Multiplex Immunoassay Techniques for On-Site Detection of Security Sensitive Toxins
Abstract
:1. Introduction
2. Antibodies and Immunosensors
3. Criteria for On-Site Application of Multiplex Immunoassay Techniques
4. Portable Immunoassay Techniques with Multiplexing Capability
4.1. Lateral Flow Assays
4.2. Microarray Technology
4.2.1. Label-Free Technologies
4.2.2. Optical Immunosensors
Colorimetric/Absorbance
Fluorescence
Cytometry/Bead-Based Assays
Chemiluminescence/Electrochemiluminescence
Digital Droplet Assays
4.2.3. Cell-Based Biosensors
4.2.4. Electrochemical Biosensors
4.2.5. Others
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Franz, D.R. Defense against toxin weapons. In Textbook of Military Medicine, Part 1: Medical Aspects of Chemical and Biological Warfare; Office of The Surgeon General at TMM Publications, Department of the Army: Washington, DC, USA, 1997; pp. 603–619. [Google Scholar]
- Burnett, J.C.; Henchal, E.A.; Schmaljohn, A.L.; Bavari, S. The evolving field of biodefence: Therapeutic developments and diagnostics. Nat. Rev. Drug Discov. 2005, 4, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Rotz, L.D.; Khan, A.S.; Lillibridge, S.R.; Ostroff, S.M.; Hughes, J.M. Public health assessment of potential biological terrorism agents. Emerg. Infect. Dis. 2002, 8, 225. [Google Scholar] [CrossRef] [PubMed]
- The Australia Group-Biological Agents. Available online: https://www.dfat.gov.au/publications/minisite/theaustraliagroupnet/site/en/human_animal_pathogens.html (accessed on 21 October 2020).
- Organization for the Prohibition of Chemical Weapons Scientific, Advisory Board. SAB-II Annex 1. 1999. Available online: https://www.opcw.org/resources/documents/subsidiary-bodies/scientific-advisory-board (accessed on 19 November 2020).
- Bozza, W.P.; Tolleson, W.H.; Rivera Rosado, L.A.; Zhang, B. Ricin detection: Tracking active toxin. Biotechnol. Adv. 2015, 33, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janik, E.; Ceremuga, M.; Saluk-Bijak, J.; Bijak, M. Biological toxins as the potential tools for bioterrorism. Int. J. Mol. Sci. 2019, 20, 1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cenciarelli, O.; Riley, P.W.; Baka, A. Biosecurity threat posed by botulinum toxin. Toxins 2019, 11, 681. [Google Scholar] [CrossRef] [Green Version]
- Pohanka, M.; Kuča, K. Biological warfare agents. In Molecular, Clinical and Environmental Toxicology. Experientia Supplementum; Birkhäuser: Basel, Switzerland, 2010; Volume 100, pp. 559–578. ISBN 978-3-7643-8338-1. [Google Scholar]
- Ler, S.G.; Lee, F.K.; Gopalakrishnakone, P. Trends in detection of warfare agents: Detection methods for ricin, staphylococcal enterotoxin B and T-2 toxin. J. Chromatogr. A 2006, 1133. [Google Scholar] [CrossRef]
- Parida, M.M.; Dash, P.K.; Shukla, J. Advance detection technologies for select biothreat agents. In Handbook on Biological Warfare Preparedness; Academic Press: Cambridge, MA, USA, 2020; pp. 83–102. [Google Scholar]
- The June 2018 Cologne Ricin Plot: A New Threshold in Jihadi Bio Terror. Available online: https://ctc.usma.edu/june-2018-cologne-ricin-plot-new-threshold-jihadi-bio-terror/ (accessed on 5 October 2020).
- Grundmann, O. The current state of bioterrorist attack surveillance and preparedness in the US. Risk Manag. Healthc. Policy 2014, 7, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.V.; Simpson, J.M.; Kearns, E.A.; Kramer, M.F. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin. Microbiol. Rev. 2005, 18, 583–607. [Google Scholar] [CrossRef] [Green Version]
- Duncan, C.L.; Strong, D.H.; Sebald, M. Sporulation and enterotoxin production by mutants of Clostridium perfringens. J. Bacteriol. 1972, 110, 378–391. [Google Scholar] [CrossRef] [Green Version]
- Layana, J.E.; Fernandez Miyakawa, M.E.; Uzal, F.A. Evaluation of different fluids for detection of Clostridium perfringens type D epsilon toxin in sheep with experimental enterotoxemia. Anaerobe 2006, 12, 204–206. [Google Scholar] [CrossRef]
- Alam, S.I.; Kumar, B.; Kamboj, D.V. Multiplex detection of protein toxins using MALDI-TOF-TOF tandem mass spectrometry: Application in unambiguous toxin detection from bioaerosol. Anal. Chem. 2012, 84, 10500–10507. [Google Scholar] [CrossRef] [PubMed]
- Kull, S.; Pauly, D.; Störmann, B.; Kirchner, S.; Stämmler, M.; Dorner, M.B.; Lasch, P.; Naumann, D.; Dorner, B.G. Multiplex Detection of Microbial and Plant Toxins by Immunoaffinity Enrichment and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2010, 82, 2916–2924. [Google Scholar] [CrossRef] [PubMed]
- Dupré, M.; Gilquin, B.; Fenaille, F.; Feraudet-Tarisse, C.; Dano, J.; Ferro, M.; Simon, S.; Junot, C.; Brun, V.; Becher, F. Multiplex Quantification of protein toxins in human biofluids and food matrices using immunoextraction and high-resolution targeted mass spectrometry. Anal. Chem. 2015, 87, 8473–8480. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.I.; Uppal, A.; Gupta, P.; Kamboj, D.V. Multiple-reaction monitoring for multiplex detection of three bacterial toxins using liquid chromatography-tandem mass spectrometry. Lett. Appl. Microbiol. 2017, 64, 217–224. [Google Scholar] [CrossRef]
- Bragg, W.A.; Garrett, A.; Hamelin, E.I.; Coleman, R.M.; Campbell, K.; Elliott, C.T.; Johnson, R.C. Quantitation of saxitoxin in human urine using immunocapture extraction and LC–MS. Bioanalysis 2018, 10, 229–239. [Google Scholar] [CrossRef]
- Collins, A.M.; Jackson, K.J.L. On being the right size: Antibody repertoire formation in the mouse and human. Immunogenetics 2018, 70, 143–158. [Google Scholar] [CrossRef]
- Muyldermans, S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef] [Green Version]
- Slocik, J.M.; Kim, S.N.; Auvil, T.; Goldman, E.R.; Liu, J.; Naik, R.R. Single domain antibody templated nanoparticle resistors for sensing. Biosens. Bioelectron. 2010, 25, 1908–1913. [Google Scholar] [CrossRef]
- Anderson, G.P.; Matney, R.; Liu, J.L.; Hayhurst, A.; Goldman, E.R. Multiplexed fluid array screening of phage displayed anti-ricin single domain antibodies for rapid assessment of specificity. BioTechniques 2007, 43, 806–811. [Google Scholar] [CrossRef] [Green Version]
- Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 1971, 8, 871–874. [Google Scholar] [CrossRef]
- Nagel, B.; Dellweg, H.; Gierasch, L.M. Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992). Pure Appl. Chem. 1992, 64, 143–168. [Google Scholar] [CrossRef] [Green Version]
- Takkinen, K.; Žvirblienė, A. Recent advances in homogenous immunoassays based on resonance energy transfer. Curr. Opin. Biotechnol. 2019, 55, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, C.; Ruff, D.; Kirvell, S.; Johnson, G.; Dhillon, H.S.; Bustin, S.A. Proximity assays for sensitive quantification of proteins. Biomol. Detect. Quantif. 2015, 4, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutenber, E.; Katzin, B.J.; Ernst, S.; Collins, E.J.; Mlsna, D.; Ready, M.P.; Robertus, J.D. Crystallographic refinement of ricin to 2.5 Å. Proteins Struct. Funct. Bioinforma. 1991, 10, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Dietrich, R.; Didier, A.; Doyscher, D.; Märtlbauer, E. Recent developments in antibody-based assays for the detection of bacterial toxins. Toxins 2014, 6, 1325–1348. [Google Scholar] [CrossRef] [Green Version]
- Walper, S.A.; Lasarte Aragonés, G.; Sapsford, K.E.; Brown, C.W.; Rowland, C.E.; Breger, J.C.; Medintz, I.L. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens. 2018, 3, 1894–2024. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Stanzel, M.; Gumbrecht, W.; Humenik, M.; Sprinzl, M. Esterase 2-oligodeoxynucleotide conjugates as sensitive reporter for electrochemical detection of nucleic acid hybridization. Biosens. Bioelectron. 2007, 22, 1798–1806. [Google Scholar] [CrossRef]
- Pöhlmann, C.; Wang, Y.; Humenik, M.; Heidenreich, B.; Gareis, M.; Sprinzl, M. Rapid, specific and sensitive electrochemical detection of foodborne bacteria. Biosens. Bioelectron. 2009, 24, 2766–2771. [Google Scholar] [CrossRef]
- Ojeda, I.; Moreno-Guzmán, M.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical magnetoimmunosensor for the ultrasensitive determination of interleukin-6 in saliva and urine using poly-HRP streptavidin conjugates as labels for signal amplification. Anal. Bioanal. Chem. 2014, 406, 6363–6371. [Google Scholar] [CrossRef]
- Pöhlmann, C.; Humenik, M.; Sprinzl, M. Detection of bacterial 16S rRNA using multivalent dendrimer-reporter enzyme conjugates. Biosens. Bioelectron. 2009, 24, 3383–3386. [Google Scholar] [CrossRef]
- Xianyu, Y.; Wu, J.; Chen, Y.; Zheng, W.; Xie, M.; Jiang, X. Controllable Assembly of Enzymes for Multiplexed Lab-on-a-Chip Bioassays with a Tunable Detection Range. Angew. Chem. Int. Ed Engl. 2018, 57, 7503–7507. [Google Scholar] [CrossRef] [PubMed]
- Adler, M.; Wacker, R.; Niemeyer, C.M. Sensitivity by combination: Immuno-PCR and related technologies. Analyst 2008, 133, 702–718. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Zhu, L.; Xu, W. Novel immuno-nucleic acid cooperative detection technology for food safety. Food Agric. Immunol. 2020, 31, 789–802. [Google Scholar] [CrossRef]
- He, X.; Mcmahon, S.; Mckeon, T.A.; Brandon, D.L. Development of a Novel Immuno-PCR Assay for Detection of Ricin in Ground Beef, Liquid Chicken Egg, and Milk. J. Food Prot. 2010, 73, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; von Eiff, C.; Kuczius, T.; Omoe, K.; Peters, G.; Becker, K. A quantitative real-time immuno-PCR approach for detection of staphylococcal enterotoxins. J. Mol. Med. 2007, 85, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.T.; Xu, L.; Sheng, Z.; He, J.; O’Leary, T.J. Liposome polymerase chain reaction assay for the sub-attomolar detection of cholera toxin and botulinum neurotoxin type A. Nat. Protoc. 2006, 1, 2003–2011. [Google Scholar] [CrossRef]
- Rajkovic, A.; El Moualij, B.; Fikri, Y.; Dierick, K.; Zorzi, W.; Heinen, E.; Uner, A.; Uyttendaele, M. Detection of Clostridium botulinum neurotoxins A and B in milk by ELISA and immuno-PCR at higher sensitivity than mouse bio-assay. Food Anal. Methods 2012, 5, 319–326. [Google Scholar] [CrossRef]
- Babu, D.; Muriana, P.M. Immunomagnetic bead-based recovery and real time quantitative PCR (RT iq-PCR) for sensitive quantification of aflatoxin B1. J. Microbiol. Methods 2011, 86, 188–194. [Google Scholar] [CrossRef]
- Wang, X.; He, Q.; Xu, Y.; Liu, X.; Shu, M.; Tu, Z.; Li, Y.; Wang, W.; Cao, D. Anti-idiotypic VHH phage display-mediated immuno-PCR for ultrasensitive determination of mycotoxin zearalenone in cereals. Talanta 2016, 147, 410–415. [Google Scholar] [CrossRef]
- Chen, Q.; Tian, T.; Xiong, E.; Wang, P.; Zhou, X. CRISPR/Cas13a Signal Amplification Linked Immunosorbent Assay for Femtomolar Protein Detection. Anal. Chem. 2020, 92, 573–577. [Google Scholar] [CrossRef]
- Petryayeva, E.; Algar, W.R.; Medintz, I.L. Quantum Dots in Bioanalysis: A Review of Applications across Various Platforms for Fluorescence Spectroscopy and Imaging. Appl. Spectrosc. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Tu, D.; Zhu, H.; Chen, X. Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 2013, 42, 6924–6958. [Google Scholar] [CrossRef] [PubMed]
- Goldman, E.R.; Clapp, A.R.; Anderson, G.P.; Uyeda, H.T.; Mauro, J.M.; Medintz, I.L.; Mattoussi, H. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 2004, 76, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, X.; Chen, Q.; Yun, Y.; Tang, Z.; Liu, X. Nanobody-Alkaline Phosphatase Fusion Protein-Based Enzyme-Linked Immunosorbent Assay for One-Step Detection of Ochratoxin A in Rice. Sensors 2018, 18, 4044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leva-Bueno, J.; Peyman, S.A.; Millner, P.A. A review on impedimetric immunosensors for pathogen and biomarker detection. Med. Microbiol. Immunol. 2020, 209, 343–362. [Google Scholar] [CrossRef] [Green Version]
- Peeling, R.W.; Holmes, K.K.; Mabey, D.; Ronald, A. Rapid tests for sexually transmitted infections (STIs): The way forward. Sex. Transm. Infect. 2006, 82, 1–6. [Google Scholar] [CrossRef]
- Dincer, C.; Bruch, R.; Kling, A.; Dittrich, P.S.; Urban, G.A. Multiplexed Point-of-Care Testing-xPOCT. Trends Biotechnol. 2017, 35, 728–742. [Google Scholar] [CrossRef] [Green Version]
- WHO. Core and Innovative Technologies. Available online: http://www.who.int/medical_devices/innovation/en/ (accessed on 19 October 2020).
