Plant and Fungal Hepatotoxicities of Cattle in Australia, with a Focus on Minimally Understood Toxins
Abstract
:1. Introduction
2. General Mechanisms of Toxicity
3. Clinical Findings
4. Clinical Pathology
5. Pathological Features
6. Toxins with Known Mechanisms of Toxicity
6.1. Direct-Acting Plant Toxins
Carboxyatractyloside
6.2. Plant Toxins Requiring Bioactivation
6.2.1. Pyrrolizidine Alkaloids
6.2.2. Cycasin
6.3. Direct-Acting Mycotoxins
6.3.1. Phomopsins
6.3.2. Sporidesmin
6.3.3. Amatoxins
6.4. Mycotoxins Requiring Bioactivation
Aflatoxins
7. Hepatotoxicities Caused by Toxins with Unidentified Mechanisms or Unidentified Toxins
7.1. Toxins with Unidentified Mechanisms
7.1.1. Lantana Camara
7.1.2. Carboxyparquin
7.1.3. Punicalagin
7.1.4. Myoporaceae
7.2. Hepatotoxicities with Unidentified Toxins
7.2.1. Acute Bovine Liver Disease
7.2.2. Brassicas
7.2.3. Trema tomentosa (Poison Peach)
7.2.4. Argentipallium blandowskianum (Woolly Everlasting)
7.2.5. Lythrum hyssopifolia (Lesser Loosestrife)
8. Application of Current Knowledge and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- McLennan, M.W.; Kelly, W.R. Cestrum parqui (green cestrum) poisoning in cattle. Aust. Vet. J. 1984, 61, 289–291. [Google Scholar] [CrossRef]
- Pearce, C.M.; Skelton, N.J.; Naylor, S.; Rajamoorthi, K.; Kelland, J.; Oelrichs, P.B.; Sanders, J.K.M.; Williams, D.H. Parquin and Carboxyparquin, Toxic Kaurene Glycosides from the Shrub Cestrum parqui. J. Chem. Soc. Perkin. Trans. 1 1992, 5, 593–600. [Google Scholar] [CrossRef]
- Sharma, O.P.; Sharma, S.; Pattabhi, V.; Mahato, S.B.; Sharma, P.D. A Review of the Hepatotoxic Plant Lantana camara. Crit. Rev. Toxicol. 2007, 37, 313–352. [Google Scholar] [CrossRef]
- Bull, L.B. Liver diseases in livestock from intake of hepatotoxic substances. Aust. Vet. J. 1961, 37, 126–130. [Google Scholar] [CrossRef]
- Hall, W.T.K. Cycad (zamia) Poisoning in Australia. Aust. Vet. J. 1987, 64, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Whiting, M.G. Toxicity of cycads. Econ. Bot. 1963, 17, 270–302. [Google Scholar] [CrossRef]
- Wood, P.M.; Brown, A.G.P. Phomopsis: The causal fungus of lupinosis. J. Dep. Agric. West. Aust. Ser. 4 1975, 16, 31–32. [Google Scholar]
- Culvenor, C.C.J. The Hazard from Toxic Fungi in Australia. Aust. Vet. J. 1974, 50, 69–78. [Google Scholar] [CrossRef] [PubMed]
- MacLachlan, D.J.; Blaney, B.J.; Cook, L.G.; Klim, E.; Scholl, R.; Sexton, M.; Spragg, J.; Watts, R. A review of potential contaminants in Australian livestock feeds and proposed guidance levels for feed. Anim. Prod. Sci. 2013, 53, 181–208. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, M.R. Lupinosis. J. Dep. Agric. West. Aust. Ser. 4 1975, 16, 27–30. [Google Scholar]
- Gunawan, B.; Kaplowitz, N. Clinical perspectives on xenobiotic-induced hepatotoxicity. Drug. Metab. Rev. 2004, 36, 301–312. [Google Scholar] [CrossRef]
- Zarybnicky, T.; Bousova, I.; Ambroz, M.; Skalova, L. Hepatotoxicity of monoterpenes and sesquiterpenes. Arch. Toxicol. 2018, 92, 1–13. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, Y.J.; Park, K.K. The pathogenesis of drug-induced liver injury. Expert Rev. Gastroenterol. Hepatol. 2016, 10, 1175–1185. [Google Scholar] [CrossRef]
- Kleiner, D.E. Drugs and Toxins. In Macsween’s Pathology of the Liver, 7th ed.; Burt, A.D., Ferrell, L.D., Hübscher, S.G., Eds.; Elsevier: Philadelphia, PA, USA, 2018; pp. 673–779. [Google Scholar]
- Jung, Y.S.; Lee, B.M. Toxicology of the Liver. In Lu’s Basic Toxicology: Fundamentals, Target Organs and Risk Assessment, 7th ed.; Lee, B.M., Kacew, S., Kim, H.S., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2017; pp. 253–270. [Google Scholar]
- Daram, S.R.; Hayashi, P.H. Acute liver failure due to iron overdose in an adult. South. Med. J. 2005, 98, 241–244. [Google Scholar] [CrossRef]
- Das, S.; Reddy, U.V.U.V.; Hamide, A.; Badhe, B.; Ravichandran, M.; Murthy, A.S. Histopathological Profile In Fatal Yellow Phosphorous Poisoning. J. Forensic Sci. 2019, 64, 786–790. [Google Scholar] [CrossRef]
