Mechanism of Action of Botulinum Toxin A in Treatment of Functional Urological Disorders
Abstract
:1. Introduction
2. Mechanism of Action of BoNT-A
3. BoNT-A Treatment in OAB and DO
4. BoNT-A Treatment for DSD in Patients with Spinal Cord Injury
5. BoNT-A Injection for Dysfunctional Voiding (DV) or Bladder Neck Dysfunction (BND)
6. BoNT-A Injection for IC/BPS
7. BoNT-A Injection for BPH
8. Conclusions
Funding
Conflicts of Interest
List of Abbreviations
Ach | acetylcholine |
ATP | adenosine triphosphate |
BND | bladder neck dysfunction |
BoNT | botulinum toxin |
BoNT-A | Botulinum toxin A |
BPH | benign prostatic hyperplasia |
CNS | central nervous system |
DO | detrusor overactivity |
DSD | detrusor-sphincter dyssynergia |
DV | dysfunctional voiding |
IC/BPS | interstitial cystitis/bladder pain syndrome |
IDO | idiopathic detrusor overactivity |
IPSS | international prostate symptom score |
LUTD | lower urinary tract disease |
LUTS | lower urinary tract symptoms |
NDO | neurogenic detrusor overactivity |
NGF | nerve growth factor |
NO | nitric oxide |
OAB | overactive bladder |
P2X | purinergic receptors |
P2X2 | P2X purinoceptor 2 |
P2X3 | P2X purinoceptor 3 |
PKC | protein kinase C |
SCI | spinal cord injury |
SNAP | synaptosomal nerve associated protein |
SNAP-25 | synaptosomal nerve associated protein 25 |
SNAP-23 | synaptosomal nerve associated protein 23 |
SNARE | SNAP receptor |
SV2 | synaptic vesicle protein |
t-SNARE | target membrane SNAP receptor |
TRPV1 | transient receptor potential vanilloid subfamily-1 |
VEGF | vascular endothelial growth factor |
References
- Naumann, M.; Jankovic, J. Safety of botulinum toxin type a: A systematic review and meta-analysis. Curr. Med Res. Opin. 2004, 20, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Fonfria, E.; Maignel, J.; Lezmi, S.; Martin, V.; Splevins, A.; Shubber, S.; Kalinichev, M.; Foster, K.; Picaut, P.; Krupp, J. The expanding therapeutic utility of botulinum neurotoxins. Toxins 2018, 10, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erbguth, F.J. Historical notes on botulism, clostridium botulinum, botulinum toxin, and the idea of the therapeutic use of the toxin. Mov. Disord. Off. J. Mov. Disord. Soc. 2004, 19, S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; et al. Botulinum toxin as a biological weapon: Medical and public health management. JAMA 2001, 285, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.B. Botulinum toxin injection of eye muscles to correct strabismus. Trans. Am. Ophthalmol. Soc. 1981, 79, 734–770. [Google Scholar] [PubMed]
- Charles, P.D. Botulinum neurotoxin serotype a: A clinical update on non-cosmetic uses. Am. J. Health-Syst. Pharm. AJHP Off. J. Am. Soc. Health-Syst. Pharm. 2004, 61, S11–S23. [Google Scholar] [CrossRef]
- Brown, E.A.; Schutz, S.G.; Simpson, D.M. Botulinum toxin for neuropathic pain and spasticity: An overview. Pain Manag. 2014, 4, 129–151. [Google Scholar] [CrossRef]
- Park, J.; Park, H.J. Botulinum toxin for the treatment of neuropathic pain. Toxins 2017, 9, 260. [Google Scholar] [CrossRef] [Green Version]
- Dykstra, D.D.; Sidi, A.A.; Scott, A.B.; Pagel, J.M.; Goldish, G.D. Effects of botulinum a toxin on detrusor-sphincter dyssynergia in spinal cord injury patients. J. Urol. 1988, 139, 919–922. [Google Scholar] [CrossRef]
- Schurch, B.; Stohrer, M.; Kramer, G.; Schmid, D.M.; Gaul, G.; Hauri, D. Botulinum-a toxin for treating detrusor hyperreflexia in spinal cord injured patients: A new alternative to anticholinergic drugs? Preliminary results. J. Urol. 2000, 164, 692–697. [Google Scholar] [CrossRef]