- Dittrich, S.; Tadesse, B.T.; Moussy, F.; Chua, A.; Zorzet, A.; Tängdén, T.; Dolinger, D.L.; Page, A.-L.; Crump, J.A.; D’Acremont, V.; et al. Target Product Profile for a Diagnostic Assay to Differentiate between Bacterial and Non-Bacterial Infections and Reduce Antimicrobial Overuse in Resource-Limited Settings: An Expert Consensus. PLoS ONE 2016, 11, e0161721. [Google Scholar] [CrossRef] [Green Version]
- Gooding, J.J. Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Anal. Chim. Acta 2006, 559, 137–151. [Google Scholar] [CrossRef]
- Mirski, T.; Bartoszcze, M.; Bielawska-Drózd, A.; Cieślik, P.; Michalski, A.J.; Niemcewicz, M.; Kocik, J.; Chomiczewski, K. Review of methods used for identification of biothreat agents in environmental protection and human health aspects. Ann. Agric. Environ. Med. 2014, 21, 224–234. [Google Scholar] [CrossRef]
- Moran, K.L.M.; Fitzgerald, J.; McPartlin, D.A.; Loftus, J.H.; O’Kennedy, R. Chapter 4-Biosensor-Based Technologies for the Detection of Pathogens and Toxins. In Comprehensive Analytical Chemistry; Scognamiglio, V., Rea, G., Arduini, F., Palleschi, G., Eds.; Biosensors for Sustainable Food-New Opportunities and Technical Challenges; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 93–120. Available online: https://www.sciencedirect.com/science/article/pii/S0166526X16300551?via\%3Dihub/ (accessed on 23 November 2020).
- Dorner, B.G.; Zeleny, R.; Harju, K.; Hennekinne, J.-A.; Vanninen, P.; Schimmel, H.; Rummel, A. Biological toxins of potential bioterrorism risk: Current status of detection and identification technology. TrAC Trends Anal. Chem. 2016, 85, 89–102. [Google Scholar] [CrossRef]
- St John, A.; Price, C.P. Existing and Emerging Technologies for Point-of-Care Testing. Clin. Biochem. Rev. 2014, 35, 155–167. [Google Scholar] [PubMed]
- Anfossi, L.; Di Nardo, F.; Cavalera, S.; Giovannoli, C.; Baggiani, C. Multiplex Lateral Flow Immunoassay: An Overview of Strategies towards High-throughput Point-of-Need Testing. Biosensors 2018, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, S.A.; Khanlian, S.A.; Cole, L.A. Detection of early pregnancy forms of human chorionic gonadotropin by home pregnancy test devices. Clin. Chem. 2001, 47, 2131–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, S.; Worbs, S.; Avondet, M.-A.; Tracz, D.M.; Dano, J.; Schmidt, L.; Volland, H.; Dorner, B.G.; Corbett, C.R. Recommended Immunological Assays to Screen for Ricin-Containing Samples. Toxins 2015, 7, 4967–4986. [Google Scholar] [CrossRef] [Green Version]
- Slotved, H.C.; Sparding, N.; Tanassi, J.T.; Steenhard, N.R.; Heegaard, N.H. Evaluating 6 Ricin Field Detection Assays. Biosecur. Bioterror. Biodef. Strategy Pract. Sci. 2014. [Google Scholar] [CrossRef]
- Bartholomew, R.A.; Ozanich, R.M.; Arce, J.S.; Engelmann, H.E.; Heredia-Langner, A.; Hofstad, B.A.; Hutchison, J.R.; Jarman, K.; Melville, A.M.; Victry, K.D.; et al. Evaluation of Immunoassays and General Biological Indicator Tests for Field Screening of Bacillus anthracis and Ricin. Health Secur. 2017, 15, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Lattanzio, V.M.T.; Guarducci, N.; Powers, S.; Ciasca, B.; Pascale, M.; von Holst, C. Validation of a lateral flow immunoassay for the rapid determination of aflatoxins in maize by solvent free extraction. Anal. Methods 2017, 10, 123–130. [Google Scholar] [CrossRef]
- Jawaid, W.; Campbell, K.; Melville, K.; Holmes, S.J.; Rice, J.; Elliott, C.T. Development and Validation of a Novel Lateral Flow Immunoassay (LFIA) for the Rapid Screening of Paralytic Shellfish Toxins (PSTs) from Shellfish Extracts. Anal. Chem. 2015, 87, 5324–5332. [Google Scholar] [CrossRef]
- Komano, A.; Maruko, H.; Sekiguchi, H.; Seto, Y. Detection of saxitoxin in counterterrorism using a commercial lateral flow immunoassay kit. Forensic Toxicol. 2011, 29, 38–43. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Z.; Zhang, Q.; Zhang, W.; Yu, L.; Wang, D.; Li, H.; Li, P. An On-Site Simultaneous Semi-Quantification of Aflatoxin B1, Zearalenone, and T-2 Toxin in Maize- and Cereal-Based Feed via Multicolor Immunochromatographic Assay. Toxins 2018, 10, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khreich, N.; Lamourette, P.; Boutal, H.; Devilliers, K.; Créminon, C.; Volland, H. Detection of Staphylococcus enterotoxin B using fluorescent immunoliposomes as label for immunochromatographic testing. Anal. Biochem. 2008, 377, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Li, N.; Lu, Y.; Cheng, J.; Xu, Y. An enhanced centrifugation-assisted lateral flow immunoassay for the point-of-care detection of protein biomarkers. Lab Chip 2020, 20, 2626–2634. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xiao, R.; Wang, S.; Yang, X.; Bai, Z.; Li, X.; Rong, Z.; Shen, B.; Wang, S. Magnetic quantum dot based lateral flow assay biosensor for multiplex and sensitive detection of protein toxins in food samples. Biosens. Bioelectron. 2019, 146, 111754. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, Y.; Sun, C.; Wang, X.; Wang, X.; Zhang, P.; Qiu, J.; Yang, R.; Zhou, L. Rapid detection of abrin in foods with an up-converting phosphor technology-based lateral flow assay. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Climent, E.; Biyikal, M.; Gröninger, D.; Weller, M.G.; Martínez-Máñez, R.; Rurack, K. Multiplexed Detection of Analytes on Single Test Strips with Antibody-Gated Indicator-Releasing Mesoporous Nanoparticles. Angew. Chem. Int. Ed. 2020. [Google Scholar] [CrossRef]
- Hwang, J.; Lee, S.; Choo, J. Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B. Nanoscale 2016, 8, 11418–11425. [Google Scholar] [CrossRef]
- Zangheri, M.; Cevenini, L.; Anfossi, L.; Baggiani, C.; Simoni, P.; Di Nardo, F.; Roda, A. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens. Bioelectron. 2015, 64, 63–68. [Google Scholar] [CrossRef]
