Toxemia in Human Naturally Acquired Botulism
Abstract
:1. Introduction
2. Detection of BoNT in the Sera of Patients with Food-Borne Botulism
3. Detection of BoNT in Sera of Patients with Intestinal Colonization
3.1. Infant Botulism
3.2. Botulism by Intestinal Colonization
4. Detection of BoNT in the Sera from Patients with Wound Botulism
5. Detection of Toxin in Sera of Patients with Neuropathic Symptoms Mimicking Botulism
6. Alternative Methods of BoNT Detection in Serum
7. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Dong, M.; Stenmark, P. The Structure and Classification of Botulinum Toxins. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–23. [Google Scholar]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharm. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef] [PubMed]
- Poulain, B.; Lemichez, E.; Popoff, M.R. Neuronal selectivity of botulinum neurotoxins. Toxicon 2020, 178, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Tehran, D.A.; Pirazzini, M. Novel botulinum neurotoxins: Exploring underneath the iceberg tip. Toxins 2018, 10, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G.; et al. Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Brunt, J.; van Vliet, A.H.M.; Stringer, S.C.; Carter, A.T.; Lindström, M.; Peck, M.W. Pan-Genomic Analysis of Clostridium botulinum group II (Non-Proteolytic C. botulinum) associated with foodborne botulism and isolated from the environment. Toxins 2020, 12, 306. [Google Scholar] [CrossRef]
- Rasetti-Escargueil, C.; Lemichez, E.; Popoff, M.R. Variability of botulinum toxins: Challenges and opportunities for the future. Toxins 2018, 10, 374. [Google Scholar] [CrossRef] [Green Version]
- Zornetta, I.; Azarnia Tehran, D.; Arrigoni, G.; Anniballi, F.; Bano, L.; Leka, O.; Zanotti, G.; Binz, T.; Montecucco, C. The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci. Rep. 2016, 6, 30257. [Google Scholar] [CrossRef]
- Brunt, J.; Carter, A.T.; Stringer, S.C.; Peck, M.W. Identification of a novel botulinum neurotoxin gene cluster in Enterococcus. FEBS Lett. 2018, 592, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Lebreton, F.; Mansfield, M.J.; Miyashita, S.I.; Zhang, J.; Schwartzman, J.A.; Tao, L.; Masuyer, G.; Martinez-Carranza, M.; Stenmark, P.; et al. Identification of a botulinum neurotoxin-like toxin in a commensal strain of Enterococcus faecium. Cell Host Microbe 2018, 23, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, M.J.; Wentz, T.G.; Zhang, S.; Lee, E.J.; Dong, M.; Sharma, S.K.; Doxey, A.C. Bioinformatic discovery of a toxin family in Chryseobacterium piperi with sequence similarity to botulinum neurotoxins. Sci. Rep. 2019, 9, 1634. [Google Scholar] [CrossRef]
- Wentz, T.G.; Muruvanda, T.; Lomonaco, S.; Thirunavukkarasu, N.; Hoffmann, M.; Allard, M.W.; Hodge, D.R.; Pillai, S.P.; Hammack, T.S.; Brown, E.W.; et al. Closed genome sequence of Chryseobacterium piperi strain CTM(T)/ATCC BAA-1782, a gram-negative bacterium with clostridial neurotoxin-like coding sequences. Genome Announc. 2017, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras, E.; Masuyer, G.; Qureshi, N.; Chawla, S.; Dhillon, H.S.; Lee, H.L.; Chen, J.; Stenmark, P.; Gill, S.S. A neurotoxin that specifically targets Anopheles mosquitoes. Nat. Commun. 2019, 10, 2869. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Masuyer, G.; Stenmark, P. Botulinum and tetanus neurotoxins. Annu. Rev. Biochem. 2019, 88, 811–837. [Google Scholar] [CrossRef] [PubMed]
- Rummel, A. Two Feet on the membrane: Uptake of clostridial neurotoxins. Curr. Top. Microbiol. Immunol. 2017, 406, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Peck, M.W. Clostridium botulinum and the safety of minimally heated, chilled foods: An emerging issue? J. Appl. Microbiol. 2006, 101, 556–570. [Google Scholar] [CrossRef]
- Peck, M.W.; Stringer, S.C.; Carter, A.T. Clostridium botulinum in the post-genomic era. Food Microbiol. 2011, 28, 183–191. [Google Scholar] [CrossRef]
- Brook, I. Infant botulism. J. Perinatol. 2007, 27, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Rosow, L.K.; Strober, J.B. Infant botulism: Review and clinical update. Pediatric Neurol. 2015, 52, 487–492. [Google Scholar] [CrossRef]
- Shirey, T.B.; Dykes, J.K.; Lúquez, C.; Maslanka, S.E.; Raphael, B.H. Characterizing the fecal microbiota of infants with botulism. Microbiome 2015, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Fox, C.K.; Keet, C.A.; Strober, J.B. Recent advances in infant botulism. Pediatr. Neurol. 2005, 32, 149–154. [Google Scholar] [CrossRef]
- Harris, R.A.; Anniballi, F.; Austin, J.W. Adult intestinal toxemia botulism. Toxins 2020, 12, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franz, D.R.; Pitt, L.M.; Clayton, M.A.; Hanes, M.A.; Rose, K.J. Efficacy of prophylactic and therapeutic administration of antitoxin for inhalation botulism. In Botulinum and Tetanus Neurotoxins; DasGupta, B.R., Ed.; Plenum Press: New York, NY, USA, 1993; pp. 473–476. [Google Scholar]
- Sobel, J. Botulism. Clin. Infect. Dis. 2005, 41, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Popoff, M.R. Botulinum Toxins, Diversity, Mode of Action, Epidemiology of Botulism in France. In Botulinum Toxin; Nikolay, S., Ed.; IntechOpen: London, UK, 2018; pp. 1–28. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, M.; Norouzi, R.; Salari, M.; Asadi, B. Iatrogenic botulism after the therapeutic use of botulinum toxin-A: A case report and review of the literature. Clin. Neuropharmacol. 2012, 35, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Floresta, G.; Patamia, V.; Gentile, D.; Molteni, F.; Santamato, A.; Rescifina, A.; Vecchio, M. Repurposing of FDA-approved drugs for treating iatrogenic botulism: A paired 3d-qsar/docking approach(†). ChemMedChem 2020, 15, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Simpson, L. The life history of a botulinum toxin molecule. Toxicon 2013, 68, 40–59. [Google Scholar] [CrossRef] [PubMed]
- Rummel, A. The long journey of botulinum neurotoxins into the synapse. Toxicon 2015, 107, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Benefield, D.A.; Dessain, S.K.; Shine, N.; Ohi, M.D.; Lacy, D.B. Molecular assembly of botulinum neurotoxin progenitor complexes. Proc. Natl. Acad. Sci. USA 2013, 110, 5630–5635. [Google Scholar] [CrossRef] [Green Version]
- Poulain, B.; Molgo, J.; Popoff, M.R. Clostridial Neurotoxins: From the Cellular and Molecular Mode of Action to Their Therapeutic Use. In The Comprehensive Sourcebook of Bacterial Protein Toxins, 4th ed.; Alouf, J., Ladant, D., Popoff, M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 287–336. [Google Scholar]
- Gu, S.; Jin, R. Assembly and function of the botulinum neurotoxin progenitor complex. Curr. Top. Microbiol. Immunol. 2013, 364, 21–44. [Google Scholar] [CrossRef]
- Gu, S.; Rumpel, S.; Zhou, J.; Strotmeier, J.; Bigalke, H.; Perry, K.; Shoemaker, C.B.; Rummel, A.; Jin, R. Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 2012, 335, 977–981. [Google Scholar] [CrossRef] [Green Version]