- Droy, B.F.; Davis, M.E.; Hinton, D.E. Mechanism of allyl formate-induced hepatotoxicity in rainbow trout. Toxicol. Appl. Pharm. 1989, 98, 313–324. [Google Scholar] [CrossRef]
- Rees, K.R.; Tarlow, M.J. The hepatotoxic action of allyl formate. Biochem. J. 1967, 104, 757–761. [Google Scholar] [CrossRef] [Green Version]
- Pestaner, J.P.; Ishak, K.G.; Mullick, F.G.; Centeno, J.A. Ferrous Sulfate Toxicity a review of autopsy findings. Biol. Trace Elem. Res. 1999, 69, 191–198. [Google Scholar] [CrossRef]
- Bacon, B.R.; Tavill, A.S.; Brittenham, G.M.; Park, C.H.; Recknagel, R.O. Hepatic lipid peroxidation in vivo in rats with chronic iron overload. J. Clin. Investig. 1983, 71, 429–439. [Google Scholar] [CrossRef]
- Bacon, B.R.; Britton, R.S. Hepatic injury in chronic iron overload. Role of lipid peroxidation. Chem. Biol. Interact. 1989, 70, 183–226. [Google Scholar] [CrossRef]
- Cameron, A.R.; Logie, L.; Patel, K.; Erhardt, S.; Bacon, S.; Middleton, P.; Harthill, J.; Forteath, C.; Coats, J.T.; Kerr, C.; et al. Metformin selectively targets redox control of complex I energy transduction. Redox Biol. 2018, 14, 187–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratcliffe, A.; Baker, A.; Smith, D. Successful management of 70% acetic acid ingestion on the intensive care unit: A case report. J. Intensive Care Soc. 2018, 19, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Kamijo, Y.; Soma, K.; Iwabuchi, K.; Ohwada, T. Massive Noninflammatory Periportal Liver Necrosis Following Concentrated Acetic Acid Ingestion. Arch. Pathol. Lab. Med. 2000, 124, 127–129. [Google Scholar]
- Jerrett, I.V.; Chinnock, R.J. Outbreaks of photosensitisation and deaths in cattle due to Myoporum aff.Insulare R. Br. toxicity. Aust. Vet. J. 1983, 60, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Kelly, W.R.; Gunn, A.; Clarke, R. Acute bovine liver disease (ABLD). In Proceedings Annual Meeting Australian Society for Veterinary Pathology; The Veterinary School, University of Sydney: Sydney, NSW, Australia, 2003; pp. 23–25. [Google Scholar]
- Brown, D.L.; Van Wettere, A.J.; Cullen, J.M. Hepatobiliary System and Exocrine Pancreas. In Pathologic Basis of Veterinary Disease, 6th ed.; Zachary, J.F., McGavin, M.D., Eds.; Elsevier: Saint Louis, MO, USA, 2017; pp. 412–470. [Google Scholar]
- Underwood, W.J.; Blauwiekel, R.; Delano, M.L.; Gillesby, R.; Mischler, S.A.; Schoell, A. Biology and Diseases of Ruminants (Sheep, Goats, and Cattle). In Laboratory Animal Medicine, 3rd ed.; Fox, J.G., Anderson, L.C., Otto, G.M., Pritchett-Corning, K.R., Whary, M.T., Eds.; Elsevier Science & Technology: San Diego, CA, USA, 2015; pp. 623–694. [Google Scholar]
- Giaretta, P.R.; Panziera, W.; Galiza, G.J.A.; Brum, J.S.; Bianchi, R.M.; Hammerschmitt, M.R.E.; Bazzi, T.; Barros, C.S.L. Seneciosis in Cattle Associated with Photosensitisation. Presqui. Vet. Bras. 2014, 34, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Noble, J.W.; Crossley, J.; Hill, B.D.; Pierce, R.J.; McKenzie, R.A.; Debritz, M.; Morley, A.A. Pyrrolizidine alkaloidosis of cattle associated with Senecio lautu. Aust. Vet. J. 1994, 71, 196–200. [Google Scholar] [CrossRef]
- Allen, J.G. An Evaluation of Lupinosis in Cattle in Western Australia. Aust. Vet. J. 1981, 57, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.L.; O’Hara, P.J. Bovine photosensitization in New Zealand. N. Z. Vet. J. 1978, 26, 2–5. [Google Scholar] [CrossRef]
- Lynch, G.P.; Shalkop, W.T.; Jacoby, N.M.; Smith, D.F.; Miller, R.W. Responses of Dairy Calves to Oral Doses of Aflatoxin. J. Dairy Sci. 1971, 54, 1688–1698. [Google Scholar] [CrossRef]
- Briand, J.F.; Jacquet, S.; Bernard, C.; Humbert, J.F. Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet. Res. 2003, 34, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Aslani, M.R.; Pascoe, I.; Kowalski, M.; Michalewicz, A.; Retallick, M.A.S.; Colegate, S.M. In vitro detection of hepatocytotoxic metabolites from Drechslera biseptata: A contributing factor to acute bovine liver disease? Aust. J. Exp. Agric. 2006, 46, 599–604. [Google Scholar] [CrossRef]
