scholar]
- Shen, C.M.; Hu, Y.C.; Sun, H.Y.; Li, W.; Guo, J.H.; Chen, H.G. Geographic distribution of trichothecene chemotypes of the Fusarium graminearum species complex in major winter wheat production areas of China. Plant Dis. 2012, 96, 1172–1178. [Google Scholar] [CrossRef]
- Zhang, J.B.; Wang, J.H.; Gong, A.D.; Chen, F.F.; Song, B.; Li, X.; Li, H.P.; Peng, C.H.; Liao, Y.C. Natural occurrence of Fusarium head blight, mycotoxins and mycotoxin-producing isolates of Fusarium in commercial fields of wheat in Hubei. Plant Pathol. 2013, 62, 92–102. [Google Scholar] [CrossRef]
- Zhang, H.B.; Liu, J.W.; Liu, B.J.; Liu, B.; Liang, Y.C. Composition and pathogenicity differentiation of pathogenic species isolated from Fusarium head blight in Shandong Province. J. Plant Protec. 2013, 40, 27–32. [Google Scholar]
- Gao, X.Y.; Gao, S.M.; liu, S.J.; Zhang, L.; Yu, J.F. Analysis on the species composition and mycotoxin chemotypes of wheat Fusarium head blight in Shandong Province. Acta Agric. Boreali-Sin. 2017, 32, 37–42. [Google Scholar]
- Wei, N.; Zhang, F.L.; Zhang, Y.F. Distribution of fungal toxin contamination in main grain and oil crops on the Tibetan plateau. Quality Safety Agr.-Prod. 2018, 3, 68–72. [Google Scholar]
- Si, L.L. Analysis of the monitoring results of deoxynivalenol and zearalenone in wheat flour and cornmeal in Lasa. Tibet Sci. Tech. 2014, 12, 25–28. [Google Scholar]
- Yang, X.L.; Zhang, G.X.; Yang, Q.D. Contamination survey of the deoxynivalenols in wheat flour from in the market of Xinjiang. Chin. J. Health Lab. Tec. 2016, 4, 578–581. [Google Scholar]
- Guo, H.W.; Liu, Q.P.; Hu, Z.H.; Xu, D.D.; Tanaka, T.; Ueno, Y.; Wu, Q.F. The contamination of Fusarium toxins in wheat and the intake of these toxins by farmers. Chin. J. Food Hygi. 1989, 1, 20–24. [Google Scholar]
- Lu, G.; Xue, Y.; Li, L. Contamination surveys of deoxynivalenol in wheat, flour, corn and barley from severe epidemic regions of scab in Anhui Province. Chin. J. Food Hygi. 1992, 3, 66. [Google Scholar]
- Cao, Y.J.; Cai, M.; Zhou, S.N.; Yan, X.P. Contamination surveys of the deoxynivalenol of corn and flour in Jiangsu Province. Chin. J. Food Hygi. 1994, 4, 36–37. [Google Scholar]
- Lu, G.; Li, L. Studies on deoxynivalenol contamination in grain and its products in Anhui Province. Chin. J. Prev. Med. 1994, 1, 27–30. [Google Scholar]
- Cui, L.; Selvaraj, J.N.; Xing, F.; Zhao, Y.; Zhou, L.; Liu, Y. A minor survey of deoxynivalenol in Fusarium infected wheat from Yangtze-Huaihe river basin region in China. Food Control 2013, 30, 469–473. [Google Scholar] [CrossRef]
- Selvaraj, J.N.; Zhao, Y.; Sangare, L.; Xing, F.; Zhou, L.; Wang, Y.; Xue, X.; Li, Y.; Liu, Y. Limited survey of deoxynivalenol in wheat from different crop rotation fields in Yangtze-Huaihe river basin region of China. Food Control 2015, 53, 151–155. [Google Scholar] [CrossRef]
- Xu, W.; Han, X.; Li, F. Co-occurrence of multi-mycotoxins in wheat grains harvested in Anhui Province, China. Food Control 2019, 96, 180–185. [Google Scholar] [CrossRef]
- Ji, F.; Xu, J.; Liu, X.; Yin, X.; Shi, J. Natural occurrence of deoxynivalenol and zearalenone in wheat from Jiangsu Province, China. Food Chem. 2014, 157, 393–397. [Google Scholar] [CrossRef]
- Ji, F.; Mokoena, M.P.; Zhao, H.; Olaniran, A.O.; Shi, J. Development of an immunochromatographic strip test for the rapid detection of zearalenone in wheat from Jiangsu Province, China. PLoS ONE 2017, 12, e0175282. [Google Scholar] [CrossRef]
- Dong, F.; Wang, S.; Yu, M.; Sun, Y.; Xu, J.; Shi, J. Natural occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in various wheat cultivars grown in Jiangsu Province, China. World Mycotoxin J. 2017, 10, 285–293. [Google Scholar] [CrossRef]
- Berthiller, F.; Dall’Asta, C.; Schuhmacher, R.; Lemmens, M.; Adam, G.; Krska, R. Masked mycotoxins: Determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J. Agr. Food Chem. 2005, 53, 3421–3425. [Google Scholar] [CrossRef]
- Poppenberger, B.; Berthiller, F.; Lucyshyn, D.; Sieberer, T.; Schuhmacher, R.; Krska, R.; Kuchler, K.; Glössl, J.; Luschnig, C.; Adam, G. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J. Biol. Chem. 2003, 278, 47905–47914. [Google Scholar] [CrossRef]
- Berthiller, F.; Dall’Asta, C.; Corradini, R.; Marchelli, R.; Sulyok, M.; Krska, R.; Adam, G.; Schuhmacher, R. Occurrence of deoxynivalenol and its 3-β-D-glucoside in wheat and maize. Food Addit. Contam. 2009, 4, 507–511. [Google Scholar] [CrossRef]
- Berthiller, F.; Krska, R.; Domig, K.J.; Kneifel, W.; Juge, N.; Schuhmacher, R.; Adam, G. Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicol. Lett. 2011, 3, 264–267. [Google Scholar] [CrossRef]
- Sasanya, J.J.; Hall, C.; Wolf-Hall, C. Analysis of deoxynivalenol, masked deoxynivalenol, and Fusarium graminearum pigment in wheat samples, using liquid chromatography-UV-mass spectrometry. J. Food Protect. 2008, 6, 1205–1213. [Google Scholar] [CrossRef]
- Li, F.Q.; Yu, C.C.; Shao, B.; Wang, W.; Yu, H.X. Natural occurrence of masked deoxynivalenol and multi-mycotoxins in cereals from china harvested in 2007 and 2008. Chin. J. Prev. Med. 2011, 45, 57–63. [Google Scholar]
- Ma, J.J.; Shao, B.; Lin, X.H.; Yu, H.X.; Li, F.Q. Study on the natural occurrence of multi-mycotoxin in cereal and cereal-based product samples collected from parts of China in 2010. Chin. J. Food Hygi. 2011, 23, 481–488. [Google Scholar]
- Han, X.M.; Li, F.Q.; Xu, W.J.; Zhang, H.Y.; Zhang, J.; Zhao, X.; Xu, J.; Han, C.H. Natural occurrence of important mycotoxins produced by Fusarium in wheat flour from five Provinces in China. China Swine Ind. 2017, 12, 33–39. [Google Scholar]
- Li, F.; Jiang, D.; Zhou, J.; Chen, J.; Li, W.; Zheng, F. Mycotoxins in wheat flour and intake assessment in Shandong Province of China. Food Addit. Contam. B 2016, 9, 170–175. [Google Scholar] [CrossRef]
- Gong, L.; Han, Z.; Cheng, H.; Liu, J.; Peng, Q.Z. The determination and the analysis of contamination law of deoxynivalenol and derivatives in cereals and their products. Food Sci. 2019. Available online: http://kns.cnki.net/kcms/detail/11.2206.TS.20181214.1620.108.html (accessed on 31 March 2019).