- Connan, C.; Varela-Chavez, C.; Mazuet, C.; Molgo, J.; Haustant, G.M.; Disson, O.; Lecuit, M.; Vandewalle, A.; Popoff, M.R. Translocation and dissemination to target neurons of botulinum neurotoxin type B in the mouse intestinal wall. Cell. Microbiol. 2016, 18, 282–301. [Google Scholar] [CrossRef]
- Fujinaga, Y.; Popoff, M.R. Translocation and dissemination of botulinum neurotoxin from the intestinal tract. Toxicon 2018, 147, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Fujinaga, Y.; Sugawara, Y.; Matsumura, T. Uptake of botulinum neurotoxin in the intestine. Curr. Top. Microbiol. Immunol. 2013, 364, 45–59. [Google Scholar] [PubMed]
- Arnon, S.S.; Schechter, R.; Maslanka, S.E.; Jewell, N.P.; Hatheway, C.L. Human botulism immune globulin for the treatment of infant botulism. N. Engl. J. Med. 2006, 354, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Rasetti-Escargueil, C.; Popoff, M.R. Antibodies and vaccines against botulinum toxins: Available measures and novel approaches. Toxins 2019, 11, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, J.R.; Khouri, J.M.; Jewell, N.P.; Arnon, S.S. Efficacy of human botulism immune globulin for the treatment of infant botulism: The first 12 years post licensure. J. Pediatr. 2018, 193, 172–177. [Google Scholar] [CrossRef]
- Sobel, J. Diagnosis and treatment of botulism: A century later, clinical suspicion remains the cornerstone. Clin. Infect. Dis. 2009, 48, 1674–1675. [Google Scholar] [CrossRef] [Green Version]
- Lonati, D.; Schicchi, A.; Crevani, M.; Buscaglia, E.; Scaravaggi, G.; Maida, F.; Cirronis, M.; Petrolini, V.M.; Locatelli, C.A. Foodborne botulism: Clinical diagnosis and medical treatment. Toxins 2020, 12, 509. [Google Scholar] [CrossRef]
- Lindström, M.; Korkeala, H. Laboratory diagnosis of botulism. Clin. Microbiol. Rev. 2006, 19, 298–314. [Google Scholar] [CrossRef] [Green Version]
- Sebald, M.; Saimot, G. Toxémie botulique. Intérêt de sa mise en évidence dans le diagnostic du botulisme humain de type B. Ann. Microbiol. 1973, 124, 61–69. [Google Scholar]
- Koenig, M.G.; Spickard, A.; Cardella, M.A.; Rogers, D.E. Clinical and laboratory observations on type e botulism in man. Medical 1964, 43, 517–545. [Google Scholar] [CrossRef]
- Koenig, M.G.; Drutz, D.J.; Mushlin, A.I.; Schaffner, W.; Rogers, D.E. Type B botulism in man. Am. J. Med. 1967, 42, 208–219. [Google Scholar] [CrossRef]
- Sebald, M.; Saimot, G. Le diagnostic biologique du botulisme. Med. Mal. Inf. 1973, 3, 83–85. [Google Scholar] [CrossRef]
- Mazuet, C.; Bouvet, P.; King, L.A.; Popoff, M.R. Le botulisme humain en France, 2007–2009. Bull. Epidemiol. Hebd. 2011, 6, 49–53. [Google Scholar]
- Mazuet, C.; Jourdan-Da Silva, N.; Legeay, C.; Sautereau, J.; Popoff, M.R. Le botulisme humain en France, 2013-2016. Bull. Epidémiol. Hebd. 2018, 3, 46–54. [Google Scholar]
- Mazuet, C.; King, L.A.; Bouvet, P.; Legeay, C.; Sautereau, J.; Popoff, M.R. Le botulisme humain en France, 2010-2012. Bull. Epidemiol. Hebd. 2014, 6, 106–114. [Google Scholar]
- Roblot, P.; Roblot, F.; Fauchère, J.L.; Devilleger, A.; Maréchaud, R.; Breux, J.P.; Grollier, G.; Becq-Giraudon, B. Retrospective study of 108 cases of botulism in Poitiers France. J. Med. Microbiol. 1994, 40, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, B.A.; Griffin, P.M.; McCroskey, L.M.; Smart, J.F.; Wainwright, R.B.; Bryant, R.G.; Hutwagner, L.C.; Hatheway, C.L. Clinical and laboratory comparison of botulism from toxin types A, B, and E in the United States, 1975–1988. J. Infect. Dis. 1992, 166, 1281–1286. [Google Scholar] [CrossRef]
- Blake, P.A.; Horwitz, M.A.; Hopkins, L.; Lombard, G.L.; McCroan, J.E.; Prucha, J.C.; Merson, M.H. Type A botulism from commercially canned beef stew. South. Med. J. 1977, 70, 5–7. [Google Scholar] [CrossRef]
- Mann, J.M.; Hatheway, C.L.; Gardiner, T.M. Laboratory diagnosis in a large outbreak of type A botulism: Confirmation of the value of coproexamination. Am. J. Epidemiol. 1982, 115, 598–605. [Google Scholar] [CrossRef]
- Takahashi, M.; Tokumaru, Y.; Yamamoto, M.; Shimizu, T.; Kondo, H.; Ishihara, N.; Okubo, T.; Sato, T.; Sakaguchi, G. A case report on human type B botulism. Jpn. J. Med. Sci. Biol. 1986, 39, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Fagan, R.P.; McLaughlin, J.B.; Middaugh, J.P. Persistence of botulinum toxin in patients’ serum: Alaska, 1959–2007. J. Infect. Dis. 2009, 199, 1029–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCroskey, L.M.; Hatheway, C.L.; Woodruff, B.A.; Greenberg, J.A.; Jurgenson, P. Type F botulism due to neurotoxigenic Clostridium baratii from an unknown source in an adult. J. Clin. Microbiol. 1991, 29, 2618–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townes, J.M.; Cieslak, P.R.; Hatheway, C.L.; Solomon, H.M.; Holloway, J.T.; Baker, M.P.; Keller, C.F.; McCroskey, L.M.; Griffin, P.M. An outbreak of type A botulism associated with a commercial cheese sauce. Ann. Intern. Med. 1996, 125, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Korkeala, H.; Stengel, G.; Hyytia, E.; Vogelsang, B.; Bohl, A.; Wihlman, H.; Pakkala, P.; Hielm, S. Type E botulism associated with vacuum-packaged hot-smoked whitefish. Int. J. Food Microbiol. 1998, 43, 1–5. [Google Scholar] [CrossRef]
- Villar, R.G.; Shapiro, R.L.; Busto, S.; Riva-Posse, C.; Verdejo, G.; Farace, M.I.; Rosetti, F.; San Juan, J.A.; Julia, C.M.; Becher, J.; et al. Outbreak of type A botulism and development of a botulism surveillance and antitoxin release system in Argentina. JAMA 1999, 281, 1334–1338. [Google Scholar] [CrossRef]
- Lindstrôm, M.; Hielm, S.; Nevas, M.; Tuisku, S.; Korkeala, H. Proteolytic Clostridium botulinum type B in the gastric content of a patient with type E botulism due to whitefish eggs. Foodborne Pathog. Dis. 2004, 1, 53–57. [Google Scholar] [CrossRef]
- Ouagari, Z.; Chakib, A.; Sodqi, M.; Marih, L.; Marhoum Filali, K.; Benslama, A.; Idrissi, L.; Moutawakkil, S.; Himmich, H. Botulism in Casablanca. (11 cases). Bull. Soc. Pathol. Exot. 2002, 95, 272–275. [Google Scholar]
- Bielec, D.; Semczuk, G.; Lis, J.; Firych, J.; Modrzewska, R.; Janowski, R. Clinical and epidemiological analysis of patients with botulism hospitalized at the Department of Infectious Disease, Medical University of Lublin in 1990-2000. Przegl. Epidemiol. 2002, 56, 435–442. [Google Scholar]
- Leclair, D.; Fung, J.; Isaac-Renton, J.L.; Proulx, J.F.; May-Hadford, J.; Ellis, A.; Ashton, E.; Bekal, S.; Farber, J.M.; Blanchfield, B.; et al. Foodborne botulism in Canada, 1985–2005. Emerg. Infect. Dis. 2013, 19, 961–968. [Google Scholar] [CrossRef]
- Harvey, S.M.; Sturgeon, J.; Dassey, D.E. Botulism due to Clostridium baratii type F toxin. J. Clin. Microbiol. 2002, 40, 2260–2262. [Google Scholar] [CrossRef] [Green Version]
- Merz, B.; Bigalke, H.; Stoll, G.; Naumann, M. Botulism type B presenting as pure autonomic dysfunction. Clin. Auton. Res. 2003, 13, 337–338. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.; Dill, T.; Kirkpatrick, C.L.; Riek, L.; Luedtke, P.; Damrow, T.A. Clinical recovery and circulating botulinum toxin type F in adult patient. Emerg. Infect. Dis. 2009, 15, 969–971. [Google Scholar] [CrossRef] [PubMed]