- Reams, R.Y.; Janovitz, E.B.; Robinson, F.R.; Sullivan, J.M.; Casanova, C.R.; Más, E. Cycad (Zamia puertoriquensis) Toxicosis in a Group of Dairy Heifers in Puerto Rico. J. Vet. Diagn. Investig. 1993, 5, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Allison, R.W. Laboratory Evaluation of the Liver. In Veterinary Hematology and Clinical Chemistry, 2nd ed.; Thrall, M.A., Weiser, G., Allison, R., Campbell, T., Eds.; John Wiley & Sons, Incorporated: Ames, IA, USA, 2012; pp. 401–425. [Google Scholar]
- Dalefield, R. Sporidesmin. In Clinical Veterinary Toxicology; Plumlee, K.H., Ed.; Mosby Incorporated: Saint Louis, MO, USA, 2004; pp. 264–268. [Google Scholar]
- Collett, M.G. Bile Duct Lesions Associated with Turnip (Brassica rapa) Photosensitization Compared With Those Due to Sporidesmin Toxicosis in Dairy Cows. Vet. Pathol. 2013, 51, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.G.; Lake, D.E.; Cordes, D.O. Hepatic encephalopathy associated with chronic facial eczema. N. Z. Vet. J. 1979, 27, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Kreutzer, K.V.; Turk, J.R.; Casteel, S.W. Clinical Biochemistry in Toxicology. In Clinical Biochemistry of Domestic Animals, 6th ed.; Kaneko, J.J., Harvey, J.W., Bruss, M.L., Eds.; Elsevier Science & Technology: San Diego, CA, USA, 2008; pp. 821–837. [Google Scholar]
- Done, J.; Mortimer, P.H.; Taylor, A. Some Observations on Field Cases of Facial Eczema: Liver Pathology and Determinations of Serum Bilirubin, Cholesterol, Transaminase and Alkaline Phosphatase. Res. Vet. Sci. 1960, 1, 76–85. [Google Scholar] [CrossRef]
- Refai, M. Aflatoxins & Aflatoxicosis. J. Egypt. Med. Assoc. 1988, 48, 1–19. [Google Scholar]
- Seawright, A.A.; Allen, J.G. Pathology of the Liver and Kidney in Lantana Poisoning of Cattle. Aust. Vet. J. 1972, 48, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Yee, M.M.; Woods, L.W.; Poppenga, R.H.; Puschner, B. Amanitin intoxication in two beef calves in California. J. Vet. DiagnInvestig. 2012, 24, 241–244. [Google Scholar] [CrossRef] [Green Version]
- Hawes, M.H.; Gill, I.J. Hepatotoxicosis in cattle associated with consumption of Punica granatum (pomegranate). Aust. Vet. J. 2018, 96, 408–410. [Google Scholar] [CrossRef]
- Lancaster, M.; Nimmo, J.; Lenghaus, C.; Gill, I.; Crawford, R.; Badman, R.; Samuel, J.; Werner, C.; Button, C.; Kvalheim, N. Lythrum hyssopifolia (lesser loosestrife) poisoning of sheep in Victoria. Aust. Vet. J. 2009, 87, 476–479. [Google Scholar] [CrossRef]
- Pickrell, J.A.; Oehme, F.W.; Mannala, S.A. Carboxyatractyloside. In Clinical Veterinary Toxicology; Plumlee, K.H., Ed.; Mosby Incorporated: Saint Louis, MO, USA, 2004; pp. 385–386. [Google Scholar]
- Hooper, P.T. Cycad Poisoning in Australia-Etiology and Pathology; Keeler, R.F., Van Kampen, K.R., James, L.F., Eds.; Academic Press: New York, NY, USA, 1978; pp. 337–347. [Google Scholar]
- Filippich, L.J.; Zhu, J.; Oelrichs, P.; Alsalami, M.T.; Doig, A.J.; Cao, G.R.; English, P.B. Hepatotoxic and nephrotoxic principles in Terminalia oblongata. Res. Vet. Sci. 1991, 50, 170–177. [Google Scholar] [CrossRef]
- Oelrichs, P.B.; Pearce, C.M.; Zhu, J.; Filippich, L.J. Isolation and structure determination of terminalin a toxic condensed tannin from Terminalia oblongata. Nat. Toxins 1994, 2, 144–150. [Google Scholar] [CrossRef] [PubMed]
- McAuliffe, P.R.; White, W.E. “Woolly Everlasting Daisy” (Helichrysum blandoskianum) Toxicity in Cattle and Sheep. Aust. Vet. J. 1976, 52, 366–368. [Google Scholar] [CrossRef]
- Cullen, J.M.; Stalker, M.J. Liver and Biliary System. In Jubb, Kennedy & Palmer’s Pathology of Domestic Animals, 5th ed.; Maxie, M.G., Ed.; Elsevier: Edinburgh, UK, 2016; Volume 2, pp. 259–334. [Google Scholar]
- Gardiner, M.R. Cattle lupinosis: A clinical and pathological study. J. Comp. Pathol. 1967, 77, 63-IN10. [Google Scholar] [CrossRef]
- Allen, J.G.; Seawright, A.A.; Hrdlicka, J. The toxicity of Myoporum tetrandrum (boobialla) and myoporaceous furanoid essential oils for ruminants. Aust. Vet. J. 1978, 54, 287–292. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, R.A. Australia’s Poisonous Plants, Fungi and Cyanobacteria; CSIRO Publishing: Collingwood, Australia, 2012. [Google Scholar]