- Schulte-Baukloh, H.; Weiss, C.; Stolze, T.; Sturzebecher, B.; Knispel, H.H. Botulinum-a toxin for treatment of overactive bladder without detrusor overactivity: Urodynamic outcome and patient satisfaction. Urology 2005, 66, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.C. Urodynamic evidence of effectiveness of botulinum A toxin injection in treatment of detrusor overactivity refractory to anticholinergic agents. Urology 2004, 63, 868–872. [Google Scholar] [CrossRef] [PubMed]
- Maria, G.; Brisinda, G.; Civello, I.M.; Bentivoglio, A.R.; Sganga, G.; Albanese, A. Relief by botulinum toxin of voiding dysfunction due to benign prostatic hyperplasia: Results of a randomized, placebo-controlled study. Urology 2003, 62, 259–264. [Google Scholar] [CrossRef]
- Marberger, M.; Chartier-Kastler, E.; Egerdie, B.; Lee, K.S.; Grosse, J.; Bugarin, D.; Zhou, J.; Patel, A.; Haag-Molkenteller, C. A randomized double-blind placebo-controlled phase 2 dose-ranging study of onabotulinumtoxina in men with benign prostatic hyperplasia. Eur. Urol. 2013, 63, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.P.; Radziszewski, P.; Borkowski, A.; Somogyi, G.T.; Boone, T.B.; Chancellor, M.B. Botulinum toxin a has antinociceptive effects in treating interstitial cystitis. Urology 2004, 64, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Jhang, J.F.; Kuo, H.C. Novel treatment of chronic bladder pain syndrome and other pelvic pain disorders by onabotulinumtoxina injection. Toxins 2015, 7, 2232–2250. [Google Scholar] [CrossRef] [Green Version]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef]
- Dong, M.; Yeh, F.; Tepp, W.H.; Dean, C.; Johnson, E.A.; Janz, R.; Chapman, E.R. Sv2 is the protein receptor for botulinum neurotoxin A. Science 2006, 312, 592–596. [Google Scholar] [CrossRef]
- Coelho, A.; Dinis, P.; Pinto, R.; Gorgal, T.; Silva, C.; Silva, A.; Silva, J.; Cruz, C.D.; Cruz, F.; Avelino, A. Distribution of the high-affinity binding site and intracellular target of botulinum toxin type a in the human bladder. Eur. Urol. 2010, 57, 884–890. [Google Scholar] [CrossRef]
- Hanna-Mitchell, A.T.; Wolf-Johnston, A.S.; Barrick, S.R.; Kanai, A.J.; Chancellor, M.B.; de Groat, W.C.; Birder, L.A. Effect of botulinum toxin a on urothelial-release of ATP and expression of snare targets within the urothelium. Neurourol. Urodyn. 2015, 34, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Vaidyanathan, V.V.; Yoshino, K.; Jahnz, M.; Dorries, C.; Bade, S.; Nauenburg, S.; Niemann, H.; Binz, T. Proteolysis of snap-25 isoforms by botulinum neurotoxin types A, C, and E: Domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J. Neurochem. 1999, 72, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Li, G.; Alexander, E.A.; Schwartz, J.H. Role of snap-23 in trafficking of H+-ATPase in cultured inner medullary collecting duct cells. Am. J. Physiol. Cell Physiol. 2001, 280, C775–C781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, Y.H.; Terashima, A.; Petralia, R.S.; Wenthold, R.J.; Isaac, J.T.R.; Roche, K.W.; Roche, P.A. A neuronal role for SNAP-23 in postsynaptic glutamate receptor trafficking. Nat. Neurosci. 2010, 13, 338–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, F. Targets for botulinum toxin in the lower urinary tract. Neurourol. Urodyn. 2014, 33, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.P.; Gangitano, D.A.; Munoz, A.; Salas, N.A.; Boone, T.B.; Aoki, K.R.; Francis, J.; Somogyi, G.T. Botulinum toxin type a normalizes alterations in urothelial atp and no release induced by chronic spinal cord injury. Neurochem. Int. 2008, 52, 1068–1075. [Google Scholar] [CrossRef] [Green Version]