- Li, N.-S.; Chen, Y.-T.; Hsu, Y.-P.; Pang, H.-H.; Huang, C.-Y.; Shiue, Y.-L.; Wei, K.-C.; Yang, H.-W. Mobile healthcare system based on the combination of a lateral flow pad and smartphone for rapid detection of uric acid in whole blood. Biosens. Bioelectron. 2020, 164, 112309. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, T.; Wang, W.; Wen, Y.; Li, K.; Qian, L.; Zhang, X.; Liu, G. Lateral flow biosensors based on the use of micro- and nanomaterials: A review on recent developments. Microchim. Acta 2019, 187, 70. [Google Scholar] [CrossRef]
- Tang, X.; Li, P.; Zhang, Q.; Zhang, Z.; Zhang, W.; Jiang, J. Time-Resolved Fluorescence Immunochromatographic Assay Developed Using Two Idiotypic Nanobodies for Rapid, Quantitative, and Simultaneous Detection of Aflatoxin and Zearalenone in Maize and Its Products. Anal. Chem. 2017, 89, 11520–11528. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Fan, M.-T.; Liang, Y.; Liu, X.-J. Application of Anti-idiotype Antibody in Small Molecules Immunoassay. Chin. J. Anal. Chem. 2010, 38, 1366–1370. [Google Scholar] [CrossRef]
- Jerne, N.K. Towards a network theory of the immune system. Ann. Immunol. 1974, 125, 373–389. [Google Scholar]
- Féraudet-Tarisse, C.; Mazuet, C.; Pauillac, S.; Krüger, M.; Lacroux, C.; Popoff, M.R.; Dorner, B.G.; Andréoletti, O.; Plaisance, M.; Volland, H.; et al. Highly sensitive sandwich immunoassay and immunochromatographic test for the detection of Clostridial epsilon toxin in complex matrices. PLoS ONE 2017, 12, e0181013. [Google Scholar] [CrossRef] [PubMed]
- Garber, E.A.E.; Venkateswaran, K.V.; O’Brien, T.W. Simultaneous Multiplex Detection and Confirmation of the Proteinaceous Toxins Abrin, Ricin, Botulinum Toxins, and Staphylococcus Enterotoxins A, B, and C in Food. J. Agric. Food Chem. 2010, 58, 6600–6607. [Google Scholar] [CrossRef] [PubMed]
- Shriver-Lake, L.C.; Liu, J.L.; Brozozog Lee, P.A.; Goldman, E.R.; Dietrich, R.; Märtlbauer, E.; Anderson, G.P. Integrating scFv into xMAP Assays for the Detection of Marine Toxins. Toxins 2016, 8, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bickman, S.R.; Campbell, K.; Elliott, C.; Murphy, C.; O’Kennedy, R.; Papst, P.; Lochhead, M.J. An Innovative Portable Biosensor System for the Rapid Detection of Freshwater Cyanobacterial Algal Bloom Toxins. Environ. Sci. Technol. 2018, 52, 11691–11698. [Google Scholar] [CrossRef] [Green Version]
- McNamee, S.E.; Elliott, C.T.; Greer, B.; Lochhead, M.; Campbell, K. Development of a Planar Waveguide Microarray for the Monitoring and Early Detection of Five Harmful Algal Toxins in Water and Cultures. Environ. Sci. Technol. 2014, 48, 13340–13349. [Google Scholar] [CrossRef]
- Reverté, L.; Campàs, M.; Yakes, B.J.; Deeds, J.R.; Katikou, P.; Kawatsu, K.; Lochhead, M.; Elliott, C.T.; Campbell, K. Tetrodotoxin detection in puffer fish by a sensitive planar waveguide immunosensor. Sens. Actuators B Chem. 2017, 253, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Brandon, D.L.; Korn, A.M.; Yang, L.L. Immunosorbent analysis of ricin contamination in milk using colorimetric, chemiluminescent and electrochemiluminescent detection. Food Agric. Immunol. 2014, 25, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Garber, E.A.E.; Walker, J.L.; O’Brien, T.W. Detection of Abrin in Food Using Enzyme-Linked Immunosorbent Assay and Electrochemiluminescence Technologies. J. Food Prot. 2008, 71, 1868–1874. [Google Scholar] [CrossRef] [PubMed]
- Biosensor Library. Rapid Pathogen Testing from PathSensors. Available online: https://pathsensors.com/technology/biosensors/library-of-biosensors/ (accessed on 2 October 2020).
- Anderson, G.P.; King, K.D.; Gaffney, K.L.; Johnson, L.H. Multi-analyte interrogation using the fiber optic biosensor. Biosens. Bioelectron. 2000, 14, 771–777. [Google Scholar] [CrossRef]
- Pöhlmann, C.; Elßner, T. Field-Based Multiplex Detection of Biothreat Agents. In Enhancing CBRNE Safety & Security: Proceedings of the SICC 2017 Conference; Malizia, A., D’Arienzo, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 31–39. [Google Scholar]
- Pöhlmann, C.; Bellanger, L.; Drevinek, M.; Elßner, T. Multiplex Detection of Biothreat Agents Using an Automated Electrochemical ELISA Platform. Procedia Technol. 2017, 27, 104–105. [Google Scholar] [CrossRef]
- Schulz, K.; Pöhlmann, C.; Dietrich, R.; Märtlbauer, E.; Elßner, T. An Electrochemical Fiveplex Biochip Assay Based on Anti-Idiotypic Antibodies for Fast On-Site Detection of Bioterrorism Relevant Low Molecular Weight Toxins. Toxins 2019, 11, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauly, D.; Kirchner, S.; Stoermann, B.; Schreiber, T.; Kaulfuss, S.; Schade, R.; Zbinden, R.; Avondet, M.-A.; Dorner, M.B.; Dorner, B.G. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst 2009, 134, 2028–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rich, R.L.; Myszka, D.G. Survey of the year 2006 commercial optical biosensor literature. J. Mol. Recognit. 2007, 20, 300–366. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Segarra-Fas, A.; Peters, J.; Zuilhof, H.; van Beek, T.A.; Nielen, M.W.F. Multiplex surface plasmon resonance biosensing and its transferability towards imaging nanoplasmonics for detection of mycotoxins in barley. Analyst 2016, 141, 1307–1318. [Google Scholar] [CrossRef]
- Campbell, K.; McGrath, T.; Sjölander, S.; Hanson, T.; Tidare, M.; Jansson, Ö.; Moberg, A.; Mooney, M.; Elliott, C.; Buijs, J. Use of a novel micro-fluidic device to create arrays for multiplex analysis of large and small molecular weight compounds by surface plasmon resonance. Biosens. Bioelectron. 2011, 26, 3029–3036. [Google Scholar] [CrossRef]
- McNamee, S.E.; Elliott, C.T.; Delahaut, P.; Campbell, K. Multiplex biotoxin surface plasmon resonance method for marine biotoxins in algal and seawater samples. Environ. Sci. Pollut. Res. 2013, 20, 6794–6807. [Google Scholar] [CrossRef]