- Mendez, M.C.; Santos, R.C.; Riet-Correa, F. Intoxication by Xanthium cavanillesii in cattle and sheep in southern Brazil. Vet. Hum. Toxicol. 1998, 40, 144–147. [Google Scholar]
- Prakash, A.S.; Pereira, T.N.; Reilly, P.E.B.; Seawright, A.A. Pyrrolizidine alkaloids in human diet. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 1999, 443, 53–67. [Google Scholar] [CrossRef]
- Fu, P.P.; Xia, Q.; Lin, G.; Chou, M.W. Pyrrolizidine Alkaloids—Genotoxicity, Metabolism Enzymes, Metabolic Activation, and Mechanisms. Drug Metab. Rev. 2004, 36, 1–55. [Google Scholar] [CrossRef]
- Luckert, C.; Hessel, S.; Lenze, D.; Lampen, A. Disturbance of gene expression in primary human hepatocytes by hepatotoxic pyrrolizidine alkaloids: A whole genome transcriptome analysis. Toxicol. Vitr. 2015, 29, 1669–1682. [Google Scholar] [CrossRef]
- Moreira, R.; Pereira, D.M.; Valentao, P.; Andrade, P.B. Pyrrolizidine Alkaloids: Chemistry, Pharmacology, Toxicology and Food Safety. Int. J. Mol. Sci. 2018, 19, 1668. [Google Scholar] [CrossRef] [Green Version]
- McLean, E.K. The Toxic Actions of Pyrrolizidine (Senecio) Alkaloids. Pharm. Rev. 1970, 22, 429. [Google Scholar]
- Field, R.A.; Stegelmeier, B.L.; Colegate, S.M.; Brown, A.W.; Green, B.T. An in vitro comparison of the cytotoxic potential of selected dehydropyrrolizidine alkaloids and some N-oxides. Toxicon 2015, 97, 36–45. [Google Scholar] [CrossRef]
- Yang, Y.C.; Yan, J.; Doerge, D.R.; Chan, P.C.; Fu, P.P.; Chou, M.W. Metabolic Activation of the Tumorigenic Pyrrolizidine Alkaloid, Riddelliine, Leading to DNA Adduct Formation in Vivo. Chem. Res. Toxicol. 2001, 14, 101–109. [Google Scholar] [CrossRef]
- Chen, T.; Mei, N.; Fu, P.P. Genotoxicity of pyrrolizidine alkaloids. J. Appl. Toxicol. 2010, 30, 183–196. [Google Scholar] [CrossRef]
- Culvenor, C.C.J.; Edgar, J.A.; Jago, M.V.; Outteridge, A.; Peterson, J.E.; Smith, L.W. Hepato- and pneumotoxicity of pyrrolizidine alkaloids and derivatives in relation to molecular structure. Chem. Biol. Interact. 1976, 12, 299–324. [Google Scholar] [CrossRef]
- Small, A.C.; Kelly, W.R.; Seawright, A.A.; Mattocks, A.R.; Jukes, R. Pyrrolizidine Alkaloidosis in a Two Month Old Foal. J. Med. A 1993, 40, 213–218. [Google Scholar] [CrossRef]
- Cefalo, M.G.; Maurizi, P.; Arlotta, A.; Scalzone, M.; Attina, G.; Ruggiero, A.; Riccardi, R. Hepatic veno-occlusive disease: A chemotherapy-related toxicity in children with malignancies. Pediatric Drugs 2010, 12, 277–284. [Google Scholar] [CrossRef]
- Albertson, J.C. Cycasin. In Clinical Veterinary Toxicology; Plumlee, K.H., Ed.; Mosby Incorporated: Saint Louis, MO, USA, 2004; pp. 392–394. [Google Scholar]
- Hall, W.T.K.; McGavin, M.D. Clinical and Neuropathological Changes in Cattle Eating the Leaves of Macrozamia lucida or Bowenia serrulata (Family Zamiaceae). Vet. Pathol. 1968, 5, 26–34. [Google Scholar] [CrossRef]
- Hooper, P.T.; Best, S.M.; Campbell, A. Axonal Dystrophy in the Spinal Cords of Cattle Consuming the Cycad Palm, Cycas Media. Aust. Vet. J. 1974, 50, 146–149. [Google Scholar] [CrossRef]
- Fiala, E.S.; Sohn, O.S.; Hamilton, S.R. Effects of Chronic Dietary Ethanol on in Vivo and in Vitro Metabolism of Methylazoxymethanol and on Methylazoxymethanol-induced DNA Methylation in Rat Colon and Liver. Cancer Res. 1987, 47, 5939–5943. [Google Scholar]
- Fiala, E.S.; Sohn, O.S.; Puz, C.; Czerniak, R. Differential effects of 4-iodopyrazole and 3-methylpyrazole on the metabolic activation of methylazoxymethanol to a DNA methylating species by rat liver and rat colon mucosa in vivo. J. Cancer. Red. Clin. Oncol. 1987, 113, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, D.; Crowe, M.; McLaughlin, L.; Gaschen, F. Survival and Prognostic Indicators for Cycad Intoxication in Dogs. J. Vet. Intern. Med. 2011, 25, 831–837. [Google Scholar] [CrossRef]