- Liu, Y.; Lu, Y.; Wang, L.; Chang, F.; Yang, L. Survey of 11 mycotoxins in wheat flour in Hebei Province, China. Food Addit. Contam. B 2015, 4, 250–254. [Google Scholar] [CrossRef]
- Jin, M.T.; Wang, J.H.; Lin, S.H.; Sun, W.S.; Wu, A.B. Analysis of deoxynivalenol (DON) and masked deoxynivalenol (D3G) accumulation in different treatment wheat grains at room temperature. Sci. Tech. Food Ind. 2015, 17, 132–137. [Google Scholar]
- Luo, X.Y. Contamination of Fusarium toxin in cereals. Chin. J. Food Hygi. 1989, 1, 42–45. [Google Scholar]
- Liao, X.G.; Zhang, X.L.; Chen, Y.R.; Gao, J.Q.; Wang, Z.Z.; Li, Y.W.; Wei, R.Y.; Li, Y.P. Detection of molds and mycotoxins in new wheat from flood areas in Henan Province in 1991. Chin. J. Health Lab. Tec. 1992, 4, 211–213. [Google Scholar]
- Li, X.; Guo, H.W. Surveillance on contamination of Fusarium toxin in cereals from Shanghai. Chin. J. Publ. Heal. 1998, 14, 734. [Google Scholar]
- Han, Z.; Nie, D.; Ediage, E.N.; Yang, X.; Wang, J.; Chen, B.; Li, S.; On, S.L.; De Saeger, S.; Wu, A. Cumulative health risk assessment of co-occurring mycotoxins of deoxynivalenol and its acetyl derivatives in wheat and maize: Case study, Shanghai, China. Food Chem. Toxicol. 2014, 74, 334–342. [Google Scholar] [CrossRef]
- Zhao, Y.; Guan, X.; Zong, Y.; Hua, X.; Xing, F.; Wang, Y.; Wang, F.; Liu, Y. Deoxynivalenol in wheat from the Northwestern region in China. Food Addit. Contam. B 2018, 11, 281–285. [Google Scholar] [CrossRef]
- Ueno, Y.; Lee, U.S.; Tanaka, T.; Hasegawa, A.; Matsuki, Y. Examination of Chinese and U.U.U.R. cereals for the Fusarium mycotoxins, nivalenol, deoxynivalenol and zearalenone. Toxicon 1986, 24, 618–621. [Google Scholar] [CrossRef]
- Li, R.T.; Xie, G.; Fu, P.C.; Luo, J.; Chen, L.; Wu, J. A preliminary survey and analysis of zearalenone contamination in stored wheat and maize in china (I). Grain Storage 2004, 5, 36–38. [Google Scholar]
- Wang, X.Y.; Yu, Y.Q.; Yu, Q. Contamination surveys and exposure assessment of the deoxynivalenol in resident meals in china in 2005. J. Changzhi Med. Coll. 2007, 21, 101–103. [Google Scholar]
- Wu, J.; Liu, T.G.; Gao, L.; Zhu, B.C.; Chen, W.Q. Determination of four Fusarium mycotoxins using enzyme-linked immunosorbent assay and its contamination analysis in wheat. J. Plant Protec. 2009, 36, 106–112. [Google Scholar]
- Xiong, K.H.; Hu, W.; Wang, M.J.; Wei, H.; Cheng, C.B. A survey on contamination of deoxynivalenol and zearalenone in maize and wheat from Anhui and Henan Province. Food Sci. 2009, 30, 265–268. [Google Scholar]
- Sun, J.; Wu, Y. Evaluation of dietary exposure to deoxynivalenol (DON) and its derivatives from cereals in China. Food Control 2016, 69, 90–99. [Google Scholar] [CrossRef]
- Liu, G.H.; Hou, G.L.; Guo, Z.H.; Wang, W.R.; Zhang, R.A.; Hou, F.L. Contamination surveys of the deoxynivalenol of corn and flour in Hebei Province. Chin. J. Food Hygi. 1993, 1, 40–41. [Google Scholar]
- Lu, G.; Li, L.; Xue, Y. Contamination surveys of the deoxynivalenol of corn and flour in Anhui Province. Chin. J. Food Hygi. 1994, 1, 53–54. [Google Scholar]
- Guo, H.W.; Zhu, Y.Z.; Liu, Q.P. Contamination surveys of the deoxynivalenol of corn and flour in Shanghai. Chin. J. Food Hygi. 1995, 5, 39–40. [Google Scholar]
- Wang, W.; Shao, B.; Zhu, J.; Yu, H.; Li, F. Dietary exposure assessment of some important Fusarium toxins in cereal-based products in China. J. Hygiene Res. 2010, 39, 709–714. [Google Scholar]
- Lu, J.J.; Yang, D.J. Pollution investigation of deoxynivalenol in wheat flour of China in 2013. J. Hygiene Res. 2015, 44, 658–660. [Google Scholar]
- Liu, Y.; Lu, Y.; Wang, L.; Chang, F.; Yang, L. Occurrence of deoxynivalenol in wheat, Hebei Province, China. Food Chem. 2016, 197, 1271–1274. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Cui, Y.; Chen, W.S. The Investigation of DON contents in wheat powder samples and analysis of DON dietary exposure risk. Food Res. Dev. 2014, 22, 94–96. [Google Scholar]
- Bai, Y.Y.; Chen, L.H.; Jia, Y.Z. Analysis of the monitoring results of three categories of mycotoxins in wheat flour and cornmeal from Xiamen markets in 2013. Chin. J. Health Lab. Tec. 2014, 14, 2068–2069. [Google Scholar]
- Zhu, H.Y.; Luo, X.Y.; Lin, Y.N. Investigation on DON contamination of flour and flour-related food in Guangzhou. Jiangsu J. Prev. Med. 2013, 24, 14–15. [Google Scholar]
- Hu, J.W.; Qiao, H.O.; Tian, L.; Wang, M.J.; Wang, C.X.; Guo, R. Mycotoxin contamination in cereal and its product in Shannxi Province from 2013 to 2016. J. Hygiene Res. 2017, 6, 158–160. [Google Scholar]
- He, H.H.; Li, L.; Han, X.X.; Zheng, X.L.; Bian, K. Study on microorganism and mycotoxins contamination situation of commercial wheat flour in Henan Province. Cereals & Oils 2015, 12, 64–66. [Google Scholar]