- Hodnik, V.; Anderluh, G. Toxin Detection by Surface Plasmon Resonance. Sensors 2009, 9, 1339–1354. [Google Scholar] [CrossRef]
- Vilariño, N.; Louzao, M.C.; Fraga, M.; Rodríguez, L.P.; Botana, L.M. Innovative detection methods for aquatic algal toxins and their presence in the food chain. Anal. Bioanal. Chem. 2013, 405, 7719–7732. [Google Scholar] [CrossRef] [PubMed]
- Feltis, B.N.; Sexton, B.A.; Glenn, F.L.; Best, M.J.; Wilkins, M.; Davis, T.J. A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens. Bioelectron. 2008, 23, 1131–1136. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.; Leong, C.; Loke, W.K.; Dogovski, C.; Liu, C.-Q. Surface plasmon resonance detection of ricin and horticultural ricin variants in environmental samples. Toxicon 2008, 52, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Datar, R.; Kim, S.; Jeon, S.; Hesketh, P.; Manalis, S.; Boisen, A.; Thundat, T. Cantilever Sensors: Nanomechanical Tools for Diagnostics. MRS Bull. 2009, 34, 449–454. [Google Scholar] [CrossRef]
- Ricciardi, C.; Castagna, R.; Ferrante, I.; Frascella, F.; Luigi Marasso, S.; Ricci, A.; Canavese, G.; Lorè, A.; Prelle, A.; Gullino, M.L.; et al. Development of a microcantilever-based immunosensing method for mycotoxin detection. Biosens. Bioelectron. 2013, 40, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.A.; Medina, M.B.; Mutharasan, R. Detection of Staphylococcus enterotoxin B at picogram levels using piezoelectric-excited millimeter-sized cantilever sensors. Sens. Actuators B Chem. 2007, 126, 354–360. [Google Scholar] [CrossRef]
- Ligler, F.S.; Gooding, J.J. Lighting up Biosensors: Now and the Decade to Come. Anal. Chem. 2019, 91, 8732–8738. [Google Scholar] [CrossRef] [PubMed]
- Barfidokht, A.; Gooding, J.J. Approaches toward allowing electroanalytical devices to be used in biological fluids. Electroanalysis 2014, 26, 1182–1196. [Google Scholar] [CrossRef]
- Huelseweh, B.; Ehricht, R.; Marschall, H.-J. A simple and rapid protein array based method for the simultaneous detection of biowarfare agents. Proteomics 2006, 6, 2972–2981. [Google Scholar] [CrossRef]
- Baudry, J.; Rouzeau, C.; Goubault, C.; Robic, C.; Cohen-Tannoudji, L.; Koenig, A.; Bertrand, E.; Bibette, J. Acceleration of the recognition rate between grafted ligands and receptors with magnetic forces. Proc. Natl. Acad. Sci. USA 2006, 103, 16076–16078. [Google Scholar] [CrossRef] [Green Version]
- Ramiandrisoa, D.; Brient-Litzler, E.; Daynes, A.; Compain, E.; Bibette, J.; Baudry, J. Optical protein detection based on magnetic clusters rotation. New Biotechnol. 2015, 32, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Jenko, K.L.; Zhang, Y.; Kostenko, Y.; Fan, Y.; Garcia-Rodriguez, C.; Lou, J.; Marks, J.D.; Varnum, S.M. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins. Analyst 2014, 139, 5093–5102. [Google Scholar] [CrossRef] [PubMed]
- Peruski, A.H.; Johnson, L.H.; Peruski, L.F. Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assays. J. Immunol. Methods 2002, 263, 35–41. [Google Scholar] [CrossRef]
- Weingart, O.G.; Gao, H.; Crevoisier, F.; Heitger, F.; Avondet, M.-A.; Sigrist, H. A Bioanalytical Platform for Simultaneous Detection and Quantification of Biological Toxins. Sensors 2012, 12, 2324–2339. [Google Scholar] [CrossRef] [PubMed]
- Ligler, F.S.; Sapsford, K.E.; Golden, J.P.; Shriver-Lake, L.C.; Taitt, C.R.; Dyer, M.A.; Barone, S.; Myatt, C.J. The Array Biosensor: Portable, Automated Systems. Anal. Sci. 2007, 23, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Taitt, C.R.; Shriver-Lake, L.C.; Ngundi, M.M.; Ligler, F.S. Array Biosensor for Toxin Detection: Continued Advances. Sensors 2008, 8, 8361–8377. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.C.; Saaski, E.W.; McCrae, D.A.; Lingerfelt, B.M.; Anderson, G.P. RAPTOR: A fluoroimmunoassay-based fiber optic sensor for detection of biological threats. IEEE Sens. J. 2003, 3, 352–360. [Google Scholar] [CrossRef]
- Ogert, R.A.; Edward Brown, J.; Singh, B.R.; Shriver-Lake, L.C.; Ligler, F.S. Detection of Clostridium botulinum toxin A using a fiber optic-based biosensor. Anal. Biochem. 1992, 205, 306–312. [Google Scholar] [CrossRef]
- Anderson, G.P.; Jacoby, M.A.; Ligler, F.S.; King, K.D. Effectiveness of protein A for antibody immobilization for a fiber optic biosensor. Biosens. Bioelectron. 1997, 12, 329–336. [Google Scholar] [CrossRef]
- Meagher, R.J.; Hatch, A.V.; Renzi, R.F.; Singh, A.K. An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab. Chip 2008, 8, 2046–2053. [Google Scholar] [CrossRef]
- Soares, R.R.G.; Santos, D.R.; Pinto, I.F.; Azevedo, A.M.; Aires-Barros, M.R.; Chu, V.; Conde, J.P. Multiplexed microfluidic fluorescence immunoassay with photodiode array signal acquisition for sub-minute and point-of-need detection of mycotoxins. Lab. Chip 2018, 18, 1569–1580. [Google Scholar] [CrossRef] [PubMed]
- Reslova, N.; Michna, V.; Kasny, M.; Mikel, P.; Kralik, P. xMAP Technology: Applications in Detection of Pathogens. Front. Microbiol. 2017, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Von Berg, L.; Stern, D.; Pauly, D.; Mahrhold, S.; Weisemann, J.; Jentsch, L.; Hansbauer, E.-M.; Müller, C.; Avondet, M.A.; Rummel, A.; et al. Functional detection of botulinum neurotoxin serotypes A to F by monoclonal neoepitope-specific antibodies and suspension array technology. Sci. Rep. 2019, 9, 5531. [Google Scholar] [CrossRef] [Green Version]
- Simonova, M.A.; Valyakina, T.I.; Petrova, E.E.; Komaleva, R.L.; Shoshina, N.S.; Samokhvalova, L.V.; Lakhtina, O.E.; Osipov, I.V.; Philipenko, G.N.; Singov, E.K.; et al. Development of xMAP Assay for Detection of Six Protein Toxins. Anal. Chem. 2012, 84, 6326–6330. [Google Scholar] [CrossRef] [PubMed]