- Akdeniz, H.; Buzgan, T.; Tekin, M.; Karsen, H.; Karahocagil, M.K. An outbreak of botulism in a family in Eastern Anatolia associated with eating süzme yoghurt buried under soil. Scand. J. Infect. Dis. 2007, 39, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Sheth, A.N.; Wiersma, P.; Atrubin, D.; Dubey, V.; Zink, D.; Skinner, G.; Doerr, F.; Juliao, P.; Gonzalez, G.; Burnett, C.; et al. International outbreak of severe botulism with prolonged toxemia caused by commercial carrot juice. Clin. Infect. Dis. 2008, 47, 1245–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindstrôm, M.; Vuorela, M.; Hinderink, K.; Korkeala, H.; Dahlsten, E.; Raahenmaa, M.; Kuusi, M. Botulism associated with vacuum-packed smoked whitefish in Finland, June–July 2006. Eurosurveillance 2006, 11, E060720–E060723. [Google Scholar] [CrossRef]
- Juliao, P.C.; Maslanka, S.; Dykes, J.; Gaul, L.; Bagdure, S.; Granzow-Kibiger, L.; Salehi, E.; Zink, D.; Neligan, R.P.; Barton-Behravesh, C.; et al. National outbreak of type a foodborne botulism associated with a widely distributed commercially canned hot dog chili sauce. Clin. Infect. Dis. 2013, 56, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Hannett, G.E.; Schaffzin, J.K.; Davis, S.W.; Fage, M.P.; Schoonmaker-Bopp, D.; Dumas, N.B.; Musser, K.A.; Egan, C. Two cases of adult botulism caused by botulinum neurotoxin producing Clostridium baratii. Anaerobe 2014, 30, 178–180. [Google Scholar] [CrossRef]
- Sobel, J.; Malavet, M.; John, S. Outbreak of clinically mild botulism type E illness from home-salted fish in patients presenting with predominantly gastrointestinal symptoms. Clin. Infect. Dis. 2007, 45, e14–e16. [Google Scholar] [CrossRef] [Green Version]
- Rowlands, R.E.; Ristori, C.A.; Lopes, G.I.; de Paula, A.M.; Sakuma, H.; Grigaliunas, R.; Lopreato Filho, R.; Gelli, D.S.; Eduardo, M.B.; Jakabi, M. Botulism in Brazil, 2000–2008: Epidemiology, clinical findings and laboratorial diagnosis. Rev. Inst. Med. Trop. São Paulo 2010, 52, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Jalava, K.; Selby, K.; Pihlajasaari, A.; Kolho, E.; Dahlsten, E.; Forss, N.; Backlund, T.; Korkeala, H.; Honkanen-Buzalski, T.; Hulkko, T.; et al. Two cases of food-borne botulism in Finland caused by conserved olives, October 2011. Eurosurveillance 2011, 16, 20034. [Google Scholar] [CrossRef] [Green Version]
- Browning, L.; Prempeh, H.; Little, C.; Houston, C.; Grant, K.; Cowden, J. An outbreak of food-borne botulism in Scotland, United Kingdom, November 2011. Eurosurveillance 2011, 16, 20036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momose, Y.; Asakura, H.; Kitamura, M.; Okada, Y.; Ueda, Y.; Hanabara, Y.; Sakamoto, T.; Matsumura, T.; Iwaki, M.; Kato, H.; et al. Food-borne botulism in Japan in March 2012. Int. J. Infect. Dis. 2014, 24, 20–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potulska-Chromik, A.; Zakrzewska-Pniewska, B.; Szmidt-Salkowska, E.; Lewandowski, J.; Sinski, M.; Przyjalkowski, W.; Kostera-Pruszczyk, A. Long lasting dysautonomia due to botulinum toxin B poisoning: Clinical-laboratory follow up and difficulties in initial diagnosis. BMC Res. Notes 2013, 6, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarty, C.L.; Angelo, K.; Beer, K.D.; Cibulskas-White, K.; Quinn, K.; de Fijter, S.; Bokanyi, R.; St Germain, E.; Baransi, K.; Barlow, K.; et al. Large Outbreak of Botulism Associated with a Church Potluck Meal--Ohio, 2015. Morb. Mortal. Wkly. Rep. 2015, 64, 802–803. [Google Scholar] [CrossRef] [PubMed]
- Proverbio, M.R.; Lamba, M.; Rossi, A.; Siani, P. Early diagnosis and treatment in a child with foodborne botulism. Anaerobe 2016, 39, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Anniballi, F.; Auricchio, B.; Fiore, A.; Lonati, D.; Locatelli, C.A.; Lista, F.; Fillo, S.; Mandarino, G.; De Medici, D. Botulism in Italy, 1986 to 2015. Eurosurveillance 2017, 22. [Google Scholar] [CrossRef] [Green Version]
- Hellmich, D.; Wartenberg, K.E.; Zierz, S.; Mueller, T.J. Foodborne botulism due to ingestion of home-canned green beans: Two case reports. J. Med. Case Rep. 2018, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Carlier, J.P.; Espié, E.; Popoff, M.R. Le botulisme en France, 2003–2006. Bull. Epidemiol. Hebd. 2007, 31–32, 281–284. [Google Scholar]
- Oriot, C.; D’Aranda, E.; Castanier, M.; Glaizal, M.; Galy, C.; Faivre, A.; Poisnel, E.; Truong, T.K.; Mercury, P.; Hayek-Lanthois, M.; et al. One collective case of type A foodborne botulism in Corsica. Clin. Toxicol. 2011, 49, 752–754. [Google Scholar] [CrossRef]
- Mazuet, C.; Sautereau, J.; Legeay, C.; Bouchier, C.; Bouvet, P.; Jourdan da Silva, N.; Castor, C.; Popoff, M.R. Characterization of the first Clostridium baratii strain responsible for an outbreak of botulism type F in France. Clin. Microbiol. Case Rep. 2015, 1, 1–4. [Google Scholar]
- Mazuet, C.; Legeay, C.; Sautereau, J.; Bouchier, C.; Criscuolo, A.; Bouvet, P.; Trehard, H.; Jourdan Da Silva, N.; Popoff, M. Characterization of Clostridium baratii Type F strains responsible for an outbreak of botulism linked to beef meat consumption in France. PLoS Curr. Outbreaks 2017. [Google Scholar] [CrossRef]
- Khouri, J.M.; Payne, J.R.; Arnon, S.S. More clinical mimics of infant botulism. J. Pediatr. 2018, 193, 178–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connan, C.; Popoff, M.R. Uptake of clostridial neurotoxins into cells and dissemination. Curr. Top. Microbiol. Immunol. 2017, 406, 39–78. [Google Scholar] [CrossRef] [PubMed]
- Couesnon, A.; Molgo, J.; Connan, C.; Popoff, M.R. Preferential entry of botulinum neurotoxin A Hc domain trhough intestinal crypt cells and targeting to cholinergic neurons of the mouse intestine. PLoS Pathog. 2012, 8, e1002583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnon, S.S. Infant botulism. Annu. Rev. Med. 1980, 31, 541–560. [Google Scholar] [CrossRef] [PubMed]
- Hatheway, C.; McCroskey, L.M. Examination of feces and serum for diagnosis of infant botulism in 336 patients. J. Clin. Microbiol. 1987, 25, 2334–2338. [Google Scholar] [CrossRef] [Green Version]
- Paton, J.C.; Lawrence, A.J.; Manson, J.I. Quantitation of Clostridium botulinum organisms and toxin in the feces of an infant with botulism. J. Clin. Microbiol. 1982, 15, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Paton, J.C.; Lawrence, A.J.; Steven, I.M. Quantities of Clostridium botulinum organisms and toxin in feces and presence of Clostridium botulinum toxin in the serum of an infant with botulism. J. Clin. Microbiol. 1983, 17, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M.; Noda, H.; Takeshita, S.; Fujiwara, T.; Nakanoin, H.; Mizunoya, T.; Sakaguchi, G. Attempts to quantity Clostridium botulinum type A toxin and antitoxin in serum of two cases of infant botulism in Japan. Jpn. J. Med. Sci. Biol. 1990, 43, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Fenicia, L.; Anniballi, F. Infant botulism. Ann. Ist. Super. Sanita 2009, 45, 134–146. [Google Scholar]