- Kisby, G.E.; Fry, R.C.; Lasarev, M.R.; Bammler, T.K.; Beyer, R.P.; Churchwell, M.; Doerge, D.R.; Meira, L.B.; Palmer, V.S.; Ramos-Crawford, A.L.; et al. The cycad genotoxin MAM modulates brain cellular pathways involved in neurodegenerative disease and cancer in a DNA damage-linked manner. PLoS ONE 2011, 6, e20911. [Google Scholar] [CrossRef] [Green Version]
- Laqueur, G.L.; Mickelsen, O.; Whiting, M.G.; Kurland, L.T. Carcinogenic Properties of Nuts from Cycas Circinalis L. Indigenous to Guam. Jnci J. Natl. Cancer Instig. 1963, 31, 919–951. [Google Scholar]
- Toensing, E.M.; Steyn, P.S.; Osborn, M.; Weber, K. Phomopsin A, the causative agent of lupinosis interacts with microtubules in vivo and in vitro. Eur. J. Cell Biol. 1984, 35, 156–164. [Google Scholar]
- Schloß, S.; Koch, M.; Rohn, S.; Maul, R. Development of a SIDA-LC-MS/MS Method for the Determination of Phomopsin A in Legumes. J. Agric. Food Chem. 2015, 63, 10543–10549. [Google Scholar] [CrossRef]
- Schloß, S.; Wedell, I.; Koch, M.; Rohn, S.; Maul, R. Biosynthesis and characterization of 15N6-labeled phomopsin A, a lupin associated mycotoxin produced by Diaporthe toxica. Food Chem. 2015, 177, 61–65. [Google Scholar] [CrossRef]
- Allen, J. Phomopsins. In Clinical Veterinary Toxicology; Plumlee, K.H., Ed.; Mosby Incorporated: Saint Louis, MO, USA, 2004; pp. 259–262. [Google Scholar]
- Schloß, S.; Hackl, T.; Herz, C.; Lamy, E.; Koch, M.; Rohn, S.; Maul, R. Detection of a Toxic Methylated Derivative of Phomopsin A Produced by the Legume-Infesting Fungus Diaporthe toxica. J. Nat. Prod. 2017, 80, 1930–1934. [Google Scholar] [CrossRef]
- Culvenor, C.C.J.; Cockrum, P.A.; Edgar, J.A.; Frahn, J.L.; Gorst-Allman, C.P.; Jones, A.J.; Marasas, W.F.O.; Murrary, K.E.; Smith, L.W.; Steyn, P.S.; et al. Structure Elucidation of Phomopsin A, a Novel Cyclic Hexapeptide Mycotoxin produced by Phomopsis leptostromiformis. J. Chem. Soc. Chem. Commun. 1983, 10, 1259–1262. [Google Scholar] [CrossRef]
- Peterson, J.E. Biliary Hyperplasia and Carcinogenesis in Chronic Liver Damage Induced in Rats by Phomopsin. Pathology 1990, 22, 213–222. [Google Scholar] [CrossRef]
- Di Menna, M.E.; Smith, B.L.; Miles, C.O. A history of facial eczema (pithomycotoxicosis) research. N. Z. J. Agric. Res. 2009, 52, 345–376. [Google Scholar] [CrossRef]
- Garcia, J.; Costa, V.M.; Carvalho, A.; Baptista, P.; de Pinho, P.G.; de Lourdes Bastos, M.; Carvalho, F. Amanita phalloides poisoning: Mechanisms of toxicity and treatment. Food Chem. Toxicol. 2015, 86, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Puschner, B. Mushroom Toxins. In Veterinary Toxicology: Basic and Clinical Principles, 3rd ed.; Gupta, R.C., Ed.; Academic Press: Saint Louis, MO, USA, 2018; pp. 955–966. [Google Scholar]
- Vetter, J. Toxins of Amanita phalloides. Toxicon 1998, 36, 13–24. [Google Scholar] [CrossRef]
- Wieland, T.; Faulstich, H.; Fiume, L. Amatoxins, Phallotoxins, Phallolysin, and Antamanide: The Biologically Active Components of Poisonous Amanita Mushroom. CRC Crit. Rev. Biochem. 1978, 5, 185–260. [Google Scholar] [CrossRef]
- Jaeger, A.; Jehl, F.; Flesch, F.; Sauder, P.; Kopferschmitt, J. Kinetics of amatoxins in human poisoning: Therapeutic implications. J. Toxicol. Clin. Toxicol. 1993, 31, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.; Carvalho, A.T.P.; Dourado, D.F.A.R.; Baptista, P.; de Lourdes Bastos, M.; Carvalho, F. New in silico insights into the inhibition of RNAP II by α-amanitin and the protective effect mediated by effective antidotes. J. Mol. Graph. Model. 2014, 51, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Fineschi, V.; Di Paolo, M.; Centini, F. Histological Criteria for Diagnosis of Amanita Phalloides Poisoning. J. Forensic Sci. 1996, 41, 429–432. [Google Scholar] [CrossRef]
- Lahouar, A.; Marin, S.; Crespo-Sempere, A.; Saïd, S.; Sanchis, V. Effects of temperature, water activity and incubation time on fungal growth and aflatoxin B1 production by toxinogenic Aspergillus flavus isolates on sorghum seeds. Rev. Argent. Microbiol. 2016, 48, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Meerdink, G.L. Aflatoxins. In Clinical Veterinary Toxicology; Plumlee, K.H., Ed.; Mosby Incorporated: Saint Louis, MO, USA, 2004; pp. 231–235. [Google Scholar]