- Simonova, M.A.; Petrova, E.E.; Dmitrenko, O.A.; Komaleva, R.L.; Shoshina, N.S.; Samokhvalova, L.V.; Valyakina, T.I.; Grishin, E.V. xMAP-based analysis of three most prevalent staphylococcal toxins in Staphylococcus aureus cultures. Anal. Bioanal. Chem. 2014, 406, 6447–6452. [Google Scholar] [CrossRef]
- Hindson, B.J.; Brown, S.B.; Marshall, G.D.; McBride, M.T.; Makarewicz, A.J.; Gutierrez, D.M.; Wolcott, D.K.; Metz, T.R.; Madabhushi, R.S.; Dzenitis, J.M.; et al. Development of an Automated Sample Preparation Module for Environmental Monitoring of Biowarfare Agents. Anal. Chem. 2004, 76, 3492–3497. [Google Scholar] [CrossRef]
- Kim, J.S.; Anderson, G.P.; Erickson, J.S.; Golden, J.P.; Nasir, M.; Ligler, F.S. Multiplexed Detection of Bacteria and Toxins Using a Microflow Cytometer. Anal. Chem. 2009, 81, 5426–5432. [Google Scholar] [CrossRef] [Green Version]
- Shriver-Lake, L.C.; Golden, J.; Bracaglia, L.; Ligler, F.S. Simultaneous assay for ten bacteria and toxins in spiked clinical samples using a microflow cytometer. Anal. Bioanal. Chem. 2013, 405, 5611–5614. [Google Scholar] [CrossRef]
- Higgins, J.A.; Ibrahim, M.S.; Knauert, F.K.; Ludwig, G.V.; Kijek, T.M.; Ezzell, J.W.; Courtney, B.C.; Henchal, E.A. Sensitive and Rapid Identification of Biological Threat Agents. Ann. N. Y. Acad. Sci. 1999, 894, 130–148. [Google Scholar] [CrossRef]
- Sachdeva, A.; Singh, A.K.; Sharma, S.K. An electrochemiluminescence assay for the detection of bio threat agents in selected food matrices and in the screening of Clostridium botulinum outbreak strains associated with type A botulism. J. Sci. Food Agric. 2014, 94, 707–712. [Google Scholar] [CrossRef]
- Szkola, A.; Linares, E.M.; Worbs, S.; Dorner, B.G.; Dietrich, R.; Märtlbauer, E.; Niessner, R.; Seidel, M. Rapid and simultaneous detection of ricin, staphylococcal enterotoxin B and saxitoxin by chemiluminescence-based microarray immunoassay. Analyst 2014, 139, 5885–5892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, M.; Niessner, R. Chemiluminescence microarrays in analytical chemistry: A critical review. Anal. Bioanal. Chem. 2014, 406, 5589–5612. [Google Scholar] [CrossRef] [PubMed]
- Szkola, A.; Campbell, K.; Elliott, C.T.; Niessner, R.; Seidel, M. Automated, high performance, flow-through chemiluminescence microarray for the multiplexed detection of phycotoxins. Anal. Chim. Acta 2013, 787, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Maley, A.M.; Walt, D.R. Single-molecule measurements in microwells for clinical applications. Crit. Rev. Clin. Lab. Sci. 2020, 57, 270–290. [Google Scholar] [CrossRef] [PubMed]
- Yelleswarapu, V.; Buser, J.R.; Haber, M.; Baron, J.; Inapuri, E.; Issadore, D. Mobile platform for rapid sub–picogram-per-milliliter, multiplexed, digital droplet detection of proteins. Proc. Natl. Acad. Sci. USA 2019, 116, 4489–4495. [Google Scholar] [CrossRef] [Green Version]
- Rider, T.H.; Petrovick, M.S.; Nargi, F.E.; Harper, J.D.; Schwoebel, E.D.; Mathews, R.H.; Blanchard, D.J.; Bortolin, L.T.; Young, A.M.; Chen, J.; et al. A B Cell-Based Sensor for Rapid Identification of Pathogens. Science 2003, 301, 213–215. [Google Scholar] [CrossRef]
- Wen, W.; Yan, X.; Zhu, C.; Du, D.; Lin, Y. Recent Advances in Electrochemical Immunosensors. Anal. Chem. 2017, 89, 138–156. [Google Scholar] [CrossRef]
- Hintsche, R.; Paeschke, M.; Wollenberger, U.; Schnakenberg, U.; Wagner, B.; Lisec, T. Microelectrode arrays and application to biosensing devices. Biosens. Bioelectron. 1994, 9, 697–705. [Google Scholar] [CrossRef]
- Thewes, R.; Hofmann, F.; Frey, A.; Holzapfl, B.; Schienle, M.; Paulus, C.; Schindler, P.; Eckstein, G.; Kassel, C.; Stanzel, M.; et al. Sensor arrays for fully-electronic DNA detection on CMOS. In Proceedings of the 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315), San Francisco, CA, USA, 7 February 2002; Volume 1, pp. 350–473. [Google Scholar]
- Albers, J.; Grunwald, T.; Nebling, E.; Piechotta, G.; Hintsche, R. Electrical biochip technology—A tool for microarrays and continuous monitoring. Anal. Bioanal. Chem. 2003, 377, 521–527. [Google Scholar] [CrossRef]
- Elsholz, B.; Wörl, R.; Blohm, L.; Albers, J.; Feucht, H.; Grunwald, T.; Jürgen, B.; Schweder, T.; Hintsche, R. Automated Detection and Quantitation of Bacterial RNA by Using Electrical Microarrays. Anal. Chem. 2006, 78, 4794–4802. [Google Scholar] [CrossRef]
- Hintsche, R.; Elsholz, B.; Piechotta, G.; Woerl, R.; Schabmueller, C.G.J.; Albers, J.; Dharuman, V.; Nebling, E.; Hanisch, A.; Blohm, L.; et al. Fully Electrical Microarrays. In Perspectives in Bioanalysis; Paleček, E., Scheller, F., Wang, J., Eds.; Electrochemistry of Nucleic Acids and Proteins—Towards Electrochemical Sensors for Genomics and Proteomics; Elsevier: Amsterdam, The Netherlands, 2005; Volume 1, pp. 247–277. [Google Scholar]
- Quiel, A.; Jürgen, B.; Piechotta, G.; Le Foll, A.-P.; Ziebandt, A.-K.; Kohler, C.; Köster, D.; Engelmann, S.; Erck, C.; Hintsche, R.; et al. Electrical protein array chips for the detection of staphylococcal virulence factors. Appl. Microbiol. Biotechnol. 2010, 85, 1619–1627. [Google Scholar] [CrossRef] [PubMed]
- Niwa, O.; Xu, Y.; Halsall, H.B.; Heineman, W.R. Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay. Anal. Chem. 1993, 65, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Worbs, S.; Skiba, M.; Bender, J.; Zeleny, R.; Schimmel, H.; Luginbühl, W.; Dorner, B.G. An International Proficiency Test to Detect, Identify and Quantify Ricin in Complex Matrices. Toxins 2015, 7, 4987–5010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nia, Y.; Rodriguez, M.; Zeleny, R.; Herbin, S.; Auvray, F.; Fiebig, U.; Avondet, M.-A.; Munoz, A.; Hennekinne, J.-A. Organization and ELISA-Based Results of the First Proficiency Testing to Evaluate the Ability of European Union Laboratories to Detect Staphylococcal Enterotoxin Type B (SEB) in Buffer and Milk. Toxins 2016, 8, 268. [Google Scholar] [CrossRef]
