Development of an Ultrasensitive and Rapid Fluorescence Polarization Immunoassay for Ochratoxin A in Rice
Abstract
:1. Introduction
2. Results and Discussions
2.1. The Principle of FPIA
2.2. Preparation of Monoclonal Antibody
2.3. Synthesis of the OTA-FL Tracer
2.4. Optimization of the FPIA
2.5. Evaluation of FPIA
2.6. FPIA Screening and HPLC Analysis of Blind Samples
3. Conclusions
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Animals and Cells
4.3. Hybridoma Cell Culture and Antibody Preparation
4.4. Preparation of Four Different OTA-Fluorescein Tracers
4.5. Method of Fluorescence Polarization Immunoassay
4.6. Sample Preparation
4.7. Comparison with HPLC Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Naohiko, A.; Promsuk, J.; Hitoshi, E. Molecular Mechanism of Ochratoxin A Transport in the Kidney. Toxins 2010, 2, 1381–1398. [Google Scholar]
- Fazekas, B.; Tar, A.; Kovacs, M. Aflatoxin and ochratoxin A content of spices in Hungary. Food Addit. Contam. 2005, 22, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Anukul, N.; Vangnai, K.; Mahakarnchanakul, W. Significance of regulation limits in mycotoxin contamination in Asia and risk management programs at the national level. J. Food Drug Anal. 2013, 21, 227–241. [Google Scholar] [CrossRef] [Green Version]
- Lippolis, V.; Pascale, M.; Valenzano, S.; Porricelli, A.C.R.; Suman, M.; Visconti, A. Fluorescence Polarization Immunoassay for Rapid, Accurate and Sensitive Determination of Ochratoxin A in Wheat. Food Anal. Methods 2013, 7, 298–307. [Google Scholar] [CrossRef]
- Cigić, I.K.; Prosen, H. An overview of conventional and emerging analytical Methods for the determination of mycotoxins. Int. J. Mol. Sci. 2009, 10, 62–115. [Google Scholar] [CrossRef] [PubMed]
- Vettorazzi, A.; González-Peñas, E.; De Cerain, A.L. Ochratoxin A kinetics: A review of analytical methods and studies in rat model. Food Chem. Toxicol. 2014, 72, 273–288. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; He, Q.; Shen, D.; Jiang, Z.; Eremin, S.A.; Zhao, S. Fluorescence polarization immunoassay based on a new monoclonal antibody for the detection of the Diisobutyl phthalate in Yoghurt. Food Control 2018, 105, 38–44. [Google Scholar] [CrossRef]
- Zhang, X.; Song, M.; Yu, X.; Wang, Z.; Ke, Y.; Jiang, H.; Li, J.; Shen, J.; Wen, K. Development of a new broad-specific monoclonal antibody with uniform affinity for aflatoxins and magnetic beads-based enzymatic immunoassay. Food Control 2017, 79, 309–316. [Google Scholar] [CrossRef]
- Huang, P.; Zhao, S.; Eremin, S.A.; Zheng, S.; Lai, D.; Chen, Y.; Guo, B. A fluorescence polarization immunoassay method for detection of the bisphenol A residue in environmental water samples based on a monoclonal antibody and 4′-(aminomethyl) fluorescein. Anal. Methods 2015, 7, 4246–4251. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Q.; Mi, T.; Zhao, S.; Wen, K.; Guo, L.; Mi, J.; Zhang, S.; Shi, W.; Shen, J.; et al. Dual-wavelength fluorescence polarization immunoassay to increase information content per screen: Applications for simultaneous detection of total aflatoxins and family zearalenones in maize. Food Control 2018, 87, 100–108. [Google Scholar] [CrossRef]
- Lea, W.A.; Simeonov, A. Fluorescence polarization assays in small molecule screening. Expert Opin. Drug Discov. 2010, 6, 17–32. [Google Scholar] [CrossRef]
- Maragos, C. Fluorescence polarization immunoassay of mycotoxins: A review. Toxins 2009, 1, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Rossi, A.M.; Taylor, C.W. Analysis of protein-Iigand interactions by fluorescence polarization. Nat. Protoc. 2011, 6, 365–387. [Google Scholar] [CrossRef] [Green Version]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2006; Volume 13, p. 029901. [Google Scholar]