- Patterson, D.S.P. Aflatoxicosis in farm animals. Vet. Res. Commun. 1983, 7, 135–140. [Google Scholar] [CrossRef]
- Bryden, W.L.; Lloyd, A.B.; Cumming, R.B. Aflatoxin contamination of Australian animal feeds and suspected cases of mycotoxicosis. Aust. Vet. J. 1980, 56, 176–180. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, R.A.; Blaney, B.J.; Connole, M.D.; Fitzpatrick, L.A. Acute aflatoxicosis in calves fed peanut hay. Aust. Vet. J. 1981, 57, 284–286. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, C.S.; Pass, M.A. Treatment of experimentally induced Lantana poisoning in sheep. J. Appl. Toxicol. 1982, 2, 11–15. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, O.P.; Singh, B.; Bhat, T.K. Biotransformation of lantadenes, the pentacyclic triterpenoid hepatotoxins of lantana plant, in guinea pig. Toxicon 2000, 38, 1191–1202. [Google Scholar] [CrossRef]
- Garcia, A.F.; Medeiros, H.C.D.; Maioli, M.A.; Lima, M.C.; Rocha, B.A.; da Costa, F.B.; Curti, C.; Groppo, M.; Mingatto, F.E. Comparative effects of lantadene A and its reduced metabolite on mitochondrial bioenergetics. Toxicon 2010, 55, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, N. Green cestrum. In Agfacts, 2nd ed.; New South Wales Department of Agriculture: New South Wales, Australia, 2000; pp. 1–3. [Google Scholar]
- Barbieri, M.; Heard, C.M. Isolation of punicalagin from Punica granatum rind extract using mass-directed semi-preparative ESI-AP single quadrupole LC-MS. J. Pharm. Biomed. 2019, 166, 90–94. [Google Scholar] [CrossRef]
- Kulkarni, A.P.; Mahal, H.S.; Kapoor, S.; Aradhya, S.M. In Vitro Studies on the Binding, Antioxidant, and Cytotoxic Actions of Punicalagin. J. Agric. Food Chem. 2007, 55, 1491–1500. [Google Scholar] [CrossRef]
- Cerda, B.; Llorach, R.; Ceron, J.J.; Espin, J.C.; Tomas-Barberan, F.A. Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. Eur. J. Nutr. 2003, 42, 18–28. [Google Scholar] [CrossRef]
- Cerdá, B.; Cerón, J.J.; Tomás-Barberán, F.A.; Espín, J.C. Repeated Oral Administration of High Doses of the Pomegranate Ellagitannin Punicalagin to Rats for 37 Days Is Not Toxic. J. Agric. Food Chem. 2003, 51, 3493–3501. [Google Scholar] [CrossRef] [PubMed]
- Damianaki, A.; Bakogeorgou, E.; Kampa, M.; Notas, G.; Hatzoglou, A.; Panagiotou, S.; Gemetzi, C.; Kouroumalis, E.; Martin, P.M.; Castanas, E. Potent inhibitory action of red wine polyphenols on human breast cancer cells. J. Cell. Biochem. 2000, 78, 429–441. [Google Scholar] [CrossRef]
- Patel, C.; Dadhaniya, P.; Hingorani, L.; Soni, M.G. Safety assessment of pomegranate fruit extract: Acute and subchronic toxicity studies. Food Chem. Toxicol. 2008, 46, 2728–2735. [Google Scholar] [CrossRef] [PubMed]
- Seawright, A.A.; Lee, J.S.; Allen, J.G.; Hrdlicka, J. Toxicity of Myoporum spp. and their Furanosesquiterpenoid Essential Oils. In Effects of Poisonous Plants on Livestock; Keeler, R.F., Van Kampen, K.R., James, L.F., Eds.; Academic Press: New York, NY, USA, 1978; pp. 241–250. [Google Scholar]
- Read, E.; Edwards, J.; Deseo, M.; Rawlin, G.; Rochfort, S. Current Understanding of Acute Bovine Liver Disease in Australia. Toxins 2017, 9, 8. [Google Scholar] [CrossRef]
- Department of Economic Development, Jobs, Transport and Resources. Vet Watch Biosecurity Division. Available online: https://us3.campaign-archive.com/?u=f44262ae409950c15c3de4c99&id=8af1ec5b23 (accessed on 25 October 2019).
- Lancaster, M.J.; Jubb, T.F.; Pascoe, I.G. Lack of toxicity of rough dog’s tail grass (Cynosurus echinatus) and the fungus Drechslera biseptata for cattle. Aust. Vet. J. 2006, 84, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Department of Primary Industries, Parks, Water and Environment. Acute Bovine Liver Disease. Available online: https://dpipwe.tas.gov.au/biosecurity-tasmania/animal-biosecurity/animal-health/cattle/acute-bovine-liver-disease (accessed on 25 October 2019).