- Wang, L.Y.; Ren, B.B.; Yang, L.X.; Lu, Y.; Chang, F.Q.; Liu, Y.P. Investigation and analysis of deoxynivalenol and its derivatives pollution levels in cereal and cereal-based product in Hebei. Chin. J. Food Hygi. 2015, 27, 571–575. [Google Scholar]
- Li, S.; Yuan, P.; Fu, P.Y.; Yang, L.; Zhang, S.F. Investigation of contamination situation of fungal toxin in some food in Henan Province from 2014 to 2015. Chin. Heal. Ind. 2017, 27, 144–147. [Google Scholar]
- Zhang, Y.; Pei, F.; Fang, Y.; Li, P.; Zhao, Y.; Shen, F.; Zou, Y.; Hu, Q. Comparison of concentration and health risks of 9 Fusarium mycotoxins in commercial whole wheat flour and refined wheat flour by multi-IAC-HPLC. Food Chem. 2019, 275, 763–769. [Google Scholar] [CrossRef]
- Ji, X.; Yang, H.; Wang, J.; Li, R.; Zhao, H.; Xu, J.; Xiao, P.; tang, B.; Qian, M. Occurrence of deoxynivalenol (DON) in cereal-based food products marketed through e-commerce stores and an assessment of dietary exposure of Chinese consumers to DON. Food Control 2018, 92, 391–398. [Google Scholar] [CrossRef]
- Wong, P.; Walter, M.; Lee, W.; Mannhaupt, G.; Munsterkotter, M.; Mewes, H.W.; Adam, G.; Guldener, U. FGDB: Revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucleic Acids Res. 2011, 39, D637–D639. [Google Scholar] [CrossRef]
- Kimura, M.; Tokai, T.; Takahashi-Ando, N.; Ohsato, S.; Fujimura, M. Molecular and genetic studies of Fusarium trichothecene biosynthesis: Pathways, genes and evolution. Biosci. Biotechnol. Biochem. 2007, 71, 2105–2123. [Google Scholar] [CrossRef]
- Seong, K.Y.; Pasquali, M.; Zhou, X.; Song, J.; Hilbrun, K.; McCormick, S.P.; Dong, Y.; Xu, J.R.; Kistler, H.C. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Mol. Microbiol. 2009, 72, 354–367. [Google Scholar] [CrossRef]
- Kim, Y.T.; Lee, Y.R.; Jin, J.; Han, K.H.; Kim, H.; Kim, J.C.; Lee, T.; Yun, S.H.; Lee, Y.W. Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol. Microbiol. 2005, 58, 1102–1113. [Google Scholar] [CrossRef]
- Lysøe, E.; Bone, K.R.; Klemsdal, S.S. Real-time quantitative expression studies of the zearalenone biosynthetic gene cluster in Fusarium graminearum. Phytopathology 2009, 99, 176–184. [Google Scholar] [CrossRef]
- Gardiner, D.M.; Osborne, S.; Kazan, K.; Manners, J.M. Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology 2009, 155, 3149–3156. [Google Scholar] [CrossRef] [PubMed]
- Merhej, J.; Boutigny, A.L.; Pinson-Gadais, L.; Richard-Forget, F.; Barreau, C. Acidic pH as a determinant of TRI gene expression and trichothecene B biosynthesis in Fusarium graminearum. Food Addit. Contam. A 2010, 27, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Kawakami, A.; Nakajima, T. Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiol. Lett. 2008, 285, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, D.M.; Kazan, K.; Manners, J.M. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet. Biol. 2009, 46, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Jiang, C.; Zheng, Q.; Wang, C.; Xu, J.R. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. Mol. Plant Pathol. 2015, 16, 987–999. [Google Scholar] [CrossRef]
- Ponts, N.; Pinson-Gadais, L.; Barreau, C.; Richard-Forget, F.; Ouellet, T. Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. FEBS Lett. 2007, 581, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Kokkonen, M.; Ojala, L.; Parikka, P.; Jestoi, M. Mycotoxin production of selected Fusarium species at different culture conditions. Int. J. Food Microbiol. 2010, 143, 17–25. [Google Scholar] [CrossRef]
- Hou, Z.; Xue, C.; Peng, Y.; Katan, T.; Kistler, H.C.; Xu, J.R. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol. Plant Microbe In. 2002, 15, 1119–1127. [Google Scholar] [CrossRef]
- Guo, L.; Breakspear, A.; Zhao, G.; Gao, L.; Kistler, H.C.; Xu, J.R.; Ma, L.J. Conservation and divergence of the cyclic adenosine monophosphate–protein kinase A (cAMP–PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides. Mol. Plant Pathol. 2016, 17, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zhou, X.; Gu, X.; Cao, S.; Wang, C.; Xu, J.R. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. Mol. Plant Microbe In. 2014, 27, 557–566. [Google Scholar] [CrossRef]
- Yu, F.; Gu, Q.; Yun, Y.; Yin, Y.; Xu, J.R.; Shim, W.B.; Ma, Z. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. New Phytol. 2014, 203, 219–232. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Sun, H.Y.; Li, W.; Xia, Y.L.; Deng, Y.Y.; Zhang, A.X.; Chen, H.G. Fitness of three chemotypes of Fusarium graminearum species complex in major winter wheat-producing areas of China. PLoS ONE 2017, 12, e0174040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Yu, J.J.; Zhang, Y.N.; Zhang, X.; Cheng, C.J.; Wang, J.X.; Hollomon, D.W.; Fan, P.S.; Zhou, M.G. Effect of carbendazim resistance on trichothecene production and aggressiveness of Fusarium graminearum. Mol. Plant Microbe In. 2009, 22, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Li, H.K.; Zhou, M.G.; Wang, J.X.; NI, Y.P.; DIAO, Y.M. Controlling wheat scab with JS399-19 and carbendazim resistance management. Agrochemicals 2006, 45, 92–94. [Google Scholar]