- Park, J.H.; Chung, D.H.; Lee, I.S. Application of Fluorescence Polarization Immunoassay for the Screening of Ochratoxin A in Unpolished Rice. J. Life Sci. 2006, 16, 1006–1013. [Google Scholar]
- Maragos, C.; Jolley, M.E.; Plattner, R.D.; Nasir, M.S. Fluorescence polarization as a means for determination of fumonisins in maize. J. Agric. Food Chem. 2001, 49, 596–602. [Google Scholar] [CrossRef]
- Shim, W.B.; Kolosova, A.; Kim, Y.J.; Yang, Z.Y.; Park, S.J.; Eremin, S.A.; Lee, I.-S.; Chung, D.H. Fluorescence polarization immunoassay based on a monoclonal antibody for the detection of ochratoxin A. Int. J. Food Sci. Technol. 2004, 39, 829–837. [Google Scholar] [CrossRef]
- Li, C.; Wen, K.; Mi, T.; Zhang, X.; Zhang, H.; Zhang, S.; Shen, J.; Wang, Z. A universal multi-wavelength fluorescence polarization immunoassay for multiplexed detection of mycotoxins in maize. Biosens. Bioelectron. 2016, 79, 258–265. [Google Scholar] [CrossRef]
- Mortensen, G.K.; Strobel, B.W.; Hansen, H.C.B. Determination of zearalenone and ochratoxin A in soil. Anal. Bioanal. Chem. 2003, 376, 98–101. [Google Scholar] [CrossRef]
- Peters, J.; Thomas, D.S.; Boers, E.; De Rijk, T.; Berthiller, F.; Haasnoot, W.; Nielen, M.W.F. Colour-encoded paramagnetic microbead-based direct inhibition triplex flow cytometric immunoassay for ochratoxin A, fumonisins and zearalenone in cereals and cereal-based feed. Anal. Bioanal. Chem. 2013, 405, 7783–7794. [Google Scholar] [CrossRef] [Green Version]
- Becheva, Z.R.; Atanasova, M.K.; Ivanov, Y.L.; Godjevargova, T.I. Magnetic Nanoparticle-Based Fluorescence Immunoassay for Determination of Ochratoxin A in Milk. Food Anal. Methods 2020, 2020, 1–11. [Google Scholar]
- Beloglazova, N.V.; Graniczkowska, K.; Njumbe Ediage, E.; Averkieva, O.; De Saeger, S. Sensitive Flow-through Immunoassay for Rapid Multiplex Determination of Cereal-borne Mycotoxins in Feed and Feed Ingredients. J. Agric. Food Chem. 2017, 65, 7131–7137. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Wang, Y.; Chen, Q.; Liu, X. Nanobody-alkaline phosphatase fusion-mediated phosphate-triggered fluorescence immunoassay for ochratoxin a detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 226, 117617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, Q.; Tang, X.; Zhang, W.; Li, P.-W. Development of an Anti-Idiotypic VHH Antibody and Toxin-Free Enzyme Immunoassay for Ochratoxin A in Cereals. Toxins 2019, 11, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehmat, Z.; Mohammed, W.S.; Sadiq, M.B.; Somarapalli, M.; Anal, A.K. Ochratoxin A detection in coffee by competitive inhibition assay using chitosan-based surface plasmon resonance compact system. Colloids Surf. B Biointerfaces 2019, 174, 569–574. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, L.; Jiang, J.-Y.; Wang, C.-J.; Dou, X.-W.; Wan, L.; Yang, M.-H. High-throughput screening of ochratoxin A in Chinese herbal medicines using enzyme-linked immunoassay. China J. Chin. Mater. Med. 2019, 44, 5072–5077. [Google Scholar]
- Machado, J.M.D.; Soares, R.R.G.; Chu, V.; Conde, J.P. Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel mycotoxin detection. Biosens. Bioelectron. 2018, 99, 40–46. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Lv, J.; Hu, X.; Liu, X. One-step detection of ochratoxin A in cereal by dot immunoassay using a nanobody-alkaline phosphatase fusion protein. Food Control 2018, 92, 430–436. [Google Scholar] [CrossRef]