- Dill, K.; Montgomery, D.D.; Ghindilis, A.L.; Schwarzkopf, K.R.; Ragsdale, S.R.; Oleinikov, A.V. Immunoassays based on electrochemical detection using microelectrode arrays. Biosens. Bioelectron. 2004, 20, 736–742. [Google Scholar] [CrossRef]
- Kreuzer, M.P.; Pravda, M.; O’Sullivan, C.K.; Guilbault, G.G. Novel electrochemical immunosensors for seafood toxin analysis. Toxicon 2002, 40, 1267–1274. [Google Scholar] [CrossRef]
- Shlyapnikov, Y.M.; Shlyapnikova, E.A.; Simonova, M.A.; Shepelyakovskaya, A.O.; Brovko, F.A.; Komaleva, R.L.; Grishin, E.V.; Morozov, V.N. Rapid Simultaneous Ultrasensitive Immunodetection of Five Bacterial Toxins. Anal. Chem. 2012, 84, 5596–5603. [Google Scholar] [CrossRef]
- Achtsnicht, S.; Neuendorf, C.; Faßbender, T.; Nölke, G.; Offenhäusser, A.; Krause, H.-J.; Schröper, F. Sensitive and rapid detection of cholera toxin subunit B using magnetic frequency mixing detection. PLoS ONE 2019, 14, e0219356. [Google Scholar] [CrossRef]
- Achtsnicht, S.; Pourshahidi, A.M.; Offenhäusser, A.; Krause, H.-J. Multiplex Detection of Different Magnetic Beads Using Frequency Scanning in Magnetic Frequency Mixing Technique. Sensors 2019, 19, 2599. [Google Scholar] [CrossRef] [Green Version]
Toxin | Toxicity (LD50) [µg/kg] | Source | Chemical Structure 1 | Classification |
---|---|---|---|---|
Botulinum neurotoxins (BoNTs) | 0.001 | Bacterium | Proteotoxin | Category A CDC 2 [3]; AG 3 [4] |
Shiga toxin | 0.002 | Bacterium | Proteotoxin | AG [4] |
Tetanus toxin | 0.002 | Bacterium | Proteotoxin | |
Staphylococcal enterotoxin B (SEB) | 0.02 4 | Bacterium | Proteotoxin | Category B CDC [3]; AG [4] |
Diphtheria toxin | 0.1 | Bacterium | Proteotoxin | |
Maitotoxin | 0.1 | Marine dinoflagellate | LMW | |
Palytoxin | 0.15 | Palythoa corals and Ostreopsis dinoflagellates | LMW | |
Ciguatoxin | 0.25 | Marine dinoflagellate | LMW | |
Abrin | 0.7 | Plant | Proteotoxin | AG [4] |
Textilotoxin | 0.6 | Snake venom | LMW | |
Clostridium perfingens toxins | 0.1–5.0 | Bacterium | Proteotoxin | Category B CDC [3]; AG [4] |
Batrachotoxin | 2.0 | Poison arrow frog | LMW | |
Ricin | 3.0 | Plant | Proteotoxin | Category B CDC [3]; AG [4]; OPCW Schedule 1 5 [5] |
α-Conotoxin | 5.0 | Cone snails | LMW | AG [4] |
Taipotoxin | 5.0 | Snake | LMW | |
Tetrodotoxin | 8.0 | Pufferfish | LMW | AG [4] |
α-Tityustoxin | 9.0 | Scorpions | LMW | |
Saxitoxin | 10.0 | Marine dinoflagellate | LMW | AG [4]; OPCW Schedule 1 [5] |
Staphylococcal enterotoxin B (SEB) | 10.0 6 | Bacterium | Proteotoxin | Category B CDC [3]; AG [4] |
Anatoxin-A | 50.0 | Blue-green algae | LMW | |
Microcystins | 50.0 | Blue-green algae | LMW | AG [4] |
Aconitine | 100.0 | Plant | LMW | |
T-2 toxin | 1.210.0 | Fungus | LMW | AG [4] |
For comparison, synthetic substances | ||||
VX | 15.0 | Nerve agent | ||
Soman | 64.0 | Nerve agent | ||
Sarin | 100.0 | Nerve agent |
Feature | Minimal Requirement | Optimal Requirement |
---|---|---|
Scope of the Platform | ||
Intended use case | Multiplex identification of panels of security sensitive toxins | Multiplex identification of proteotoxins and low molecular weight toxins, plus identification of biological warfare agent (BWA)-relevant bacteria, spores and viruses |
Operation site | Mobile laboratory (functioning laboratory with trained personnel, inconsistent electricity supply, limited climate control) | On-site, i.e., in the hot zone (minimally trained staff, no electricity, no climate control, dust) |
User | Trained personnel, i.e., specialized personnel for BWA detection in fire brigades, analytical task forces or military | Minimally trained personnel, i.e., first responders |
Instrument | ||
Instrument design | Single integrated instrument with port(s) for reading one or more multiplex assays (cartridges) for simultaneous detection of multiple security sensitive toxins | |
Size | Small, portable instrument (approx. 50 cm × 50 cm × 25 cm or smaller) | |
Weight | ≤15 kg | ≤4.5 kg |
Power requirements | Local 110–220 AC mains power, plus uninterruptable power supply plus rechargeable battery with 4-h operation | Same, with rechargeable battery (8 h operation) |
Throughput | Up to 8 sample runs per instrument per 8 h day | Up to 40 sample runs per instrument per 8 h day |
Environmental stability-Operating range of platform | Operation at 10–35 °C and up to 90% non-condensing humidity | Operation at 5–45 °C and up to 90% non-condensing humidity |
Biosafety | Closed, self-contained system; easy decontamination of instrument surface as well as possibility for decontamination of whole instrument using formaldehyde or hydrogen peroxide fumigation | |
Training | <2 days training for minimally skilled staff | <1 day training for minimally skilled staff |
Operation |
| |
Calibration | Need for instrument calibration on-site on a yearly basis by minimally trained technician | Self-check alerts operator to instrument errors or warnings; no calibration needed |
Result readout | Qualitative result available to user sufficient to inform responsible person for decision-making | Same, plus quantitative result for each analyte |
Data display | On-instrument or on a separate reading device (mobile phone, tablet PC) with ability to function in various light conditions. Generation of report file with information about sample ID, operator ID, date, location, assay applied etc. | |
Connectivity | USB, integrated Local Area Network (LAN) port, integrated Wi-Fi | Same, plus integrated Bluetooth, multi-band Global System for Mobile Communications (GSM) chipset 2G, 3G, LTE, 5G |
Manufacturing | ISO 9001:2015 compliant | ISO 13485:2016 compliant |
List price of instrument | ≤$50,000 (USD) | ≤$10,000 (USD) |
Assay Cartridge | ||