- Xu, F.; Wang, J.M.; Yang, G.Q.; Song, Y.L.; Zhao, K.; Han, Z.H.; Li, L.J.; Liu, L.L.; Li, Y.H.; Zhang, J.J. Effect of fungicide on Fusarium head blight and deoxynivalenol content in wheat grain. Plant Protection 2018, 44, 214–219. [Google Scholar]
- Sun, H.Y.; Zhu, Y.F.; Liu, Y.Y.; Deng, Y.Y.; Li, W.; Zhang, A.X.; Chen, H.G. Evaluation of tebuconazole for the management of Fusarium head blight in China. Australas. Plant Path. 2014, 43, 631–638. [Google Scholar] [CrossRef]
- Xu, F.; Song, Y.L.; Yang, G.Q.; Wang, J.M.; Zhao, K.; Han, Z.H.; Li, L.J.; Liu, L.L.; Li, Y.H.; Zhang, J.J. Effect of tebuconazole application time on Fusarium head blight and the accumulation of deoxynivalenol in winter wheat. Plant Protection 2018, 44, 179–185. [Google Scholar]
- Han, Q.M.; Kang, Z.S.; Duan, S.K.; Huang, L.L. Chemical control of Fusarium head blight on wheat. J. Northwest Sci.-Tech. Univ. Agri. For. (Nat. Sci.) 2005, 33, 11–15. [Google Scholar]
- Duan, Y.; Tao, X.; Zhao, H.; Xiao, X.; Li, M.; Wang, J.; Zhou, M. Activity of demethylation inhibitor fungicide metconazole on Chinese Fusarium graminearum species complex and its application in carbendazim-resistance management of Fusarium head blight in wheat. Plant Dis. 2019, PDIS-09. [Google Scholar] [CrossRef]
- Audenaert, K.; Callewaert, E.; Höfte, M.; De Saeger, S.; Haesaert, G. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. BMC Microbiol. 2010, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Duan, Y.; Bian, C.; Pan, X.; Yao, C.; Wang, J.; Zhou, M. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance. Pestic. Biochem. Phys. 2019, 153, 152–160. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, L.; He, X.; Wang, J. Screening fungicides for controlling Fusarium head blight of winter wheat. Agri. Sci. Tech. 2017, 18, 2495–2502. [Google Scholar]
- Liang, B. The effects of different processing techniques of flour on deoxynivalenol (DON) content in wheat Flour. Anhui J. Prev. Med. 2004, 10, 138–139. [Google Scholar]
- Li, F.; Gu, S.Q.; Lu, D.X.; Zhao, Y. The effect of combined separation on reduction of DON toxin in wheat. J. Chin. Cereal. Oil. Ass. 2014, 29, 12–15. [Google Scholar]
- Bian, K.; Guan, E.Q.; Li, M.M.; Gui, G.J.; Zhang, K.; Guo, W.H.; liu, Y.X. Study of methods to eliminate and remove of vomitotoxin from scabby wheat. In Proceedings of the Academic symposium on the 30th anniversary of the establishment of the storage branch of the Chinese food and oil association, Chengdu, China, 2015; pp. 195–208. [Google Scholar]
- Zhu, Y.C.; Zhou, L.; Xing, F.G.; Zhao, Y.J.; Wang, Y.; Liu, Y. An improved gravity separation technology for sorting deoxynivalenol-contaminated wheat. J. Chin. Inst. Food Sci. Tech. 2015, 15, 121–127. [Google Scholar]
- Guan, E.Q.; Gui, G.J.; Bian, K.; Zheng, Z.H. SIMCA identification model establishment of gibberellic disease wheat grain based on near infrared spectrum characteristics. J. Chin. Cereal. Oil. Ass. 2016, 31, 124–129. [Google Scholar]
- Liang, K.; Du, Y.Y.; Lu, W.; Wang, C.; Xu, J.H.; Shen, M.X. Identification of Fusarium head blight wheat based on hyperspectral imaging technology. Trans. Chin. Soc. Agric. Mach. 2016, 47, 309–315. [Google Scholar]
- Du, Y.Y.; Chen, X.H.; Liang, K.; Xu, J.H.; Shen, M.X.; Lu, W. Identification of deoxynivalenol content in wheat based on the hyperspectral image system. Sci. Tec. Food Ind. 2016, 37, 54–58. [Google Scholar]
- Shen, F.; Liu, X.; Pei, F.; Li, P.; Jiang, D.F.; Liu, Q. Rapid identification of deoxynivalenol contamination in wheat and its products by attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR). Food Sci. 2019, 40, 293–297. [Google Scholar]
- Hou, R.; Yu, Y.G.; Ma, H.R.; Huang, R.; Wang, L.N.; Xiao, X.L. Effect of cleaning and milling on removal of deoxynivalenol in wheat and flour quality. Cereal Feed Sci. 2016, 5, 6–11. [Google Scholar]
Year | Region | Consumer | Victim | Reference |
---|---|---|---|---|
1985 | Lingtao, Gansu | 1549 | 1351 | [16] |
1985 | Puyang, Henan | 217 | 101 | [17] |
1988 | Yulin, Guangxi | 160 | 40 | [18,19] |
1988 | Tongshan, Jiangsu | 9 | 9 | [20] |
1989 | Zigong, Sichuan | 7 | 7 | [21] |
1989 | Baihe, Shannxi | 5016 | 701 | [21] |
1991 | Xincai, Henan | 840 | 479 | [22] |
1991 | Linquan, Anhui | 93 | 67 | [23] |
1991 | Fuyang, Anhui | 354 | 263 | [24] |
1991 | Xuyi, Jiangsu | 141 | 117 | [24] |
1996 | Putian, Fujian | 3 | 2 | [25] |
2000 | Kedong, Helongjiang | 6 | 6 | [26] |