- Fenicia, L.; Anniballi, F.; Aureli, P. Intestinal toxemia botulism in Italy, 1984–2005. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.D.; Donaldson, J.G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 2009, 10, 597–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balslev, T.; Ostergaard, E.; Madsen, I.K.; Wandall, D.A. Infant botulism. The first culture-confirmed Danish case. Neuropediatrics 1997, 28, 287–288. [Google Scholar] [CrossRef] [PubMed]
- Brett, M.M.; McLauchlin, J.; Harris, A.; O’Brien, S.; Black, N.; Forsyth, R.J.; Roberts, D.; Bolton, F.J. A case of infant botulism with a possible link to infant formula milk powder: Evidence for the presence of more than one strain of Clostridium botulinum in clinical specimens and food. J. Med. Microbiol. 2005, 54, 769–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevas, M.; Hielm, S.; Lindstrôm, M.; Horn, H.; Koivulehto, K.; Korkeala, H. High prevalence of Clostridium botulinum types A and B in honey samples detected by polymerase chain reaction. Int. J. Food Microbiol. 2002, 72, 45–52. [Google Scholar] [CrossRef]
- Luquez, C.; Dykes, J.K.; Yu, P.A.; Raphael, B.H.; Maslanka, S.E. First report worldwide of an infant botulism case due to Clostridium botulinum type E. J. Clin. Microbiol. 2010, 48, 326–328. [Google Scholar] [CrossRef] [Green Version]
- Paerregaard, A.; Angen, O.; Lisby, M.; Mølbak, K.; Clausen, M.E.; Christensen, J.J. Denmark: Botulism in an infant or infant botulism? Eurosurveillance 2008, 13, 19072. [Google Scholar]
- Saraiva, M.; Campos Cunha, I.; Costa Bonito, C.; Pena, C.; Toscano, M.M.; Teixeira Lopes, T.; Sousa, I.; Calhau, M.A. First case of infant botulism in Portugal. Food Control 2012, 26, 79–80. [Google Scholar] [CrossRef]
- Derman, Y.; Korkeala, H.; Salo, E.; Lonnqvist, T.; Saxen, H.; Lindström, M. Infant botulism with prolonged faecal excretion of botulinum neurotoxin and Clostridium botulinum for 7 months. Epidemiol. Infect. 2014, 142, 335–339. [Google Scholar] [CrossRef]
- Bernardor, J.; Neveu, J.; Haas, H.; Pitelet, G.; Popoff, M.R.; Mazuet, C.; Berard, E.; Boulay, C.; Chabrol, B. Infant botulism: Two case reports and electroneuromyogram findings. Arch. Pediatr. 2018, 25, 340–343. [Google Scholar]
- Hoarau, G.; Pelloux, I.; Gayot, A.; Wroblewski, I.; Popoff, M.R.; Mazuet, C.; Maurin, M.; Croize, J. Two cases of type A infant botulism in Grenoble, France: No honey for infants. Eur. J. Pediatr. 2012, 171, 589–591. [Google Scholar] [CrossRef]
- King, L.A.; Popoff, M.R.; Mazuet, C.; Espié, E.; Vaillant, V.; de Valk, H. Infant botulism in France, 1991-2009. Arch. Pediatr. 2010, 17, 1288–1292. [Google Scholar] [CrossRef] [PubMed]
- Mazuet, C.; Yoon, E.J.; Boyer, S.; Pignier, S.; Blanc, T.; Doehring, I.; Meziane-Cherif, D.; Dumant-Forest, C.; Sautereau, J.; Legeay, C.; et al. A penicillin- and metronidazole-resistant Clostridium botulinum strain responsible for an infant botulism case. Clin. Microbiol. Infect. 2016, 22, 644.e7–644.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paricio, C.; Bey, K.J.; Teyssier, G.; Ughetto, A.; Ros, A.; Rayet, I.; Lavocat, M.P. Botulism in a neonate. Arch. Pediatr. 2006, 13, 146–148. [Google Scholar] [CrossRef]
- Patural, H.; Goffaux, P.; Paricio, C.; Emeriaud, G.; Teyssier, G.; Barthelemy, J.C.; Pichot, V.; Roche, F. Infant botulism intoxication and autonomic nervous system dysfunction. Anaerobe 2009, 15, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Breinbjerg, A.; Rittig, S.; Kamperis, K. Persistent neurogenic bladder dysfunction due to infantile botulism. BMJ Case Rep. 2014, 2014, 202077. [Google Scholar] [CrossRef] [Green Version]
- Spini, R.G.; Ferraris, V.; Glasman, M.P.; Orofino, G.; Casanovas, A.; Debaisi, G. Intussusception in infant with diagnostic botulism: A case report. Arch. Argent. Pediatr. 2015, 113, e286–e289. [Google Scholar] [CrossRef]
- Fenicia, L.; Da Dalt, L.; Anniballi, F.; Franciosa, G.; Zanconato, S.; Aureli, P. A case if infant botulism due to neurotoxigenic Clostridium butyricum type E associated with Clostridium difficile colitis. Eur. J. Clin. Microbiol. Infect. Dis. 2002, 21, 736–738. [Google Scholar] [CrossRef]
- Grant, K.A.; Nwarfor, I.; Mpamugo, O.; Mithani, V.; Lister, P.; Dixon, G.; Nixon, G.; Planche, T.; Courtney, M.; Morgan, J.; et al. Report of two unlinked cases of infant botulism in the UK in October 2007. J. Med. Microbiol. 2009, 58, 1601–1606. [Google Scholar] [CrossRef]
- Wilcke, B.W., Jr.; Midura, T.F.; Arnon, S.S. Quantitative evidence of intestinal colonization by Clostridium botulinum in four cases of infant botulism. J. Infect. Dis. 1980, 141, 419–423. [Google Scholar] [CrossRef]
- Griffin, P.M.; Hatheway, C.L.; Rosenbaum, R.B.; Sokolow, R. Endogenous antibody production to botulinum toxin in an adult with intestinal colonization botulism and underlying Crohn’s disease. J. Infect. Dis. 1997, 175, 633–637. [Google Scholar] [CrossRef] [Green Version]
- McCroskey, L.M.; Hatheway, C.L. Laboratory findings in four cases of adult botulism suggest colonization of the intestinal tract. J. Clin. Microbiol. 1988, 26, 1052–1054. [Google Scholar] [CrossRef] [Green Version]
- Chia, J.K.; Clark, J.B.; Ryan, C.A.; Pollack, M. Botulism in an adult associated with food-borne intestinal infection with Clostridium Botulinum. N. Engl. J. Med. 1986, 315, 239–241. [Google Scholar] [CrossRef]
- Fenicia, L.; Franciosa, G.; Pourshaban, M.; Aureli, P. Intestinal toxemia botulism in two young people, caused by Clostridium butyricum Type E. Clin. Infect. Dis. 1999, 29, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Fujisawa, K.; Saito, Y.; Kamijo, M.; Oshima, S.; Kubo, M.; Eto, Y.; Monma, C.; Kitamura, M. A botulism case of a 12-year-old girl caused by intestinal colonization of Clostridium botulinum type Ab. Jpn. J. Infect. Dis. 2003, 56, 73–74. [Google Scholar]
- Sheppard, Y.D.; Middleton, D.; Whitfield, Y.; Tyndel, F.; Haider, S.; Spiegelman, J.; Swartz, R.H.; Nelder, M.P.; Baker, S.L.; Landry, L.; et al. Intestinal toxemia botulism in 3 adults, Ontario, Canada, 2006–2008. Emerg. Infect. Dis. 2012, 18, 1–6. [Google Scholar] [CrossRef]
- Freund, B.; Hayes, L.; Rivera-Lara, L.; Sumner, C.; Chaudhry, V.; Chatham-Stephens, K.; Benedict, K.; Kalb, S.; Blythe, D.; Brooks, R.; et al. Adult intestinal colonization botulism mimicking brain death. Muscle Nerve 2017, 56, E27–E28. [Google Scholar] [CrossRef]
- Halai, U.A.; Terashita, D.; Kim, M.; Green, N.; Kalb, S.R.; Chatham-Stephens, K.; Balter, S. Notes from the Field: Intestinal colonization and possible iatrogenic botulism in mouse bioassay-negative serum specimens—Los Angeles County, California, November 2017. Morb. Mortal. Wkly. Rep. 2018, 67, 1221–1222. [Google Scholar] [CrossRef]
- Parameswaran, L.; Rao, A.; Chastain, K.; Ackelsburg, J.; Adams, E.; Jackson, B.; Voigt, L.P.; Chen, X.; Boulad, F.; Taur, Y. A Case of adult intestinal toxemia botulism during prolonged hospitalization in an allogeneic hematopoietic cell transplant recipient. Clin. Infect. Dis. 2017, 66, S99–S102. [Google Scholar] [CrossRef] [Green Version]