- Chancellor, M.B.; Fowler, C.J.; Apostolidis, A.; de Groat, W.C.; Smith, C.P.; Somogyi, G.T.; Aoki, K.R. Drug insight: Biological effects of botulinum toxin A in the lower urinary tract. Nat. Clin. Pract. Urol. 2008, 5, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Kanai, A.; Zabbarova, I.; Oefelein, M.; Radziszewski, P.; Ikeda, Y.; Andersson, K.E. Mechanisms of action of botulinum neurotoxins, beta3-adrenergic receptor agonists, and pde5 inhibitors in modulating detrusor function in overactive bladders: Ici-rs 2011. Neurourol. Urodyn. 2012, 31, 300–308. [Google Scholar] [CrossRef]
- Schulte-Baukloh, H.; Priefert, J.; Knispel, H.H.; Lawrence, G.W.; Miller, K.; Neuhaus, J. Botulinum toxin a detrusor injections reduce postsynaptic muscular M2, M3, P2X2, and P2X3 receptors in children and adolescents who have neurogenic detrusor overactivity: A single-blind study. Urology 2013, 81, 1052–1057. [Google Scholar] [CrossRef]
- Cockayne, D.A.; Hamilton, S.G.; Zhu, Q.M.; Dunn, P.M.; Zhong, Y.; Novakovic, S.; Malmberg, A.B.; Cain, G.; Berson, A.; Kassotakis, L.; et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in p2x3-deficient mice. Nature 2000, 407, 1011–1015. [Google Scholar] [CrossRef]
- Yiangou, Y.; Facer, P.; Ford, A.; Brady, C.; Wiseman, O.; Fowler, C.J.; Anand, P. Capsaicin receptor VR1 and atp-gated ion channel p2x3 in human urinary bladder. BJU Int. 2001, 87, 774–779. [Google Scholar] [CrossRef]
- Apostolidis, A.; Popat, R.; Yiangou, Y.; Cockayne, D.; Ford, A.P.; Davis, J.B.; Dasgupta, P.; Fowler, C.J.; Anand, P. Decreased sensory receptors p2x3 and trpv1 in suburothelial nerve fibers following intradetrusor injections of botulinum toxin for human detrusor overactivity. J. Urol. 2005, 174, 977–982. [Google Scholar] [CrossRef]
- Rapp, D.E.; Turk, K.W.; Bales, G.T.; Cook, S.P. Botulinum toxin type a inhibits calcitonin gene-related peptide release from isolated rat bladder. J. Urol. 2006, 175, 1138–1142. [Google Scholar] [CrossRef]
- Lucioni, A.; Bales, G.T.; Lotan, T.L.; McGehee, D.S.; Cook, S.P.; Rapp, D.E. Botulinum toxin type a inhibits sensory neuropeptide release in rat bladder models of acute injury and chronic inflammation. BJU Int. 2008, 101, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Camprubi-Robles, M.; Planells-Cases, R.; Ferrer-Montiel, A. Differential contribution of snare-dependent exocytosis to inflammatory potentiation of trpv1 in nociceptors. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2009, 23, 3722–3733. [Google Scholar] [CrossRef]
- Morenilla-Palao, C.; Planells-Cases, R.; Garcia-Sanz, N.; Ferrer-Montiel, A. Regulated exocytosis contributes to protein kinase c potentiation of vanilloid receptor activity. J. Biol. Chem. 2004, 279, 25665–25672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.P.; Vemulakonda, V.M.; Kiss, S.; Boone, T.B.; Somogyi, G.T. Enhanced ATP release from rat bladder urothelium during chronic bladder inflammation: Effect of botulinum toxin a. Neurochem. Int. 2005, 47, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.; Lopes, T.; Silva, J.; Silva, C.; Dinis, P.; Cruz, F. Persistent therapeutic effect of repeated injections of onabotulinum toxin a in refractory bladder pain syndrome/interstitial cystitis. J. Urol. 2013, 189, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.C.; Chancellor, M.B. Comparison of intravesical botulinum toxin type A injections plus hydrodistention with hydrodistention alone for the treatment of refractory interstitial cystitis/painful bladder syndrome. BJU Int. 2009, 104, 657–661. [Google Scholar] [CrossRef]