2003 | Dongming, Shandong | 4 | 4 | [27] |
2003 | Baihe, Shannxi | 5043 | 701 | [28] |
Year | Regions | Sample Size | Toxin | Incidence (%) | Average Content (µg/kg) | Content (µg/kg) | Reference |
---|---|---|---|---|---|---|---|
1989 | Shannxi (KBD high incidence) | 5 | DON | 100.0 | 514.0 | 343.0–1051.0 | [31] |
3ADON | 100.0 | 363.0 | 15.0–731.0 | ||||
NIV | 100.0 | 183.0 | 17.0–373.0 | ||||
ZEN | 40.0 | 15.0 | 5.0–25.0 | ||||
Shannxi (KBD low incidence) | 5 | DON | 100.0 | 184.0 | 73.0–410.0 | ||
3ADON | 0 | 0 | 0 | ||||
NIV | 60.0 | 10.0 | 8.0–13.0 | ||||
ZEN | 0 | 0 | 0 | ||||
Inner Mongolia (KBD high incidence) | 6 | DON | 100.0 | 101.0 | |||
3ADON | 50.0 | 24.0 | |||||
NIV | 33.3 | 9.0 | |||||
ZEN | 0 | 0 | 0 | ||||
Inner Mongolia (KBD low incidence) | 7 | DON | 100.0 | 75.0 | |||
3ADON | 28.6 | 57.0 | |||||
NIV | 0 | 0 | 0 | ||||
ZEN | 0 | 0 | 0 | ||||
2010 | Qinghai (KBD high incidence) | 23 | DON | 87.0 | 302.0 | [32] | |
Qinghai (non-KBD) | 27 | DON | 29.6 | 199.0 | |||
2010 | Gansu (KBD high incidence) | 20 | DON | 75.0 | 142.8 | 12.8–205.3 | [33] |
20 | DON | 80.0 | 137.4 | 28.5–180.7 | |||
20 | DON | 75.0 | 127.3 | 20.6–176.1 | |||
Shandong (KBD low incidence) | 20 | DON | 10.0 | 12.9 | 10.2–15.6 | ||
20 | DON | 20.0 | 18.1 | 8.9–27.3 | |||
1989 | Henan Linxian (esophageal cancer high risk) | 15 | DON | 46.7 | 59.0 | 7.0–309.0 | [35] |
15 | NIV | 0 | 0 | 0 | |||
Henan Shangqiu (esophageal cancer low risk) | 15 | DON | 46.7 | 18.0 | 7.0–36.0 | ||
15 | NIV | 46.7 | 15.0 | 13.0–21.0 | |||
1995 | Linxian, Henan (esophageal cancer high risk) | 25 | DON | 92.0 | 83.0 | 9.0–193.0 | [36,37] |
15ADON | 0 | 0 | |||||
NIV | 29.0 | 13.0–50.0 | |||||
Henan Shangqiu (esophageal cancer low risk) | 15 | DON | 60.0 | 40.0 | 15.0–125.0 | ||
15ADON | 0 | 0 | |||||
NIV | 12.0 | 4.0–22.0 | |||||
1997 | Linxian, Henan (esophageal cancer high risk) | 15 | DON | 66.7 | 28.0 | 0–138.0 | |
15ADON | 0 | 0 | |||||
NIV | 95.0 | ||||||
Henan Shangqiu (esophageal cancer low risk) | 15 | DON | 0 | 0 | 0 | ||
15ADON | 0 | 0 | |||||
NIV | 0 | 0 | |||||
2000 | Linxian, Henan (esophageal cancer high risk) | 9 | DON | 77.8 | 732.0 | 0–1614.0 | [38] |
11 | NIV | 100.0 | 666.0 | 190.0–1476.0 | |||
Cixian, Hebei (esophageal cancer low risk) | 18 | DON | 100.0 | 1031.0 | 176.0–4280.0 | ||
18 | NIV | 100.0 | 731.0 | 102.0–2105.0 | |||
2010 | Shandong (esophageal cancer high risk) | 20 | DON | 100.0 | 195.2 | 70.1–302.8 | [39] |
20 | 100.0 | 184.3 | 85.4–287.5 | ||||
Shandong (esophageal cancer low risk) | 20 | 10.0 | 12.9 | 10.2–15.6 | |||
20 | 20.0 | 18.1 | 18.9–27.3 |
Year | Region | Sample Sizes | Fg15ADON | Fg3ADON | FgNIV | Fa3ADON | FaNIV | Fa15ADON | Reference |
---|---|---|---|---|---|---|---|---|---|
1975–1980 | China | 2450 | 94.5% | [44] | |||||
1975–1981 | Hunan | 185 | 97.2% | [45] | |||||
1978–1981 | Fujian | 1081 | 99.1% | [46] | |||||
1985 | Henan | 241 | 98.0% | [47] | |||||
1985–1987 | Ningxia | 350 | 63.8% | [48] | |||||
1991–1992 | Qinghai | 27 | 56.5% | [68] | |||||
1993–1995 | Qinghai | 1005 | 54.3% | [69] | |||||
1999 | China | 299 | 22.7% | 51.8% | 17.7% | 7.7% | [55] | ||
2000 | Zhejiang | 208 | 42.3% | 57.7% | [56] | ||||
2007–2014 | Henan | 327 | 89.0 % | 6.7% | 0.9% | 0.3% | [70] | ||
2008 | China | 444 | 38.1% | 38.5% | 21.9% | 1.6% | [71] | ||
2008 | Sichuan | 90 | 6.7% | 3.3% | 3.3% | 25.56% | 52.2% | [72] | |
Chongqing | 6 | 33.3% | 66.7% | ||||||
Hubei | 201 | 12.4% | 8.0% | 0.5% | 58.7% | 4.5% | 10.5% | ||
Henan | 25 | 100.0% | |||||||
Anhui | 42 | 45.2% | 7.1% | 4.8% | 35.7% | 7.1% | |||
Jiangsu | 69 | 15.9% | 10.1% | 63.8% | 10.1% | ||||
2008–2010 | Jiangsu | 292 | 5.5% | 84.6% | 9.9% | [73] | |||
Anhui | 71 | 21.1% | 59.2% | 19.7% | |||||
Henan | 88 | 89.8% | 8.0% | 2.3% | |||||
Hebei | 23 | 100.0% | |||||||
Shandong | 31 | 83.8% | 12.9% | 3.2% | |||||
Hubei | 25 | 92.0% | 8.0% | ||||||
2008 | Fujian | 59 | 76.0% | 24.0% | [57] | ||||
2009 | 100 | 4.0% | 81.0% | 15.0% | |||||
2009 | Hubei | 168 | 9.5% | 69.6% | 6.6% | 7.7% | [74] | ||
2011–2012 | Shandong | 95 | 94.7% | 4.4% | 1.1% | [75] | |||
2011 | Jiangsu/Anhui | 350 | 4.0% | 4.0% | 82.9% | 4.3% | 4.9% | [60] | |
2012 | Jiangsu/Anhui | 541 | 8.7% | 1.5% | 75.1% | 9.4% | 5.4% | ||
2013 | Northeast China | 118 | 64.4% | [58] | |||||
2014 | Sichuan | 103 | 18.5% | 7.8% | 71.8% | 1.0% | [67] | ||
Hubei | 57 | 87.7% | 7.0% | 5.3% | |||||
Anhui | 93 | 1.1% | 87.1% | 10.8% | 1.1% | ||||
Jiangsu | 67 | 3.0% | 89.6% | 7.5% | |||||
Fujian | 217 | 2.8% | 10.6% | 67.7% | 18.9% | ||||
2014–2015 | Shandong | 120 | 84.2% | 4.2% | 1.7% | 10.0% | [76] | ||
2016 | Northeast China | 84 | 44.1% | 3.6% | 1.2% | 4.8% | 22.6% | [59] |
Year | Regions | Sample Sizes | Toxins | Incidence (%) | Average Content (µg/kg) | Range (µg/kg) | Exceedance Rate (%) | Reference |