- Soares, R.; Santos, D.R.; Pinto, I.F.; Azevedo, A.M.; Aires-Barros, M.R.; Chu, V.; Conde, J.P. Multiplexed microfluidic fluorescence immunoassay with photodiode array signal acquisition for sub-minute and point-of-need detection of mycotoxins. Lab Chip 2018, 18, 1569–1580. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, X.; Chen, Q.; Yun, Y.-H.; Tang, Z.; Liu, X. Nanobody-Alkaline Phosphatase Fusion Protein-Based Enzyme-Linked Immunosorbent Assay for One-Step Detection of Ochratoxin A in Rice. Sensors 2018, 18, 4044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Tang, Z.; Duan, Z.; He, Z.; Shu, M.; Wang, X.; Gee, S.J.; Hammock, B.D.; Xu, Y. Nanobody-based enzyme immunoassay for ochratoxin A in cereal with high resistance to matrix interference. Talanta 2017, 164, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Vincenzo, L.; Anna, P.; Marina, C.; Michele, S.; Sandro, Z.; Michelangelo, P. Determination of Ochratoxin A in Rye and Rye-Based Products by Fluorescence Polarization Immunoassay. Toxins 2017, 9, 305. [Google Scholar]
- Majdinasab, M.; Sheikh-Zeinoddin, M.; Soleimanian-Zad, S.; Li, P.; Zhang, Q.; Li, X.; Tang, X.; Li, J. A reliable and sensitive time-resolved fluorescent immunochromatographic assay (TRFICA) for ochratoxin A in agro-products. Food Control 2015, 47, 126–134. [Google Scholar] [CrossRef]
- Li, X.; Li, P.; Zhang, Q.; Li, R.; Zhang, W.; Zhang, Z.; Ding, X.; Tang, X. Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B1, ochratoxin A and zearalenone in agro-food. Biosens. Bioelectron. 2013, 49, 426–432. [Google Scholar] [CrossRef]
- Bondarenko, A.P.; Eremin, S.A. Determination of zearalenone and ochratoxin a mycotoxins in grain by fluorescence polarization immunoassay. J. Anal. Chem. 2012, 67, 790–794. [Google Scholar] [CrossRef]
- Zezza, F.; Longobardi, F.; Pascale, M.; Eremin, S.A.; Visconti, A. Fluorescence polarization immunoassay for rapid screening of ochratoxin A in red wine. Anal. Bioanal. Chem. 2009, 395, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, P.; Zhang, Q.; Zhang, Z.; Li, R.; Zhang, W.; Ding, X.; Chen, X.; Tang, X. A Sensitive Immunoaffinity Column-Linked Indirect Competitive ELISA for Ochratoxin A in Cereal and Oil Products Based on a New Monoclonal Antibody. Food Anal. Methods 2013, 6, 1433–1440. [Google Scholar] [CrossRef]
- McKinney, M.M.; Parkinson, A. A simple, non-chromatographic procedure to purify immunoglobulins from serum and ascites fluid. J. Immunol. Methods 1987, 96, 271–278. [Google Scholar] [CrossRef]
- Jameson, D.M.; Ross, J.A. Fluorescence Polarization/Anisotropy in Diagnostics and Imaging. Chem. Rev. 2010, 110, 2685–2708. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.A.; Vargas, E.A. Immunoaffinity column clean-up and thin layer chromatography for determination of ochratoxin A in green coffee. Food Addit. Contam. 2002, 19, 447–458. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, X.; Wu, P.; Jiang, Z.; Jiao, L.; Hu, Q.; Eremin, S.A.; Zhao, S. Development of a Homologous Fluorescence Polarization Immunoassay for Diisobutyl Phthalate in Romaine Lettuce. Food Anal. Methods 2016, 10, 449–458. [Google Scholar] [CrossRef]
- Maragos, C.M.; Plattner, R.D. Rapid Fluorescence Polarization Immunoassay for the Mycotoxin Deoxynivalenol in Wheat. J. Agric. Food Chem. 2002, 50, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Li, P.; Zhang, Z.; Zhang, Q.; Guo, J.; Zhang, W. An ultrasensitive gray-imaging-based quantitative immunochromatographic detection method for fumonisin B1 in agricultural products. Food Control 2017, 80, 333–340. [Google Scholar] [CrossRef]