- Collett, M.G.; Matthews, Z.M. Photosensitivity in Cattle Grazing Brassica Crops. Int. J. Pharm. Phytochem. Res. 2014, 3, 7–22. [Google Scholar]
- Liu, Y.; Smits, B.; Steg, A.; Jongbloed, R.; Jensen, S.K.; Eggum, B.O. Crambe meal: Digestibility in pigs and rats in comparison with rapeseed meal. Anim. Feed Sci. Technol. 1995, 52, 257–270. [Google Scholar] [CrossRef]
- Collett, M.G.; Stegelmeier, B.L.; Tapper, B.A. Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be hepato- or cholangiotoxic in cattle? J. Agric. Food Chem. 2014, 62, 7370–7375. [Google Scholar] [CrossRef]
- Bellostas, N.; Sorensen, A.D.; Sorensen, J.C.; Sorensen, H. Fe2+-catalyzed formation of nitriles and thionamides from intact glucosinolates. J. Nat. Prod. 2008, 71, 76–80. [Google Scholar] [CrossRef]
- Matthews, Z.M.; Parton, K.H.; Collett, M.G. Investigating the cause of Brassica-associated liver disease (BALD) in cattle: Progoitrin-derived nitrile toxicosis in rats. Toxicon X 2020, 5, 100021. [Google Scholar] [CrossRef]
- Duncan, A.J.; Milne, J.A. Effect of long-term intra-ruminal infusion of the glucosinolate metabolite allyl cyanide on the voluntary food intake and metabolism of lambs. J. Sci. Food Agric. 1992, 58, 9–14. [Google Scholar] [CrossRef]
- Schumacher, F.; Florian, S.; Schnapper, A.; Monien, B.H.; Mewis, I.; Schreiner, M.; Seidel, A.; Engst, W.; Glatt, H. A secondary metabolite of Brassicales, 1-methoxy-3-indolylmethyl glucosinolate, as well as its degradation product, 1-methoxy-3-indolylmethyl alcohol, forms DNA adducts in the mouse, but in varying tissues and cells. Arch. Toxicol. 2014, 88, 823–836. [Google Scholar] [CrossRef]
- Philbey, A.W.; Morton, A.G. Lesser loosestrife (Lythrum hyssopifolia) Poisoning in Sheep and Cattle. J. Comp. Pathol. 2014, 150, 90. [Google Scholar] [CrossRef]
- Jerrett, I.V.; Hawes, M.; Gwozdz, J.; Rawlin, G.T. Internal Presentation: Cattle Deaths, Pearsondale, January 2013–Post-Mortem and Laboratory Findings; Department of Jobs, Precincts and Regions, Biosciences Research, Centre for AgriBioscience: Melbourne, Victoria, Australia, January 2013. [Google Scholar]
Plant/Fungus; Toxin | Risk Factors | Salient Macroscopic and Histopathologic Features | Salient Clinical Features |
---|---|---|---|
Xanthium strumarium (Noogoora burr); Carboxyatractyloside | Spring and summer post-rainfall | Centrilobular hepatic degeneration and necrosis | Gastrointestinal irritation |
Boraginaceae, Compositae, Leguminosae; pyrrolizidine alkaloids | Reduced grazing discrimination (fodder scarcity, summer; increased energy demand, lactation, gestation) | Acute: centrilobular hepatic degeneration and necrosis Chronic: portal fibrosis, biliary hyperplasia, veno-occlusive lesions, megalocytosis | Commonly a chronic clinical course |
Cycadales; cycasin | “Addicted” cattle within the group | Centrilobular hepatic degeneration and necrosis, hepatocellular megalocytosis | Dysentery; hemorrhagic necrosis of abomasal and small intestinal mucosa |
Lupinus spp. (Diaporthe toxica); phomopsins A–E | Autumn occurrence (toxin accumulation begins after summer rainfall) | Individual hepatocellular degeneration and necrosis, portal fibrosis, biliary hyperplasia | Phomopsin-induced inappetence may cause an acute fatty-liver syndrome in cows during gestation or lactation |
Pithomyces chartarum (Perennial Ryegrass); sporidesmin | Temperatures 20–25 °C, high humidity (late summer, early autumn) | Atrophy and fibrosis of the left liver lobe, portal fibrosis, cholestasis, biliary hyperplasia | Severe photosensitization, weeks to months post-exposure |
Amanita spp., Galerina sp. and Lepiota sp. of fungi; amatoxins | - | Centrilobular to massive hepatic degeneration and necrosis, renal tubular necrosis | Low morbidity rate, peracute mortalities |
Aspergillus spp.; aflatoxin B1 | Preharvest infection of summer cereals: high temperature, low humidity Post-harvest contamination of feedstuff: 25–37 °C, high humidity | Portal fibrosis, biliary hyperplasia, hepatocellular megalocytosis | Chronic ill-thrift, extrahepatic biliary obstruction |
Plant/Fungus; Toxin | Bioactivation | Mechanism of Toxicity | Target Organs |
---|---|---|---|
Xanthium strumarium (Noogoora burr); Carboxyatractyloside | Direct-acting | Mitochondrial ATP depletion | Liver, gastrointestinal tract, kidneys |
Boragniaceae, Compositae, Leguminosae; pyrrolizidine alkaloids | Hepatic CYP450: ester and alcoholic pyrroles | Macromolecules (proteins). Nucleus: DNA cross-linking | Liver. Lesser: lungs, kidneys, placenta |
Cycadales; cycasin | Small intestine: MAM, hepatic CYP450: methanol, formic acid | DNA alkylation | Liver, gastrointestinal tract, CNS. Lesser: kidneys, lungs |