- Guo, B.L.; Zheng, C.X.; Sui, B.D.; Li, Y.Q.; Wang, Y.Y.; Yang, Y.L. A closer look to botulinum neurotoxin type a-induced analgesia. Toxicon Off. J. Int. Soc. Toxinology 2013, 71, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Vemulakonda, V.M.; Somogyi, G.T.; Kiss, S.; Salas, N.A.; Boone, T.B.; Smith, C.P. Inhibitory effect of intravesically applied botulinum toxin a in chronic bladder inflammation. J. Urol. 2005, 173, 621–624. [Google Scholar] [CrossRef]
- Gorgal, T.; Charrua, A.; Silva, J.F.; Avelino, A.; Dinis, P.; Cruz, F. Expression of apoptosis-regulating genes in the rat prostate following botulinum toxin type A injection. BMC Urol. 2012, 12, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiyama, Y.; Yokoyama, T.; Tomizawa, K.; Okamura, K.; Yamamoto, Y.; Matsui, H.; Oguma, K.; Nagai, A.; Kumon, H. Effects of purified newly developed botulinum neurotoxin type a in rat prostate. Urology 2009, 74, 436–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.; Pinto, R.; Carvallho, T.; Coelho, A.; Avelino, A.; Dinis, P.; Cruz, F. Mechanisms of prostate atrophy after glandular botulinum neurotoxin type a injection: An experimental study in the rat. Eur. Urol. 2009, 56, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C.; Chancellor, M.B. The application of botulinum toxin in the prostate. J. Urol. 2006, 176, 2375–2382. [Google Scholar] [CrossRef]
- Lin, A.T.; Yang, A.H.; Chen, K.K. Effects of botulinum toxin a on the contractile function of dog prostate. Eur. Urol. 2007, 52, 582–589. [Google Scholar] [CrossRef]
- Haylen, B.T.; de Ridder, D.; Freeman, R.M.; Swift, S.E.; Berghmans, B.; Lee, J.; Monga, A.; Petri, E.; Rizk, D.E.; Sand, P.K.; et al. An international urogynecological association (iuga)/international continence society (ics) joint report on the terminology for female pelvic floor dysfunction. Int. Urogynecol. J. 2010, 21, 5–26. [Google Scholar] [CrossRef]
- Lightner, D.J.; Gomelsky, A.; Souter, L.; Vasavada, S.P. Diagnosis and treatment of overactive bladder (non-neurogenic) in adults: Aua/sufu guideline amendment 2019. J. Urol. 2019, 202, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Benner, J.S.; Nichol, M.B.; Rovner, E.S.; Jumadilova, Z.; Alvir, J.; Hussein, M.; Fanning, K.; Trocio, J.N.; Brubaker, L. Patient-reported reasons for discontinuing overactive bladder medication. BJU Int. 2010, 105, 1276–1282. [Google Scholar] [CrossRef]
- Abrams, P.; Cardozo, L.; Fall, M.; Griffiths, D.; Rosier, P.; Ulmsten, U.; van Kerrebroeck, P.; Victor, A.; Wein, A. The standardisation of terminology of lower urinary tract function: Report from the standardisation sub-committee of the international continence society. Neurourol. Urodyn. 2002, 21, 167–178. [Google Scholar] [CrossRef]
- Steers, W.D. Pathophysiology of overactive bladder and urge urinary incontinence. Rev. Urol. 2002, 4, S17–S18. [Google Scholar]