- Drabent, R.; Pliszka, B.; Olszewska, T. Fluorescence properties of plant anthocyanin pigments. I. Fluorescence of anthocyanins in Brassica oleracea L. extracts. J. Photochem. Photobiol. B Biol. 1999, 50, 53–58. [Google Scholar] [CrossRef]
- Varelis, P.; Leong, S.-L.L.; Hocking, A.D.; Giannikopoulos, G.; Hedén, S.-L. Quantitative analysis of ochratoxin A in wine and beer using solid phase extraction and high performance liquid chromatography–fluorescence detection. Food Addit. Contam. 2006, 23, 1308–1315. [Google Scholar] [CrossRef]
- Toscani, T.; Moseriti, A.; Dossena, A.; Dall’Asta, C.; Simoncini, N.; Virgili, R. Determination of ochratoxin A in dry-cured meat products by a HPLC–FLD quantitative method. J. Chromatogr. B Anal. Technol. Biomed. Life 2007, 855, 242–248. [Google Scholar] [CrossRef]
Assay | Spiking Level (μg/kg) | Recovery (%) | CV (%) |
---|---|---|---|
Intra-assay | 0.5 | 110 | 5.6 |
5 | 72.5 | 6.2 | |
50 | 80.1 | 8.5 | |
Inter-assay | 0.5 | 113.2 | 6.2 |
5 | 76.8 | 8.4 | |
50 | 80.4 | 9.8 |
Ochratoxin A Determined (ng g–1) | ||
---|---|---|
Sample No. | FPIA | HPLC |
1 | 15.1 ± 0.50 | 14.6 ± 0.31 |
2 | 1.5 ± 0.02 | 0.98 ± 0.05 |
3 | 2.1 ± 0.03 | 1.9 ± 0.04 |
4 | 10.5 ± 0.31 | 8.5 ± 0.28 |
5 | 2.6 ± 0.15 | 2.2 ± 0.10 |
6 | 5.0 ± 0.13 | 4.5 ± 0.12 |
7 | 3.5 ± 0.06 | 3.06 ± 0.03 |
8 | 15.0 ± 0.51 | 12.6 ± 0.27 |
9 | 10.8 ± 0.62 | 9.1 ± 0.16 |
10 | 2.6 ± 0.04 | 2.1 ± 0.06 |
Author | Year | Antibody | Experiment Method | Sample | Sensitivity (IC50, ng/mL) | LOD (ng/mL) |
---|---|---|---|---|---|---|
This paper | 2020 | mAb | FPIA | rice | 0.09 | 0.02 |
Becheva [21] | 2020 | F(ab’)2 | FIA | milk | a | 0.08 |
Beloglazova [22] | 2020 | mAb | Flow-through Immunoassay | feed | 10 | |
Wang [23] | 2020 | Nb | FIA | food | 0.46 | 0.12 |
Chen [7] | 2019 | mAb | FPIA | yoghurt | 9.32 | 0.82 |
Zhang [24] | 2019 | Nb | ELISA | cereals | 97 | _ |
Rehmat [25] | 2019 | mAb | SPR immunoassay | coffee | 3.8 | |
Qin [26] | 2019 | mAb | ELISA | nutmeg | 0.146 | 0.031 |
Machado [27] | 2018 | mAb | capillary micro- fluidic immunoassay | feed | 40 | |
Tang [28] | 2018 | Nb | one-step immunoassay | cereal | 5 | |
Soares [29] | 2018 | mAb | FIA | 1 | ||
Sun [30] | 2018 | Nb | ELISA | rice | 0.57 | 0.059 |
Liu [31] | 2017 | Nb | ELISA | cereal | 0.64 | |
Lippolis [32] | 2017 | mAb | FPIA | rye | 0.6 | |
Majdinasab [33] | 2015 | mAb | TRFICA | agro-product | 1 | |
Lippolis [4] | 2014 | mAb | FPIA | wheat | 0.48 | 0.8 |
Li [34] | 2013 | mAb | immunochromatographic assay | agro-food | 0.5 | |
Bondarenko [35] | 2012 | mAb | FPIA | grain | 10 | |
Zezza [36] | 2009 | mAb | FPIA | red wine | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Tang, X.; Jallow, A.; Qi, X.; Zhang, W.; Jiang, J.; Li, H.; Zhang, Q.; Li, P. Development of an Ultrasensitive and Rapid Fluorescence Polarization Immunoassay for Ochratoxin A in Rice. Toxins 2020, 12, 682. https://doi.org/10.3390/toxins12110682
Huang X, Tang X, Jallow A, Qi X, Zhang W, Jiang J, Li H, Zhang Q, Li P. Development of an Ultrasensitive and Rapid Fluorescence Polarization Immunoassay for Ochratoxin A in Rice. Toxins. 2020; 12(11):682. https://doi.org/10.3390/toxins12110682
Chicago/Turabian StyleHuang, Xiaorong, Xiaoqian Tang, Abdoulie Jallow, Xin Qi, Wen Zhang, Jun Jiang, Hui Li, Qi Zhang, and Peiwu Li. 2020. "Development of an Ultrasensitive and Rapid Fluorescence Polarization Immunoassay for Ochratoxin A in Rice" Toxins 12, no. 11: 682. https://doi.org/10.3390/toxins12110682
APA StyleHuang, X., Tang, X., Jallow, A., Qi, X., Zhang, W., Jiang, J., Li, H., Zhang, Q., & Li, P. (2020). Development of an Ultrasensitive and Rapid Fluorescence Polarization Immunoassay for Ochratoxin A in Rice. Toxins, 12(11), 682. https://doi.org/10.3390/toxins12110682