- Guru, P.K.; Becker, T.L.; Stephens, A.; Cannistraro, R.J.; Eidelman, B.H.; Hata, D.J.; Brumble, L. Adult intestinal botulism: A rare presentation in an immunocompromised patient with short bowel syndrome. Mayo Clin. Proc. Innov. Qual Outcomes 2018, 2, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Brett, M.M.; Hallas, G.; Mpamugo, O. Wound botulism in the UK and Ireland. J. Med. Microbiol. 2004, 53, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Werner, S.B.; Passaro, D.; McGee, J.; Schechter, R.; Vugia, D.J. Wound botulism in California, 1951-1998: Recent epidemic in heroin injectors. Clin. Infect. Dis. 2000, 31, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Inami, G.; Mohle-Boetani, J.; Vugia, D.J. Recurrent wound botulism among injection drug users in California. Clin. Infect. Dis. 2011, 52, 862–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, C.; Inami, G.; Mohle-Boetani, J.; Vugia, D. Sensitivity of mouse bioassay in clinical wound botulism. Clin. Infect. Dis. 2009, 48, 1669–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbulut, D.; Dennis, J.; Gent, M.; Grant, K.A.; Hope, V.; Ohai, C.; McLauchlin, J.; Mithani, V.; Mpamugo, O.; Ncube, F.; et al. Wound botulism in injectors of drugs: Upsurge in cases in England during 2004. Eurosurveillance 2005, 10, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Kalka-Moll, W.M.; Aurbach, U.; Schaumann, R.; Schwarz, R.; Seifert, H. Wound botulism in injection drug users. Emerg. Infect. Dis. 2007, 13, 942–943. [Google Scholar] [CrossRef]
- Artin, I.; Bjorkman, P.; Cronqvist, J.; Radstrom, P.; Holst, E. First case of type E wound botulism diagnosed using real-time PCR. J. Clin. Microbiol. 2007, 45, 3589–3594. [Google Scholar] [CrossRef] [Green Version]
- Nystrom, S.C.; Wells, E.V.; Pokharna, H.S.; Johnson, L.E.; Najjar, M.A.; Mamou, F.M.; Rudrik, J.T.; Miller, C.E.; Boulton, M.L. Botulism toxemia following laparoscopic appendectomy. Clin. Infect. Dis. 2012, 54, e32–e34. [Google Scholar] [CrossRef] [Green Version]
- Schulte, M.; Hamsen, U.; Schildhauer, T.A.; Ramczykowski, T. Effective and rapid treatment of wound botulism, a case report. BMC Surg. 2017, 17, 103. [Google Scholar] [CrossRef] [Green Version]
- Cook, P.A.; Mishler, A.; Quan, D.; Parrish-Garcia, A. Wound botulism caused by Clostridium subterminale after a heroin injection. Infect. Dis. Rep. 2018, 10, 7654. [Google Scholar] [CrossRef] [Green Version]
- Wakerley, B.R.; Yuki, N. Mimics and chameleons in Guillain-Barré and Miller Fisher syndromes. Pract. Neurol. 2015, 15, 90–99. [Google Scholar] [CrossRef]
- Legast, G.M.; Lascano, A.M.; Gschwind, M.; Schnider, A.; Nicastro, N. Guillain-Barré and Miller Fisher overlap syndrome mimicking alimentary botulism. J. Clin. Neurol. 2017, 13, 442–443. [Google Scholar] [CrossRef] [PubMed]
- Susuki, K.; Takahashi, H.; Yuki, N.; Ohsawa, H.; Hirata, K.; Sakata, I. Guillain-Barre syndrome mimicking botulism. J. Neurol. 2001, 248, 720–721. [Google Scholar] [CrossRef] [PubMed]
- Chiba, A.; Kusunoki, S.; Obata, H.; Machinami, R.; Kanazawa, I. Serum anti-GQ1b IgG antibody is associated with ophthalmoplegia in Miller Fisher syndrome and Guillain-Barré syndrome: Clinical and immunohistochemical studies. Neurological 1993, 43, 1911–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusunoki, S.; Kaida, K. Antibodies against ganglioside complexes in Guillain-Barré syndrome and related disorders. J. Neurochem. 2011, 116, 828–832. [Google Scholar] [CrossRef] [PubMed]
- Wanleenuwat, P.; Iwanowski, P.; Kozubski, W. Antiganglioside antibodies in neurological diseases. J. Neurol. Sci. 2020, 408, 116576. [Google Scholar] [CrossRef] [PubMed]
- Cutillo, G.; Saariaho, A.H.; Meri, S. Physiology of gangliosides and the role of antiganglioside antibodies in human diseases. Cell. Mol. Immunol. 2020, 17, 313–322. [Google Scholar] [CrossRef]
- Willison, H.J.; Yuki, N. Peripheral neuropathies and anti-glycolipid antibodies. Brain 2002, 125, 2591–2625. [Google Scholar] [CrossRef]
- Ogawa, G.; Kaida, K.; Kuwahara, M.; Kimura, F.; Kamakura, K.; Kusunoki, S. An antibody to the GM1/GalNAc-GD1a complex correlates with development of pure motor Guillain-Barré syndrome with reversible conduction failure. J. Neuroimmunol. 2013, 254, 141–145. [Google Scholar] [CrossRef]
- Van den Berg, L.H.; Oey, P.L.; Wokke, J.H.; Veldman, H.; Wieneke, G.H.; Notermans, S.H. Features of the Guillain-Barré syndrome in mice following intraperitoneal injection of patient serum. J. Neurol. Sci. 1994, 127, 103–106. [Google Scholar] [CrossRef]
- Notermans, S.H.; Wokke, J.H.; van den Berg, L.H. Botulism and Guillain-Barré syndrome. Lancet 1992, 340, 303. [Google Scholar] [CrossRef]
- Chang, V.H.; Robinson, L.R. Serum positive botulism with neuropathic features. Arch. Phys. Med. Rehabil. 2000, 81, 122–126. [Google Scholar] [CrossRef]
- Zeylikman, Y.; Shah, V.; Shah, U.; Mirsen, T.R.; Campellone, J.V. False-Positive Serum Botulism Bioassay in Miller-Fisher Syndrome. J. Clin. Neuromuscul. Dis. 2015, 17, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Vernino, S.; Ermilov, L.G.; Sha, L.; Szurszewski, J.H.; Low, P.A.; Lennon, V.A. Passive transfer of autoimmune autonomic neuropathy to mice. J. Neurosci. 2004, 24, 7037–7042. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, J.A.; Bowes, T.; Sheikh, K.; Odaka, M.; Halstead, S.K.; Humphreys, P.D.; Wagner, E.R.; Yuki, N.; Furukawa, K.; Furukawa, K.; et al. Overexpression of GD1a ganglioside sensitizes motor nerve terminals to anti-GD1a antibody-mediated injury in a model of acute motor axonal neuropathy. J. Neurosci. 2005, 25, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Plomp, J.J.; Willison, H.J. Pathophysiological actions of neuropathy-related anti-ganglioside antibodies at the neuromuscular junction. J. Physiol. 2009, 587, 3979–3999. [Google Scholar] [CrossRef] [PubMed]
- Goodyear, C.S.; O’Hanlon, G.M.; Plomp, J.J.; Wagner, E.R.; Morrison, I.; Veitch, J.; Cochrane, L.; Bullens, R.W.; Molenaar, P.C.; Conner, J.; et al. Monoclonal antibodies raised against Guillain-Barré syndrome-associated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze muscle-nerve preparations. J. Clin. Investig. 1999, 104, 697–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taguchi, K.; Ren, J.; Utsunomiya, I.; Aoyagi, H.; Fujita, N.; Ariga, T.; Miyatake, T.; Yoshino, H. Neurophysiological and immunohistochemical studies on Guillain-Barre syndrome with IgG anti-GalNAc-GD1a antibodies-effects on neuromuscular transmission. J. Neurol. Sci. 2004, 225, 91–98. [Google Scholar] [CrossRef]
- Taguchi, K.; Utsunomiya, I.; Ren, J.; Yoshida, N.; Aoyagi, H.; Nakatani, Y.; Ariga, T.; Usuki, S.; Yu, R.K.; Miyatake, T. Effect of rabbit anti-asialo-GM1 (GA1) polyclonal antibodies on neuromuscular transmission and acetylcholine-induced action potentials: Neurophysiological and immunohistochemical studies. NeuroChem. Res. 2004, 29, 953–960. [Google Scholar] [CrossRef]