---|---|---|---|---|---|---|---|---|
1983 | Anhui | 40 | DON | 100.0 | 1161.4 | 22.5 | [83] | |
1986 | 182 | 44.5 | 312.9 | 7.1 | ||||
1989 | 81 | 100.0 | 2640.0 | 0–13,300.0 | 81.5 | |||
1991 | 26 | 100.0 | 2105.8 | 57.7 | ||||
1986 | Anhui | 150 | DON | 53.3 | 340.0 | 0–4000.0 | [102] | |
83 | ZEN | 22.9 | 32.0 | 0–300.0 | ||||
1991 | Anhui | 10 | DON | 100.0 | 15,900.0 | 2000.0–50,000.0 | 100.0 | [22] |
2007–2008 | Anhui | 25 | D3G | 64.0 | 45.5 | 2.2–238.4 | [95] | |
NIV | 72.0 | 53.3 | 1.8–229.9 | |||||
3ADON | 44.0 | 6.3 | 1.8–18.4 | |||||
15ADON | 12.0 | 2.6 | 2.3–3.0 | |||||
DON | 100.0 | 46.3 | 3.7–169.3 | 0 | ||||
ZEN | 20.0 | 12.9 | 3.3–36.1 | 0 | ||||
2010 | Anhui | 21 | DON | 90.5 | 2701.0 | 521.0–4975.0 | 81.0 | [84] |
2012 | Anhui | 22 | DON | 95.4 | 4501.6 | 465.0–9930.0 | [85] | |
2015 | Anhui | 370 | DON | 100.0 | 17,753.8 | 109.6–86,255.1 | [86] | |
D3G | 99.5 | 414.4 | 28.3–2957.2 | |||||
NIV | 87.8 | 250.2 | 0–2399.7 | |||||
3ADON | 80.0 | 39.6 | 0–284.1 | |||||
15ADON | 67.3 | 13.2 | 0–184.7 | |||||
ZEN | 68.7 | 25.7 | 0–1091.4 | 5.1 | ||||
1986 | Jiangsu | 202 | DON | 26.7 | 40.0 | 0–400.0 | 0 | [83] |
54 | ZEN | 64.8 | 51.0 | 0–300.0 | ||||
1991 | Jiangsu | 7 | DON | 71.4 | 2900.0 | 1560.0–5000.0 | [23] | |
2007–2008 | Jiangsu | 24 | D3G | 62.5 | 59.3 | 1.7–179 | [95] | |
NIV | 29.2 | 12.4 | 1.9–29.5 | |||||
3ADON | 29.2 | 5.5 | 2.1–11.3 | |||||
15ADON | 4.2 | 2.4 | 0–2.4 | |||||
DON | 95.8 | 73.0 | 2.8–408.3 | 0 | ||||
ZEN | 16.7 | 3.9 | 1.7–6.6 | 0 | ||||
2010 | Jiangsu | 35 | DON | 88.6 | 1221.0 | 259.0–3900.0 | 51.4 | [84] |
2010 | Jiangsu | 41 | DON | 100.0 | 1075.2 | 151.6–2550.2 | 44.0 | [87] |
ZEN | 46.3 | 216.0 | 10.1–3048.9 | 9.8 | ||||
2011 | 64 | DON | 32.8 | 82.1 | 14.5–1579.8 | 3.1 | ||
ZEN | 0 | 0 | 0 | 0 | ||||
2012 | 75 | DON | 96.0 | 306.7 | 16.3–41157.1 | 48.0 | ||
ZEN | 5.3 | 3.2 | 50.2–72.6 | 2.6 | ||||
2012 | Jiangsu | 62 | DON | 95.1 | 3260.9 | 260.0–11,200.0 | [85] | |
2013 | Jiangsu | 66 | ZEN | 37.9 | 11.8 | 6.5–110.0 | [88] | |
2014 | 66 | 46.9 | 22.0 | 15.0–194.3 | ||||
2015 | 70 | 54.3 | 39.3 | 25.1–307.3 | ||||
2015 | Jiangsu | 443 | DON | 100.0 | 2087.0 | 166.0–14,960.0 | [89] | |
D3G | 96.0 | 545.0 | 83.0–5092.0 | |||||
2016 | 439 | DON | 100.0 | 2601.0 | 12.0–18,061.0 | |||
D3G | 97.0 | 819.0 | 0–6708.0 | |||||
1985 | Henan | 19 | DON | 100.0 | 17,500.0 | 1.0–40,000.0 | 100.0 | [17] |
ZEN | 10.5 | 375.0 | 250.0–500.0 | 10.5 | ||||
1985 | Henan | 191 | DON | 99.0 | 923.0 | 15.9–3337.8 | 47.1 | [80] |
191 | NIV | 81.0 | 128.2 | 12.5–608.6 | ||||
92 | ZEN | 100.0 | 15.3 | 3.3–149.9 | ||||
1986 | Henan | 100 | DON | 74.0 | 14.2 | 6.7–175.4 | 0 | |
NIV | 4.0 | 9.5–49.0 | ||||||
1986 | Henan | 97 | DON | 57.7 | 40.0 | 0–400.0 | 0 | [102] |
60 | ZEN | 11.7 | 8.0 | 0–50.0 | 0 | |||
1991 | Henan | 35 | DON | 100.0 | 1500.0 | 1000.0–3500.0 | 100.0 | [23] |
1991 | Henan | 24 | DON | 0-3500.0 | 41.7 | [103] | ||
1998 | Henan | 31 | DON | 96.8 | 2850.0 | 177.0–14,000.0 | [29] | |
15ADON | 64.5 | 365.0 | 59.0–1800.0 | |||||
NIV | 3.2 | 578.0 | 0–578.0 | |||||
ZEN | 67.7 | 209.0 | 9.0–1400.0 | |||||
28 | DON | 89.3 | 223.0 | 53.0–1240.0 | ||||
15ADON | 0 | 0 | 0 | |||||
NIV | 0 | 0 | 0 | |||||
ZEN | 25.0 | 108.0 | 1.0–217.0 | |||||
1999 | 34 | DON | 85.3 | 294.0 | 74.0–941.0 | 0 | ||
15ADON | 0 | 0 | 0 | |||||
NIV | 0 | 0 | 0 | |||||
ZEN | 58.8 | 23.0 | 5.0–113.0 | |||||
2007–2008 | Henan | 28 | D3G | 75.0 | 24.6 | 2.8–171.1 | [95] | |
NIV | 0 | 0 | 0 | |||||
3ADON | 14.3 | 3.6 | 0–4.9 | |||||
15ADON | 46.4 | 4.1 | 0–17.7 | |||||
DON | 100.0 | 74.6 | 2.9–363.6 | 0 | ||||
ZEN | 17.9 | 3.3 | 0–8.1 | 0 | ||||
1986 | Shanghai | 100 | DON | 100.0 | 340.0 | 0–2000.0 | [102] | |
ZEN | 33.0 | 11.0 | 0–780.0 | |||||
1995 | Shanghai | 100 | DON | 53.0 | 280.9 | 0–1919.7 | 10.0 | [104] |
NIV | 35.0 | 103.4 | 0–1428.0 | |||||
2009–2012 | Shanghai | 198 | DON | 80.8 | 64.7 | 0.5–604.0 | 0 | [105] |
2011–2012 | Shanghai | 38 | 3ADON | 100.0 | 10.3 | 0.7–35.2 | ||
15-DON | 100.0 | 1.4 | 0.5–6.2 | |||||
2007–2008 | Hebei | 25 | D3G | 60.0 | 88.9 | 5.6–388.0 | [95] | |
NIV | 24.0 | 12.3 | 1.8–57.5 | |||||
3ADON | 48.0 | 12.5 | 1.6–70.8 | |||||
15ADON | 88.0 | 236.1 | 1.5–1256.2 | |||||
DON | 80.0 | 167.3 | 1.7–636.2 | 0 | ||||
ZEN | 56.0 | 126.1 | 4.7–930.4 | |||||
1986 | Gansu | 135 | DON | 57.0 | 2050.0 | 0–20,000.0 | [102] | |
101 | ZEN | 40.6 | 15.0 | 0–300.0 | ||||
2013 | Shannxi | 81 | DON | 96.1 | 515.3 | 79.0–3030.0 | 8.64 | [106] |
Ningxia | 26 | 100.0 | 804.4 | 71.0–2330.0 | 26.92 | |||
Gansu | 52 | 86.5 | 294.4 | 0–1798.0 | 1.92 | |||
Xinjiang | 22 | 0 | 0 | 0 | 0 | |||
2000–2016 | Tibet | 199 | DON | 0 | 0 | 0 | 0 | [77] |
ZEN | 0.5 | 0.5 | ||||||
2007–2008 | Sichuan | 30 | D3G | 0 | 0 | 0 | [95] | |
NIV | 73.3 | 17.7 | 3.0–39.1 | |||||