Lupinus spp. (Diaporthe toxica); phomopsins A-E | Direct-acting | Microtubule destruction/ inhibition of formation, inhibition of mitochondrial respiration | Liver, kidneys, adrenal glands, pancreas, rumen, reticulum |
Pithomyces chartarum (Perennial Ryegrass); sporidesmin | Direct-acting | Oxidative injury via formation of superoxide radicals | Liver (bile canaliculi) |
Amanita spp., Galerina spp. and Lepiota spp. of fungi; amatoxins | Direct-acting | Inhibition of protein synthesis via binding of nuclear RNAP II | Liver, kidneys |
Aspergillus spp.; aflatoxin B1 | Hepatic CYP450: epoxide | DNA alkylation | Liver, kidneys, bone marrow, lungs. Lesser: brain, muscle, adipose tissue |
Lantana camara; lantadenes | Cecum: RLA, RLB, M1, M2 | Inhibition of mitochondrial respiration, possibly other unknown mechanisms | Liver, rumen, kidneys |
Cestrum parqui L’herit (green cestrum); carboxyparquin | Unknown | Unknown | Liver |
Terminalia oblongata, Punica granatum; punicalagin | Unknown | Unknown | Liver |
Myoporum tetrandrum (Boobialla); esquiterpenoid essential oils | Unknown | Unknown | Liver, kidneys, gastrointestinal tract. Lesser: adrenal glands |
ABLD (unknown); unknown | Unknown | Unknown | Liver |
Brassica spp.; unknown | Unknown | Unknown | Liver |
Trema tomentosa (poison peach); unknown hepatotoxic glycoside | Unknown | Unknown | Liver |
Argentipallium blandowskianum (woolly everlasting); unknown | Unknown | Unknown | Liver, kidneys, lungs, heart, skin, spleen and gastrointestinal tract |
Lythrum hyssopifolia (lesser loosestrife); unknown | Unknown | Unknown | Liver, kidneys |
Plant/Fungus; Toxin | Risk Factors | Salient Macroscopic and Histopathologic Features | Salient Clinical Features |
---|---|---|---|
Lantana camara; lantadenes | Reduced grazing discrimination (fodder scarcity, summer; increased energy demand, lactation, gestation) | Hepatocellular megalocytosis, cholestasis, biliary hyperplasia and fibrosis. Degeneration of proximal tubular epithelium, cystic distension of tubules | Ruminal stasis and constipation |
Cestrum parqui L’herit (green cestrum); carboxyparquin | Reduced grazing discrimination (fodder scarcity, summer; increased energy demand, lactation, gestation) | Centrilobular hepatic degeneration and necrosis | Ruminal stasis and constipation |
Terminalia oblongata, Punica granatum L.; punicalagin | - | Centrilobular hepatic degeneration and necrosis | Gastrointestinal irritation |
Myoporum tetrandrum (Boobialla); furanosesquiterpenoid essential oils | - | Periportal or centrilobular hepatic degeneration and necrosis, depending on CYP450 activity | - |
ABLD (unknown); unknown | Unimproved pastures with senescent plant material, autumn (occasionally spring) | Periportal to massive hepatic degeneration and necrosis | Acute onset |
Brassica spp.; unknown | Rapid introduction to Brassica forage | Subtle histologic changes, cholangiectasis of small ducts, cholangiocyte attenuation and regeneration | - |
Trema tomentosa (poison peach); unknown hepatotoxic glycoside | Reduced grazing discrimination (fodder scarcity, summer; increased energy demand, lactation, gestation) | Centrilobular hepatic degeneration and necrosis | - |
Argentipallium blandowskianum (woolly everlasting); unknown | Summer and autumn | Centrilobular hepatic degeneration and necrosis, endothelial cell degeneration and perivascular edema | - |
Lythrum hyssopifolia (lesser loosestrife); unknown | Post heavy rains, grazing heavily contaminated crop stubble | Centrilobular, midzonal or individual hepatocellular necrosis, multinucleated hepatocytes, proximal tubular epithelial necrosis | Dysuria and/or hindlimb ataxia occasionally present |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manthorpe, E.M.; Jerrett, I.V.; Rawlin, G.T.; Woolford, L. Plant and Fungal Hepatotoxicities of Cattle in Australia, with a Focus on Minimally Understood Toxins. Toxins 2020, 12, 707. https://doi.org/10.3390/toxins12110707
Manthorpe EM, Jerrett IV, Rawlin GT, Woolford L. Plant and Fungal Hepatotoxicities of Cattle in Australia, with a Focus on Minimally Understood Toxins. Toxins. 2020; 12(11):707. https://doi.org/10.3390/toxins12110707
Chicago/Turabian StyleManthorpe, Eve M., Ian V. Jerrett, Grant T. Rawlin, and Lucy Woolford. 2020. "Plant and Fungal Hepatotoxicities of Cattle in Australia, with a Focus on Minimally Understood Toxins" Toxins 12, no. 11: 707. https://doi.org/10.3390/toxins12110707
APA StyleManthorpe, E. M., Jerrett, I. V., Rawlin, G. T., & Woolford, L. (2020). Plant and Fungal Hepatotoxicities of Cattle in Australia, with a Focus on Minimally Understood Toxins. Toxins, 12(11), 707. https://doi.org/10.3390/toxins12110707