- Asthana, P.; Vong, J.S.; Kumar, G.; Chang, R.C.; Zhang, G.; Sheikh, K.A.; Ma, C.H. Dissecting the role of anti-ganglioside antibodies in Guillain-Barré Syndrome: An animal model approach. Mol. Neurobiol. 2016, 53, 4981–4991. [Google Scholar] [CrossRef]
- Yuki, N.; Yamada, M.; Koga, M.; Odaka, M.; Susuki, K.; Tagawa, Y.; Ueda, S.; Kasama, T.; Ohnishi, A.; Hayashi, S.; et al. Animal model of axonal Guillain-Barré syndrome induced by sensitization with GM1 ganglioside. Ann. Neurol. 2001, 49, 712–720. [Google Scholar] [CrossRef]
- Buchwald, B.; Zhang, G.; Vogt-Eisele, A.K.; Zhang, W.; Ahangari, R.; Griffin, J.W.; Hatt, H.; Toyka, K.V.; Sheikh, K.A. Anti-ganglioside antibodies alter presynaptic release and calcium influx. Neurobiol. Dis. 2007, 28, 113–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullens, R.W.; O’Hanlon, G.M.; Goodyear, C.S.; Molenaar, P.C.; Conner, J.; Willison, H.J.; Plomp, J.J. Anti-GQ1b antibodies and evoked acetylcholine release at mouse motor endplates. Muscle Nerve 2000, 23, 1035–1043. [Google Scholar] [CrossRef]
- Bullens, R.W.; O’Hanlon, G.M.; Wagner, E.; Molenaar, P.C.; Furukawa, K.; Furukawa, K.; Plomp, J.J.; Willison, H.J. Complex gangliosides at the neuromuscular junction are membrane receptors for autoantibodies and botulinum neurotoxin but redundant for normal synaptic function. J. Neurosci. 2002, 22, 6876–6884. [Google Scholar] [CrossRef] [PubMed]
- Dorr, J.; Dieste, F.J.; Klaasen van Husen, D.; Zipp, F.; Vogel, H.P. A case of recurrent Miller Fisher syndrome mimicking botulism. Neurol. Sci. 2006, 27, 424–425. [Google Scholar] [CrossRef] [PubMed]
- Hargis, M.J.; Howdeshell, M. Miller-Fisher Syndrome With Botulism Toxin Ingestion: The Ultimate Descending Paralysis. J. Clin. Neuromuscul. Dis. 2018, 19, 146. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Thomas, C.A.; Halliwell, J.; Gwenin, C.D. Rapid Detection of Botulinum Neurotoxins-A Review. Toxins 2019, 11, 418. [Google Scholar] [CrossRef] [Green Version]
- Nepal, M.R.; Jeong, T.C. Alternative methods for testing botulinum toxin: Current status and future perspectives. Biomol. Ther. 2020, 28, 302–310. [Google Scholar] [CrossRef]
- Perry, M.J.; Centurioni, D.A.; Davis, S.W.; Hannett, G.E.; Musser, K.A.; Egan, C.T. Implementing the Bruker MALDI biotyper in the public health laboratory for C. botulinum neurotoxin detection. Toxins 2017, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.; von Berg, L.; Dorner, M.B.; Dorner, B.G. Replacing the mouse bioassay for diagnostics and potency testing of botulinum neurotoxins—Rogress and challenges. Berl. Munch. Tierarztl. Wochenschr. 2018, 131, 375–394. [Google Scholar]
- Kalb, S.R.; Boyer, A.E.; Barr, J.R. Mass spectrometric detection of bacterial protein toxins and their enzymatic activity. Toxins 2015, 7, 3497–3511. [Google Scholar] [CrossRef] [Green Version]
- Ferracci, G.; Marconi, S.; Mazuet, C.; Jover, E.; Blanchard, M.P.; Seagar, M.; Popoff, M.; Leveque, C. A label-free biosensor assay for botulinum neurotoxin B in food and human serum. Anal. Biochem. 2011, 410, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Leveque, C.; Ferracci, G.; Maulet, Y.; Mazuet, C.; Popoff, M.; Seagar, M.; El Far, O. Direct biosensor detection of botulinum neurotoxin endopeptidase activity in sera from patients with type A botulism. Biosens. Bioelectron. 2014, 57, 207–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagramyan, K.; Barash, J.R.; Arnon, S.S.; Kalkum, M. Attomolar detection of botulinum toxin type A in complex biological matrices. PLoS ONE 2008, 3, e2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagramyan, K.; Kaplan, B.E.; Cheng, L.W.; Strotmeier, J.; Rummel, A.; Kalkum, M. Substrates and controls for the quantitative detection of active botulinum neurotoxin in protease-containing samples. Anal. Chem. 2013, 85, 5569–5576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Berg, L.; Stern, D.; Pauly, D.; Mahrhold, S.; Weisemann, J.; Jentsch, L.; Hansbauer, E.M.; Muller, C.; Avondet, M.A.; Rummel, A.; et al. Functional detection of botulinum neurotoxin serotypes A to F by monoclonal neoepitope-specific antibodies and suspension array technology. Sci. Rep. 2019, 9, 5531. [Google Scholar] [CrossRef] [Green Version]
- Kalb, S.R.; Moura, H.; Boyer, A.E.; McWilliams, L.G.; Pirkle, J.L.; Barr, J.R. The use of Endopep-MS for the detection of botulinum toxins A, B, E, and F in serum and stool samples. Anal. Biochem. 2006, 351, 84–92. [Google Scholar] [CrossRef]
- Wang, D.; Baudys, J.; Krilich, J.; Smith, T.J.; Barr, J.R.; Kalb, S.R. A two-stage multiplex method for quantitative analysis of botulinum neurotoxins type a, B, e, and f by maldi-tof mass spectrometry. Anal. Chem. 2014, 86, 10847–10854. [Google Scholar] [CrossRef]
- Wang, D.; Krilich, J.; Baudys, J.; Barr, J.R.; Kalb, S.R. Optimization of peptide substrates for botulinum neurotoxin E improves detection sensitivity in the Endopep-MS assay. Anal. Biochem. 2015, 468, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Baudys, J.; Hoyt, K.M.; Barr, J.R.; Kalb, S.R. Further optimization of peptide substrate enhanced assay performance for BoNT/A detection by MALDI-TOF mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 4779–4786. [Google Scholar] [CrossRef] [Green Version]
- Ruge, D.R.; Dunning, F.M.; Piazza, T.M.; Molles, B.E.; Adler, M.; Zeytin, F.N.; Tucker, W.C. Detection of six serotypes of botulinum neurotoxin using fluorogenic reporters. Anal. Biochem. 2011, 411, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Dunning, F.M.; Ruge, D.R.; Piazza, T.M.; Stanker, L.H.; Zeytin, F.N.; Tucker, W.C. Detection of botulinum neurotoxin serotype A, B, and F proteolytic activity in complex matrices with picomolar to femtomolar sensitivity. Appl. Environ. Microbiol. 2012, 78, 7687–7697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, O.; Feldberg, L.; Dor, E.; Gura, S.; Zichel, R. Optimization of SNAP-25-derived peptide substrate for improved detection of botulinum A in the Endopep-MS assay. Anal. Biochem. 2017, 528, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Rosen, O.; Feldberg, L.; Yamin, T.S.; Dor, E.; Barnea, A.; Weissberg, A.; Zichel, R. Development of a multiplex Endopep-MS assay for simultaneous detection of botulinum toxins A, B and E. Sci. Rep. 2017, 7, 14859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parks, B.A.; Shearer, J.D.; Baudys, J.; Kalb, S.R.; Sanford, D.C.; Pirkle, J.L.; Barr, J.R. Quantification of botulinum neurotoxin serotypes A and B from serum using mass spectrometry. Anal. Chem. 2011, 83, 9047–9053. [Google Scholar] [CrossRef]
- Björnstad, K.; Tevell Åberg, A.; Kalb, S.R.; Wang, D.; Barr, J.R.; Bondesson, U.; Hedeland, M. Validation of the Endopep-MS method for qualitative detection of active botulinum neurotoxins in human and chicken serum. Anal. Bioanal. Chem. 2014, 406, 7149–7161. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Krilich, J.; Baudys, J.; Barr, J.R.; Kalb, S.R. Enhanced detection of type C botulinum neurotoxin by the Endopep-MS assay through optimization of peptide substrates. Bioorgan. Med. Chem. 2015, 23, 3667–3673. [Google Scholar] [CrossRef] [Green Version]