Analytes | Simultaneous detection of proteotoxins as well as low molecular weight toxins from a single sample using one or more assay cartridges | Simultaneous detection of proteotoxins as well as low molecular weight toxins from a single sample using one universal cartridge; additional analyte detection capabilities preferred (e.g., nucleic acid testing for determination of presence of toxin producing organism) |
Multiplexing capability | Analysis of one sample for the presence of six security relevant toxins at the same time in one or more assay cartridges | Analysis of one sample for the presence of 15 security relevant toxins at the same time in one or more assay cartridges |
Test kit | All materials required for the assay, including assay cartridge, reagents and buffers included in individually packaged test kits | |
Additional third-party consumables | None, except for sample collection and sample preparation | Cartridges contain all required reagents |
Sample type | Ability to accept a wide range of environmental (e.g., soil, dust), food (e.g., milk, water), powder (e.g., bentonite, kaolin) as well as clinical (e.g., serum, whole blood, urine, nasopharyngeal swabs) samples | |
Sample volume | The minimal sample volume required to reach relevant sensitivities (up to 1 mL acceptable) | |
Sample preparation | Minimal sample preparation; no more than 3 steps such as pipetting, filtration or other off-cartridge-based steps acceptable | All sample preparation steps are integrated and performed within the assay cartridge; no precision steps required to be performed by the user |
Limits of detection (LOD) in multiplex format | Achieving LODs in the range of LD50 of the security sensitive toxins | Equivalent (or improved) relative to reference assays |
Specificity—inclusivity | Detection of all congeners of a toxin group or subtypes/ isoforms of a proteotoxin, respectively | |
Specificity—exclusivity | No significant cross-reactivity with closely-related proteins or molecules outside the scope of security sensitive toxins | |
Interfering substances | No interference for an individual analyte or mixtures of analytes because of interfering substances | |
Time to result | <60 min | <20 min |
Internal process controls | Internal process control must be integrated into the assay design | |
Positive/Negative controls | External positive and negative controls are not required for each test but are performed on a regular basis | External positive and negative controls are not required for each test and do not need to be run on a regular basis |
Environmental stability–transportation | No cold chain requirements; stable at 2–45 °C for up to 7 days, can tolerate short term temperature fluctuations from 0–50 °C | No cold chain requirements; stable at 2–45 °C for up to 15 days, can tolerate short term temperature fluctuations from 0–50 °C |
Environmental stability–Operating range | 10–35 °C | 5–45 °C |
Shelf life and storage conditions | 12 months from date of manufacture at up to 25 °C | 18 months from date of manufacture at up to 30 °C |
Manufacturing | ISO 9001:2015 compliant | ISO 13485:2016 compliant |
List price of assay per sample | ≤$50 (USD) | ≤$20 (USD) |
Name | Manufacturer | Detectable Toxin Agents | Multiplexing | Sample Volume [µL] 1 | Read Out | Reader Available |
---|---|---|---|---|---|---|
Pro StripsTM | AdVnt (Phoenix, AZ, USA) | BoNTs (A&B) Ricin SEB | 5 | 600 | visual | Y |
RAIDTM 5 | Alexeter (Wheeling, IN, USA) | BoNTs Ricin SEB | 5 | 400 | visual | Y |
RAIDTM 8 | Alexeter (Wheeling, IN, USA) | BoNTs Ricin SEB | 8 | 800 | visual | Y |
NIDS® 4-Plex | ANP Technologies (Newark, DE, USA) | BoNT/A BoNT/B Ricin SEB | 4 | 120 | visual | Y |
BioThreat Alert® | Tetracore (Rockville, MD, USA) | Abrin BoNTs Ricin SEB | 4 | 150 | visual | Y |
IMASSTM (discontinued) | BBI Detection (Crumlin, UK) | BoNTs Ricin SEB | 8 | 2500 | visual | N |
Prime Alert® | Genprime (Spokane, WA, USA) | BoNTs Ricin SEB | 3 | 250 | visual | N |
Name (Technology) | Multi-Plexing Capacity 1 | Detect-Able Toxin Agents 2 | LOD | Time [min] | Ready-to-Use Kits | Mobile Lab Use | On-Site Use 3 | Ref |
---|---|---|---|---|---|---|---|---|
xMAP technology®, Luminex (Optical bead-based suspension array) | ≤50 4 | Abrin, BoNTs, SEs, ricin, STX (as well as several further toxins) 5 | pg/mL to low/ mid ng/mL 6 | 50 | Y | Y | N | [83,84] |
LightDeck®, MBio® Diagnostics (Planar waveguide microarray) | ≤60 | MC, CYN, NOD; DA, STX; TTX, | Low ng/mL | ~10 | Y | Y | Y | [85,86,87] |
Sector® PR2 1800, Meso Scale Discovery (ECL) | ≤25 | Abrin, BoNTs, SEB, Shiga toxin, Ricin, T-2, STX | pg/mL to low ng/mL | 15–90 | Y | Y | N | [11,88,89] |
CANARY®, PathSensors (Cell-based biosensor) | ≤21 | Abrin BoNT/A Ricin | Low ng/mL | 2–10 | Y | Y | Y | [65,90] |
RAPTORTM, Research Intl. (Optical fiber array) | 4 | Ricin, SEB | Mid ng/mL range | 3–10 | Y | Y | Y | [91] |
pBDi, Bruker Optik GmbH (Electro-chemical biochip) | ≤16 | Abrin, BoNT/A, /B, /C, /D, /E, /F, ricin, SEA, SEB, AFB1, MC, RoA, STX, T-2 | Low ng/mL | 13–20 | Y | Y | Y | [92,93,94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pöhlmann, C.; Elßner, T. Multiplex Immunoassay Techniques for On-Site Detection of Security Sensitive Toxins. Toxins 2020, 12, 727. https://doi.org/10.3390/toxins12110727
Pöhlmann C, Elßner T. Multiplex Immunoassay Techniques for On-Site Detection of Security Sensitive Toxins. Toxins. 2020; 12(11):727. https://doi.org/10.3390/toxins12110727
Chicago/Turabian StylePöhlmann, Christopher, and Thomas Elßner. 2020. "Multiplex Immunoassay Techniques for On-Site Detection of Security Sensitive Toxins" Toxins 12, no. 11: 727. https://doi.org/10.3390/toxins12110727
APA StylePöhlmann, C., & Elßner, T. (2020). Multiplex Immunoassay Techniques for On-Site Detection of Security Sensitive Toxins. Toxins, 12(11), 727. https://doi.org/10.3390/toxins12110727