3ADON | 0 | 0 | 0 | |||||
15ADON | 0 | 0 | 0 | |||||
DON | 50.0 | 16.4 | 3.0–47.8 | 0 | ||||
ZEN | 20.0 | 5.1 | 2.0–8.8 | 0 | ||||
2007–2008 | Chongqing | 30 | D3G | 73.3 | 72.5 | 9.8–235.3 | [95] | |
NIV | 100.0 | 199.5 | 7.8–1035.8 | |||||
3ADON | 60.0 | 9.1 | 1.9–34.6 | |||||
15ADON | 46.7 | 9.6 | 2.1–71.0 | |||||
DON | 100.0 | 133.3 | 12.0–590.7 | 0 | ||||
ZEN | 80.0 | 199.4 | 2.3–3425.1 | |||||
2016 | Heilongjiang | 55 | DON | 0 | 0 | 0 | 0 | [59] |
1984 | China | 29 | DON | 51.7 | 401.7 | 0–2450.0 | 6.9 | [107] |
NIV | 37.9 | 267.3 | 0–6644.0 | |||||
ZEN | 44.8 | 6.8 | 0–32.0 | 0 | ||||
2003 | China | 48 | ZEN | 100.0 | 98.0 | 0–470.0 | 72.9 | [108] |
2005 | China | 190 | DON | 66.3 | 50.0 | 0–612.7 | 0 | [109] |
2007 | China | 229 | DON | 38.0 | 73.9 | 0-600.8 | 0 | [110] |
ZEN | 16.0 | 1.6 | 0–72.4 | |||||
2008 | China | 41 | DON | 97.6 | 425.5 | 9.8 | [111] | |
ZEN | 68.3 | 152.4 | 41.5 | |||||
2010–2013 | China | 681 | DON | 66.5 | 72.8 | 774.8–14276.0 | [112] | |
AcDON | 66.8 | 74.7 | 797.7–14604.2 |
Year | Regions | Toxins | Sample Sizes | Incidence (%) | Average Content (µg/kg) | Range (µg/kg) | Exceedance Rate (%) | Reference |
---|---|---|---|---|---|---|---|---|
1983–1991 | Anhui | DON | 132 | 92.4 | 1065.6 | 40.9 | [83] | |
1988 | Hebei | DON | 50 | 54.0 | 75.0 | 0–173.0 | 0 | [113] |
1988–1989 | Anhui | DON | 100 | 90.0 | 1008.6 | 43.0 | [114] | |
1988–1989 | Shanghai | DON | 25 | 100.0 | 79.8 | 0 | [115] | |
25 | 80.0 | 58.1 | 0 | |||||
1989 | Anhui | DON | 84 | 100.0 | 1334.0 | 58.3 | [81] | |
1989 | Jiangsu | DON | 50 | 96.0 | 577.7 | 18.0 | [82] | |
1996 | Shanghai | DON | 30 | 86.7 | 101.2 | 0 | [104] | |
NIV | 56.7 | 53.3 | ||||||
2009 | China (13 provinces) | DON | 292 | 100.0 | 178.4 | 0.5–2995.1 | 1.7 | [116] |
ZEN | 53.4 | 5.1 | 0.3–55.0 | 0 | ||||
NIV | 88.4 | 8.1 | 0.3–218.2 | |||||
2010 | China (12 provinces) | DON | 125 | 96.8 | 179.0 | 0.1–1016.8 | 0.8 | [96] |
3ADON | 64.0 | 2.2 | 0.1–19.8 | |||||
15ADON | 95.2 | 4.2 | 0.1–25.5 | |||||
D3G | 83.2 | 10.1 | 0.1–52.8 | |||||
NIV | 86.4 | 10.3 | 0.1–76.5 | |||||
ZEN | 72.8 | 3.5 | 0.1–52 | 0 | ||||
2010 | China (28 provinces) | DON | 143.0 | 4.2 | [117] | |||
2011 | 147.0 | 2.2 | ||||||
2012 | 658.0 | 20.7 | ||||||
2013 | 5678 | 58.7 | 317.0 | 0–56,100 | 4.7 | |||
2010–2013 | China | DON | 3848 | 71.7 | 126.0 | 218.0–6922.0 | [112] | |
AcDON | 3860 | 71.8 | 91.5 | 219.2–6922.0 | ||||
2010- | Shandong | DON | 359 | 97.2 | 84.3 | 0–825.9 | 0 | [98] |
3ADON | 11.1 | 0.1 | 0–3.6 | |||||
15ADON | 14.2 | 0.5 | 0–11.1 | |||||
NIV | 40.4 | 1.4 | 0–23.9 | |||||
D3G | 33.4 | 1.1 | 0–15.7 | |||||
ZEN | 0 | 0 | 0 | 0 | ||||
2010- | Hubei | DON | 26 | 69.2 | 129.4 | 0–2133.2 | 3.9 | [99] |
D3G | 30.8 | <20.0 | 0–252.4 | |||||
2010- | Hebei | DON | 348 | 91.4 | 240.0 | 0–1129.0 | 0.6 | [100] |
15ADON | 34.2 | 1.9 | 0–6.0 | |||||
NIV | 16.4 | 3.2 | 0–19.1 | |||||
ZEN | 13.2 | 8.4 | 0–98.8 | 0.3 | ||||
D3G | 5.5 | 1.9 | 0–3.9 | |||||
3ADON | 2.1 | 3.2 | 0–2.6 | |||||
2011 | Hebei | DON | 31 | 16.1 | 137.0 | 2.4–639.0 | 0 | [118] |
3ADON | 6.4 | 0.7 | 0.6–0.8 | |||||
15ADON | 0 | 0 | ||||||
2012 | DON | 348 | 91.4 | 240.0 | 11.5–1130.0 | 0.6 | ||
3ADON | 34.2 | 1.9 | 1.1–6.0 | |||||
15ADON | 3.2 | 2.1 | 1.5–2.6 | |||||
2013 | DON | 293 | 99.6 | 156.0 | 6.2–878.0 | 0 | ||
3ADON | 0 | 0 | 0 | |||||
15ADON | 0 | 0 | 0 | |||||
2013 | China (10 provinces) | DON | 50 | 30.0 | 58.1 | 0–862.0 | 0 | [119] |
2013 | China (5 provinces) | DON | 158 | 84.2 | 4084.8 | 23.5–25,375 | 68.0 | [97] |
D3G | 24.1 | 13.9 | 8.7–33.3 | |||||
3ADON | 84.2 | 14.9 | 10.6–177.5 | |||||
15ADON | 60.8 | 14.7 | 13.4–23.5 | |||||
NIV | 22.2 | 26.9 | 1.8–94.0 | |||||
ZEN | 77.2 | 85.8 | 13–158 | 24.0 | ||||
2013 | Fujian | DON | 59 | 89.8 | 11.2 | [120] | ||
ZEN | 11.9 | 0 | ||||||
2013 | Guangdong | DON | 30 | 86.7 | 87.9 | 0–860.8 | 0 | [121] |
2013–2016 | Shannxi | DON | 504 | 86.9 | 311.0 | 6.0–3670.0 | 6.7 | [122] |
3ADON | 59.9 | 33.7 | 21.9–535.0 | |||||
15ADON | 8.3 | 5.7 | 4.5–105.0 | |||||
ZEN | 0.2 | 2.6 | 0–31.0 | 0 | ||||
2013 | Tibet | DON | 85 | 27.1 | 47.0 | 0–630.0 | 0 | [78] |
ZEN | 74.0 | 5.4 | 0–13.9 | 0 | ||||
2014 | Xinjiang | DON | 84 | 51.2 | 20.3 | 8.7–152.6 | 0 | [79] |
15ADON | 28.6 | 15.3 | 5.6–159.2 | |||||
2014 | Henan | DON | 65 | 69.2 | 218.3 | 0 | [123] | |
2014 | Hebei | DON | 293 | 99.7 | 156.0 | 0–878.4 | 0 | [124] |
2014–2015 | Henan | DON | 295 | 8.8 | 14.4 | 0–750.0 | 0 | [125] |
3ADON | 0 | 0 | 0 | 0 | ||||
15ADON | 0 | 0 | 0 | 0 | ||||
ZEN | 0 | 0 | 0 | 0 | ||||
2016–2017 | Jiangsu | DON | 35 | 100.0 | 308.9 | 44.6–924.6 | 0 | [126] |
3ADON | 28.6 | 7.1 | 0–54.9 | |||||
15ADON | 17.1 | 3.2 | 0–23.7 | |||||
ZEN | 17.1 | 1.2 | 0–16.9 | 0 | ||||
DON | 50 | 62.0 | 91.9 | 0–401.8 | 0 | |||
3ADON | 6.0 | 1.1 | 0–21.0 | |||||