- Babrak, L.; Lin, A.; Stanker, L.H.; McGarvey, J.; Hnasko, R. Rapid microfluidic assay for the detection of botulinum neurotoxin in animal sera. Toxins 2016, 8, 13. [Google Scholar] [CrossRef]
- Jones, R.G.; Marks, J.D. Use of a new functional dual coating (FDC) assay to measure low toxin levels in serum and food samples following an outbreak of human botulism. J. Med. Microbiol. 2013, 62, 828–835. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Rigsby, P.; Sesardic, D.; Marks, J.D.; Jones, R.G. A functional dual-coated (FDC) microtiter plate method to replace the botulinum toxin LD50 test. Anal. Biochem. 2012, 425, 28–35. [Google Scholar] [CrossRef]
- Mazuet, C.; Ezan, E.; Volland, H.; Popoff, M.R.; Becher, F. Toxin detection in patients’ sera by mass spectrometry during two outbreaks of type A Botulism in France. J. Clin. Microbiol. 2012, 50, 4091–4094. [Google Scholar] [CrossRef] [Green Version]
- Weisemann, J.; Krez, N.; Fiebig, U.; Worbs, S.; Skiba, M.; Endermann, T.; Dorner, M.B.; Bergstrom, T.; Munoz, A.; Zegers, I.; et al. Generation and characterization of six recombinant botulinum neurotoxins as reference material to serve in an international proficiency test. Toxins 2015, 7, 5035–5054. [Google Scholar] [CrossRef] [Green Version]
- Al-Saleem, F.H.; Ancharski, D.M.; Ravichandran, E.; Joshi, S.G.; Singh, A.K.; Gong, Y.; Simpson, L.L. The role of systemic handling in the pathophysiologic actions of botulinum toxin. J. Pharm. Exp. 2008, 326, 856–863. [Google Scholar] [CrossRef] [Green Version]
- Ravichandran, E.; Gong, Y.; Al Saleem, F.H.; Ancharski, D.M.; Joshi, S.G.; Simpson, L.L. An initial assessment of the systemic pharmacokinetics of botulinum toxin. J. Pharm. Exp. 2006, 318, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.W.; Stanker, L.H.; Henderson, T.D., II; Lou, J.; Marks, J.D. Antibody protection against botulinum neurotoxin intoxication in mice. Infect. Immun. 2009, 77, 4305–4313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitamura, M.; Sakaguchi, S.; Sakaguchi, G. Significance of 12S toxin of Clostridium botulinum type E. J. Bacteriol. 1969, 98, 1173–1178. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Singh, B.R.; Sharma, S. Botulism diagnostics: From clinical symptoms to in vitro assays. Crit. Rev. Microbiol. 2007, 33, 109–125. [Google Scholar] [CrossRef]
Country | Year | Number of Patient’s Sera | Toxin-Positive Sera 1 | BoNT Type | References | ||||
---|---|---|---|---|---|---|---|---|---|
A | B | E | F | Non-Identified | |||||
USA | 1905–1962 | 20 | 20 | 1 | 9 | 3 | 7 | [44] | |
USA | 1963 | 6 | 5 | 5 | [44] | ||||
USA | 1965 | 4 | 4 | 4 | [45] | ||||
France | 1970–1973 | 39 | 28 | 28 | [43] | ||||
USA | 1975–1988 | 340 | 126 | 71/109 | 12/109 | 26/109 | [51] | ||
South Africa | 1977 | 2 | 1 | 1 | [52] | ||||
USA | 1978 | 18 | 11 | 11 | [53] | ||||
Japan | 1984 | 1 | 1 | 1 | [54] | ||||
France | 1966–1990 | 50 | 28 | 28 | [50] | ||||
Alaska | 1959–2007 | 180 | 64 | 1/15 2 | 11/15 2 | 3/15 2 | [55] | ||
USA | 1991 | 1 | 1 | 1 3 | [56] | ||||
USA | 1993 | 5 | 2 | 2 | [57] | ||||
Finland | 1997 | 1 | 1 | 1 | [58] | ||||
Argentina | 1998 | 9 | 3 | 3 | [59] | ||||
Finland | 1999 | 1 | 1 | 1 | [60] | ||||
Morocco | 1999 | 11 | 6 | 6 | [61] | ||||
Poland | 1990–2000 | 32 | 24 | 23 | 1 | [62] | |||
Canada | 1985–2005 | 212 | 74 | (8%) 4 | (6%) 4 | (86%) 4 | [63] | ||
USA | 2001 | 1 | 1 | 1 3 | [64] | ||||
Germany | 2003 | 1 | 0 5 | [65] | |||||
USA | 2005 | 1 | 1 | 1 3 | [66] | ||||
Turkey | 2005 | 9 | 2 | 2 | [67] | ||||
USA | 2006 | 6 | 5 | 5 | [68] | ||||
Finland | 2006 | 1 | 1 | 1 | [69] | ||||
USA | 2007 | 8 | 2 | 2 | [70] | ||||
USA | 2007 | 2 | 2 | 2 3 | [71] | ||||
USA | 2007 | 5 | 0 6 | [72] | |||||
Brazil | 2000–2008 | 45 | 17 | 8 | 4 7 | 5 | [73] | ||
France | 2007–2009 | 34 | 32 | 5 | 26 | 1 | [47] | ||
France | 2010–2012 | 51 | 41 | 20 | 18 | 2 | 1 | [49] | |
Finland | 2011 | 2 | 2 | 2 | [74] | ||||
UK | 2011 | 2 | 2 | 2 | [75] | ||||
Japan | 2012 | 2 | 2 | 2 | [76] | ||||
Poland | 2013 | 1 | 1 | 1 | [77] | ||||
USA | 2015 | 19 | 19 | 19 | [78] | ||||
Italy | 2015 | 1 | 1 | 1 | [79] | ||||
Italy | 1986–2015 | 275 | 56 | 11 | 45 | [80] | |||
France | 2013–2016 | 56 | 44 | 7 | 33 | 4 3 | [48] | ||
Germany | 2018 | 2 | 2 | 2 | [81] | ||||
Total | 1456 | 633 |
Country | Year | Number of Patient’s Sera | Days from Symptom Onset to Serum Sampling | BoNT Type | BoNT Concentration (MLD/mL) | References |
---|---|---|---|---|---|---|
USA | 1963 | 5 | 1–10 | E | 1–10 | [44] |
France 1 | 1970–1973 | 1 | 120 | B | 1 | [43] |
17 | 3–20 (most 8–15) | B | 1–10 | |||
1 | 21 | B | 4–40 | |||
Japan | 1984 | 1 | 4 | B | 1–2 | [54] |
Finland | 1997 | 1 | E | 6 | [58] | |
Finland | 1999 | 1 | 1 | E | 1 | [60] |
Turkey | 2005 | 9 | A | <1–2 | [67] | |
USA | 2006 | 1 (patient A) | 1 | A | >20 | [68] |
1 (patient B) | 5 | A | >200 | |||
7 | 1800 | |||||
8 | >200 | |||||
12 | >200 | |||||
France | 2007–2016 | 1 | A | 80 | [47,48,49] | |
2 | A | 32–40 | ||||
2 | A | 8–16 | ||||
35 | A | 1–8 | ||||
6 | B | 16–40 | ||||
67 | B | 1–8 | ||||
14 | B | <1 | ||||
1 | E | 8 | ||||
2 | E | 1 | ||||
Finland | 2011 | 1 | 3 | B | <1 | [74] |
France | 2014 | 1 | 2 | F (C. baratii) | 400 | [84,85] |
1 | 2 | 1–2 | ||||
France | 2015 | 3 | F (C. baratii) | 1-4 | [85] |
Country | Year | Days from Symptom Onset to Serum Sampling | Toxin Positive-Sera | BoNT Type | Additional Detection | References |
---|---|---|---|---|---|---|
France | 1970–1973 1 | 2 | 2 | B | [43] | |
6–18 | 16 | |||||
20–21 | 2 | |||||
87 | 2 | |||||
120 | 1 | |||||
USA | 1975–1988 | 0–3 | 60–70% 2 | A, B, E | [51] | |
≥ 4 | 13–28% 2 | |||||
Japan | 1984 | 4 | 1 | B | [54] | |
Alaska | 1959–2007 | 4–11 | 11 | B | [55] | |
5–7 | 3 | E | ||||
4 | 1 | A | ||||
USA | 1991 | 4 | 1 | F 3 | neg at day 14 | [56] |
Argentina | 1998 | 10–12 | 3 | A | [59] | |
Finland | 1999 | 1 | 1 | E | [60] | |
USA | 2001 | 2 | 1 | F 3 | neg at day 6 | [64] |
USA | 2005 | 1 and 8 | 1 | F 3 | [66] | |
USA | 2006 | 1 | 3 | A | [68] | |
5, 7, 8, 12 | 1 (patient B) | A | ||||
25 | 1 | A | neg at day 41 | |||
Finland | 2006 | 1 | 1 | E | [69] | |
USA | 2007 | 3 | 2 4 | A | [70] | |
4, 9, 18, 25 | neg 6 4 | |||||
USA | 2007 | 3, 6 | 2 | F 3 | [71] | |
USA | 2007 | 1, 3 | neg 5 | mild botulism E | [72] | |
Finland | 2011 | 3 | 2 | B | [74] | |
Japan | 2012 | 2 | 2 | A | [76] | |
Italy | 2015 | 1 | 1 | B | [79] | |
Germany | 2018 | 3 | 2 | A | [81] |
Country | Year | Number of Infant’s Sera | Toxin-Positive Sera | BoNT Type | References | ||
---|---|---|---|---|---|---|---|
A | B | E | |||||
USA | 1975–1987 | 67 | 9 | 8 | 1 | [90] | |
Australia | 1981 | 1 | 0 | 1 1 | [91] | ||
Australia | 1982 | 1 | 1 | 1 | [92] | ||
Japan | 1986–1987 | 2 | 2 | 2 | [93] | ||
Italy | 1984–2008 | 12 | 2 | 1 | 1 2 | [94,95] | |