- Birder, L.A.; de Groat, W.C. Mechanisms of disease: Involvement of the urothelium in bladder dysfunction. Nat. Clin. Pract. Urol. 2007, 4, 46–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, G.W.; Aoki, K.R.; Dolly, J.O. Excitatory cholinergic and purinergic signaling in bladder are equally susceptible to botulinum neurotoxin a consistent with co-release of transmitters from efferent fibers. J. Pharmacol. Exp. Ther. 2010, 334, 1080–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khera, M.; Somogyi, G.T.; Kiss, S.; Boone, T.B.; Smith, C.P. Botulinum toxin a inhibits ATP release from bladder urothelium after chronic spinal cord injury. Neurochem. Int. 2004, 45, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Collins, V.M.; Daly, D.M.; Liaskos, M.; McKay, N.G.; Sellers, D.; Chapple, C.; Grundy, D. Onabotulinumtoxina significantly attenuates bladder afferent nerve firing and inhibits ATP release from the urothelium. BJU Int. 2013, 112, 1018–1026. [Google Scholar] [CrossRef] [Green Version]
- Chancellor, M.B.; Kaplan, S.A.; Blaivas, J.G. Detrusor-external sphincter dyssynergia. Ciba Found. Symp. 1990, 151, 195–206. [Google Scholar]
- Kuo, H.C. Satisfaction with urethral injection of botulinum toxin a for detrusor sphincter dyssynergia in patients with spinal cord lesion. Neurourol. Urodyn. 2008, 27, 793–796. [Google Scholar] [CrossRef]
- Huang, M.; Chen, H.; Jiang, C.; Xie, K.; Tang, P.; Ou, R.; Zeng, J.; Liu, Q.; Li, Q.; Huang, J.; et al. Effects of botulinum toxin a injections in spinal cord injury patients with detrusor overactivity and detrusor sphincter dyssynergia. J. Rehabil. Med. 2016, 48, 683–687. [Google Scholar] [CrossRef] [Green Version]
- Osman, N.I.; Chapple, C.R. Fowler’s syndrome—a cause of unexplained urinary retention in young women? Nature reviews. Urology 2014, 11, 87–98. [Google Scholar]
- Carlson, K.V.; Rome, S.; Nitti, V.W. Dysfunctional voiding in women. J. Urol. 2001, 165, 143–147. [Google Scholar] [CrossRef]
- Panicker, J.N.; Seth, J.H.; Khan, S.; Gonzales, G.; Haslam, C.; Kessler, T.M.; Fowler, C.J. Open-label study evaluating outpatient urethral sphincter injections of onabotulinumtoxina to treat women with urinary retention due to a primary disorder of sphincter relaxation (fowler’s syndrome). BJU Int. 2016, 117, 809–813. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.H.; Wang, C.C.; Kuo, H.C. Onabotulinumtoxina urethral sphincter injection as treatment for non-neurogenic voiding dysfunction—A randomized, double-blind, placebo-controlled study. Sci. Rep. 2016, 6, 38905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.H.; Chen, S.F.; Jhang, J.F.; Kuo, H.C. Therapeutic effect of urethral sphincter onabotulinumtoxina injection for urethral sphincter hyperactivity. Neurourol. Urodyn. 2018, 37, 2651–2657. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.C. Videourodynamic characteristics and lower urinary tract symptoms of female bladder outlet obstruction. Urology 2005, 66, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Abbott, J.A.; Jarvis, S.K.; Lyons, S.D.; Thomson, A.; Vancaille, T.G. Botulinum toxin type a for chronic pain and pelvic floor spasm in women: A randomized controlled trial. Obstet. Gynecol. 2006, 108, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Sacco, E.; Tienforti, D.; Bientinesi, R.; D’Addessi, A.; Racioppi, M.; Pinto, F.; Totaro, A.; Vittori, M.; D’Agostino, D.; Bassi, P. Onabotulinumtoxina injection therapy in men with luts due to primary bladder-neck dysfunction: Objective and patient-reported outcomes. Neurourol. Urodyn. 