15ADON | 2.0 | 0.3 | 0–14.7 | |||||
ZEN | 0 | 0 | 0 | 0 | ||||
2017 | China | DON | 75 | 85.3 | 455.7 | 12.5–1285.4 | 20.0 | [127] |
15 | 100.0 | 426 | 51.6–1308.9 | 13.3 |
Food Category | Toxin | Limit (μg/kg) | Standard Code |
---|---|---|---|
cereal and its product: corn, corn flour (corn gluten meal, corn flake), barley, wheat, oatmeal, wheat flour | DON | 1000 | GB2761 |
plant feedstuffs | 5000 | GB13078 | |
calf, lamb, concentrate supplement in lactation period | 1000 | ||
other concentrate supplement | 3000 | ||
pig formula feed | 1000 | ||
other formula feed | 3000 | ||
cereal and its product: wheat, wheat flour, corn, corn flour (corn gluten meal, corn flake) | ZEN | 60 | GB2761 |
corn and its processed products (corn bran, corn gluten feed, corn steep powder excepted) | 500 | GB13078 | |
corn bran, corn gluten feed, corn steep powder, corn distiller’s grains products | 1500 | ||
other plant feedstuffs | 1000 | ||
calf, lamb, concentrate supplement in lactation period | 500 | ||
piglet formula feed | 150 | ||
gilt formula feed | 100 | ||
other pig formula feed | 250 | ||
other formula feed | 500 |
Standard Code | Standard Category | Standard Name | Method | Toxin |
---|---|---|---|---|
GB 5009.111-2016 | Mandatory national standard | Determination of deoxynivalenol and its acetylated derivatives in food | Isotope-dilution LC-MS/MS; Immunoaffinity chromatography-HPLC; thin layer chromatography | DON |
GB/T 30956-2014 | Recommendatory national standard | Determination of deoxynivalenol in feeds | Immunoaffinity chromatography-HPLC | |
GB/T 8381.6-2005 | Method for determination of deoxynivalenol in formula feed | Thin layer chromatography | ||
SN/T 3137-2012 | Recommendatory industry standard | Determination of deoxynivalenol, 3-acety-ldeoxynivalenol, 15-O-4-acetyl-deoxynivalenol, and their metabolite in food for export | HPLC-MS/MS | |
SN/T 3136-2012 | Determination of aflatoxins, ochratoxin, fumonisin B1, deoxynivalenol, T-2 and HT-2 toxins in peanut, grains, and their products for export | HPLC-MS/MS | ||
LS/T 6110-2014 | Recommendatory industry standard | Detection of deoxynivalenol in cereal | Rapid quantitative method of colloidal gold technique | |
LS/T 6113-2015 | Recommendatory industry standard | Detection of deoxynivalenol in grain | Rapid quantitative method of colloidal gold technique | |
LS/T 6127-2017 | Recommendatory industry standard | Detection of deoxynivalenol in grain | UPLC | |
LS/T 6133-2018 | Recommendatory industry standard | Determination of 16 mycotoxins in cereal | HPLC-MS/MS | |
KJ 201702 | Rapid detection standard | Rapid detection of deoxynivalenol in food | Colloidal gold immunochromatographic | |
GB 5009.209-2016 | Mandatory national standard | Determination of zearalenone in food | HPLC; HPLC-MS/MS; Immunoaffinity chromatography-fluorescence spectrometer | ZEN |
GB/T 19540-2004 | Recommendatory national standard | Determination of zearalenone in feeds | Thin layer chromatography; Enzyme-linked immunosorbent assay | |
GB/T 28716-2012 | Determination of zearalenone in feeds | HPLC method with immunoaffinity column clean-up | ||
SN/T 3235-2012 | Recommendatory industry standard | Determination of multi-groups of banned drug residues in foodstuffs of Animal origin for export | LC-MS/MS | |
SN/T 4058-2014 | Recommendatory industry standard | Determination of residues of zeranols in foodstuffs of animal origin for export | HPLC and HPLC-MS/MS method with Immunoaffinity column clean-up | |
NY/T 2071-2011 | Recommendatory agriculture standard | Determination of aflatoxins, zearalenone, and T-2 in feed | LC-MS/MS | |
LS/T 6109-2014 | Recommendatory agriculture standard | Detection of zearalenone in cereal | Rapid method of colloidal gold technique | |
LS/T 6112-2015 | Recommendatory agriculture standard | Detection of zearalenone in grain | Rapid quantitative method of colloidal gold technique | |
LS/T 6129-2017 | Recommendatory agriculture standard | Determination of zearalenone in grains | UPLC-MS/MS | |
LS/T 6133-2018 | Recommendatory industry standard | Determination of 16 mycotoxins in cereal | HPLC-MS/MS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, J.; Xu, J.; Shi, J. Fusarium Toxins in Chinese Wheat since the 1980s. Toxins 2019, 11, 248. https://doi.org/10.3390/toxins11050248
Qiu J, Xu J, Shi J. Fusarium Toxins in Chinese Wheat since the 1980s. Toxins. 2019; 11(5):248. https://doi.org/10.3390/toxins11050248
Chicago/Turabian StyleQiu, Jianbo, Jianhong Xu, and Jianrong Shi. 2019. "Fusarium Toxins in Chinese Wheat since the 1980s" Toxins 11, no. 5: 248. https://doi.org/10.3390/toxins11050248
APA StyleQiu, J., Xu, J., & Shi, J. (2019). Fusarium Toxins in Chinese Wheat since the 1980s. Toxins, 11(5), 248. https://doi.org/10.3390/toxins11050248