UK | 1994–2007 | 4 | 4 | 2 | 2 | [96] | |
Denmark | 1997 | 1 | 1 | 1 | [97] | ||
UK | 2001 | 1 | 0 | 1 1 | [98] | ||
Finland | 2002 | 1 | 0 | 1 1 | [99] | ||
USA | 2007 | 1 | 1 | 1 | [100] | ||
Denmark | 2008 | 1 | 1 3 | [101] | |||
Portugal | 2009 | 1 | 0 | 1 1 | [102] | ||
Finland | 2010 | 1 | 1 | 1 | [103] | ||
France | 2004–2016 | 16 | 9 | 5 | 4 | [48,49,104,105,106,107,108,109]. | |
Denmark | 2013 | 1 | 1 | 1 | [110] | ||
Argentina | 2014 | 1 | 1 | 1 | [111] | ||
Total | 112 | 31 |
Country | Year | Patient Age at the Onset of Symptoms m, months; d, days | Days from Symptom Onset to Serum Sampling | BoNT in Serum | C. botulinum in Feces | References |
---|---|---|---|---|---|---|
Australia | 1981 | 4 m | 4 | neg | C. botulinum B | [91] |
Australia | 1982 | 7 d | 3 | A | C. botulinum A | [92] |
10 | A | C. botulinum A | ||||
16 | neg | C. botulinum A | ||||
Japan | 1986 | 79 d | 22 | neg | C. botulinum A | [93] |
1987 | 40 d | 7 | A | C. botulinum A | ||
24 | A | C. botulinum A | ||||
26 | A | C. botulinum A | ||||
27 | A | C. botulinum A | ||||
46 | neg | C. botulinum A | ||||
UK | 2007 | 8 m | 15 | A | C. botulinum A | [113] |
UK | 2001 | 5 m | 10 | neg | C. botulinum B | [98] |
USA | 2007 | 9 d | 5 | neg | C. botulinum E | [100] |
Denmark | 2008 | 4.5 m | 14 | BoNT 1 | [101] | |
Finland | 2010 | 3 m | 3 | A | C. botulinum A | [103] |
15 | neg | C. botulinum A | ||||
Denmark | 2013 | 5 m | 4 | A | C. botulinum A | [110] |
France | 2013 | 2 m | 28 | neg | C. botulinum A | [107] |
48 | neg | C. botulinum A | ||||
63 | neg | C. botulinum A | ||||
Argentina | 2014 | 4 m | 3 | A | C. botulinum A | [111] |
Country | Year | Patient Age | Days from Symptom Onset to Serum Sampling | BoNT in Serum | BoNT in Feces | Feces | References |
---|---|---|---|---|---|---|---|
USA | 1978–1985 | elderly | 22 | nd | B | C. botulinum B | [116] |
30 | B | neg | C. botulinum B | ||||
37 | neg | nd | nd | ||||
33 | 2 | A | nd | C. botulinum A | |||
27 | 47 | B | neg | C. botulinum B | |||
37 | 14 | A | A | C. botulinum A | |||
21 | neg | neg | C. botulinum A | ||||
USA | 1985 | 37 | 11 | A | A | C. botulinum A | [117] |
13 | A | nd | C. botulinum A | ||||
USA | 1988 | 67 | 3 | A | A | nd | [115] |
5 | A | A | C. botulinum A | ||||
~20 | neg | nd | C. botulinum A | ||||
Italy | 1994 | 9 | 5 | neg | nd | C. butyricum E | [118] |
Italy | 1997 | 56 | 30 | A | neg | C. botulinum A | [95] |
Japan | 2003 | 12 | 2 | A | A | C. botulinum Ab | [119] |
Canada | 2007 | 50 | 13 | A | nd | C. botulinum A | [120] |
France | 2011 | 10 | Ind 1 | nd | C. butyricum E | [49] | |
USA | 2017 | 43 | 12 | A | nd | C. botulinum A | [121] |
USA | 2017 | elderly | 16 | A 1 | A | nd | [122] |
USA | 2017 | 27 | 78 | neg | A | C. botulinum A | [123] |
USA | 2018 | 66 | 5 | A | A | nd | [124] |
Country | Year | Number of Patient’s Sera | Toxin-Positive Sera | BoNT Type | References | |||
---|---|---|---|---|---|---|---|---|
A | B | E | ind | |||||
California | 1951–1998 | 122 | 114 | 84% | 12% | 4% | [126] | |
California | 1993–2006 | 37 | 22 | 20 | 2 | [127] | ||
California | 2005–2007 | 73 | 50 | [128] | ||||
Italy | 1986–2015 | 6 | 5 | 5 | [80] | |||
UK | 2000–2004 | 88 | 33 | ~90% | ~10% | [125,129] | ||
Germany | 2005 | 4 | 2 | 2 | [130] | |||
Sweden | 2006 | 1 | 0 | 1 1 | [131] | |||
France | 2008 | 1 | 1 | 1 | [47] | |||
USA | 2011 | 1 | 1 | 1 | [132] | |||
Germany | 2016 | 1 | 1 | 1 | [133] | |||
USA | 2017 | 1 | 1 | 1 2 | [134] | |||
Total | 335 | 230 |
Country | Year | Number of Patient’s Sera | Toxin Positive Sera | Additional Investigation | Symptoms | References |
---|---|---|---|---|---|---|
The Netherlands | 1988–1992 | 5 | 4 1 | GBS | [145] | |
The Netherlands | 1994 | 6 | 1 1 | CSF protein: 125 mg/dL, electromyography | GBS | [144] |
USA | 1998 | 1 | BoNT/B | CSF protein: 42 mg/dL, electrodiagnostic | possible concurrent botulism and MFS | [146] |
Germany | 2004 | 1 | neg | strongly elevated IgG/IgM anti-GQ1b | MFS mimicking botulism | [159] |
France | 2007–2009 | 38 | 24 1 | GBS/MFS | [47] and unpublished data | |
USA | 2015 | 1 | BoNT/A | strongly elevated Ig anti-GQ1b CSF protein: 56 mg/dL negative detection of BoNT and C. botulinum in feces | MFS | [147] |
USA | 2017 | 1 | neg | strongly elevated IgG/IgM anti-GQ1b BoNT in recently ingested canned food | possible concurrent MFS and food-borne botulism | [160] |
Switzerland | 2017 | 1 | neg | elevated IgG anti-GM1, -GD1a, -GD1b | atypical GBS/MFS mimicking botulism | [136] |
BoNT Type | Method | Serum Samples | Sensitivity | References |
---|---|---|---|---|
A | Assay with a large immunosorbent surface area (ALISSA) | spiked human serum | Attomolar (4 × 10−5 MLD/mL) a | [168,169] |
A, B, C, D, E, F | Endopeptidase assay and monoclonal neoepitope antibodies | spiked human serum | A: 0.211 MLD50/mL B: 0.147 MLD50/mL C: 2.056 MLD50/mL D: 0.18 MLD50/mL E: 0.84 MLD50/mL F: 0.005 MLD50/mL | [170] |
A, B, E, F | Endopep-MS | spiked human serum | A: 20 MLD/mL B, F: 1 MLD/mL E: 0.2 MLD/mL | [171] |
A, B, E, F | Endopep-MALDI-TOF-MS | spiked human serum | A, B, F: 0.1 MLD/mL E: 0.02 MLD/mL | [172,173,174] |
A, B, F | Endopeptidase assay with fluorogenic substrates | spiked human serum | A, F: 1 pM (A: 40 MLD/mL F: 3 MLD/mL) a B: 10 pM (180 MLD/mL) a | [175,176] |
A | Endopep-MS | spiked human serum | 1 MLD/mL | [177,178] |
A, B | Endopep-MS | spiked macaque serum | 1 MLD/mL | [179] |
A, B, D/C, E, F | Endopep-MS | spiked human, chicken sera | A, B, F: 1 MLD/mL D/C: 2 MLD/mL E: 10 MLD/mL C: 100 MLD/mL | [180] |
C | Endopep-MS | spiked human serum | 0.5–1 MLD/mL | [181] |
A | Microfluidic double sandwich immunoassay | spiked human serum | 30 pg/mL (8 MLD/mL) a | [182] |
A | Functional dual coating assay (BoNT immunocapture and endopeptidase assay with detection by neoepitope antibodies) | clinical serum samples | 1 MLD/mL | [183,184] |
A | Endopeptidase assay and detection with neoepitope antibodies and surface plasmon resonance | clinical serum samples | <1 MLD/mL negative in ELS and CIDP patient’s sera | [167] |
A | Endopep-MS | clinical serum samples | ~1 MLD/mL | [185] |
B | Endopeptidase assay and detection with neoepitope antibodies and surface plasmon resonance | clinical serum samples | 0.1–0.01 MLD/mL negative in ELS and GBS patient’s sera | [166] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasetti-Escargueil, C.; Lemichez, E.; Popoff, M.R. Toxemia in Human Naturally Acquired Botulism. Toxins 2020, 12, 716. https://doi.org/10.3390/toxins12110716
Rasetti-Escargueil C, Lemichez E, Popoff MR. Toxemia in Human Naturally Acquired Botulism. Toxins. 2020; 12(11):716. https://doi.org/10.3390/toxins12110716
Chicago/Turabian StyleRasetti-Escargueil, Christine, Emmanuel Lemichez, and Michel R. Popoff. 2020. "Toxemia in Human Naturally Acquired Botulism" Toxins 12, no. 11: 716. https://doi.org/10.3390/toxins12110716
APA StyleRasetti-Escargueil, C., Lemichez, E., & Popoff, M. R. (2020). Toxemia in Human Naturally Acquired Botulism. Toxins, 12(11), 716. https://doi.org/10.3390/toxins12110716