2014, 33, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Keay, S.; Lehrfeld, T.J.; Chai, T.C. Changes in adenosine triphosphate-stimulated ATP release suggest association between cytokine and purinergic signaling in bladder urothelial cells. Urology 2009, 74, 1163–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.L.; Yang, F.; Zhan, H.L.; Feng, Z.Y.; Zhang, Z.G.; Li, W.B.; Zhou, X.F. Increased severity of inflammation correlates with elevated expression of TRPV1 nerve fibers and nerve growth factor on interstitial cystitis/bladder pain syndrome. Urol. Int. 2014, 92, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Marchand, J.; Sant, G.R.; Kream, R.M.; Theoharides, T.C. Increased number of substance p positive nerve fibres in interstitial cystitis. Br. J. Urol. 1995, 75, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Mizumura, K.; Murase, S. Role of nerve growth factor in pain. Handb. Exp. Pharmacol. 2015, 227, 57–77. [Google Scholar] [PubMed]
- Liu, H.T.; Kuo, H.C. Increased urine and serum nerve growth factor levels in interstitial cystitis suggest chronic inflammation is involved in the pathogenesis of disease. PLoS ONE 2012, 7, e44687. [Google Scholar] [CrossRef]
- Apostolidis, A.; Dasgupta, P.; Fowler, C.J. Proposed mechanism for the efficacy of injected botulinum toxin in the treatment of human detrusor overactivity. Eur. Urol. 2006, 49, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Kuo, H.C. Intravesical botulinum toxin a injections plus hydrodistension can reduce nerve growth factor production and control bladder pain in interstitial cystitis. Urology 2007, 70, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Tyagi, P.; Chancellor, M.B.; Kuo, H.C. Urinary nerve growth factor level is increased in patients with interstitial cystitis/bladder pain syndrome and decreased in responders to treatment. BJU Int. 2009, 104, 1476–1481. [Google Scholar] [CrossRef] [PubMed]
- Shie, J.H.; Liu, H.T.; Wang, Y.S.; Kuo, H.C. Immunohistochemical evidence suggests repeated intravesical application of botulinum toxin a injections may improve treatment efficacy of interstitial cystitis/bladder pain syndrome. BJU Int. 2013, 111, 638–646. [Google Scholar] [CrossRef]
- Peng, C.H.; Jhang, J.F.; Shie, J.H.; Kuo, H.C. Down regulation of vascular endothelial growth factor is associated with decreased inflammation after intravesical onabotulinumtoxina injections combined with hydrodistention for patients with interstitial cystitis--clinical results and immunohistochemistry analysis. Urology 2013, 82, e1451–e1456. [Google Scholar]
- Lloyd, G.L.; Marks, J.M.; Ricke, W.A. Benign prostatic hyperplasia and lower urinary tract symptoms: What is the role and significance of inflammation? Curr. Urol. Rep. 2019, 20, 54. [Google Scholar] [CrossRef]
- White, C.W.; Xie, J.H.; Ventura, S. Age-related changes in the innervation of the prostate gland: Implications for prostate cancer initiation and progression. Organogenesis 2013, 9, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Antunes, A.A.; Srougi, M.; Coelho, R.F.; de Campos Freire, G. Botulinum toxin for the treatment of lower urinary tract symptoms due to benign prostatic hyperplasia. Nat. Clin. Pract. Urol. 2007, 4, 155–160. [Google Scholar] [CrossRef]
- Rusnack, S.R.; Kaplan, S.A. The use of botulinum toxin in men with benign prostatic hyperplasia. Rev. Urol. 2005, 7, 234–236. [Google Scholar]
- Sacco, E.; Bientinesi, R.; Marangi, F.; Totaro, A.; D’Addessi, A.; Racioppi, M.; Pinto, F.; Vittori, M.; Bassi, P. Patient-reported outcomes in men with lower urinary tract symptoms (luts) due to benign prostatic hyperplasia (bph) treated with intraprostatic onabotulinumtoxina: 3-month results of a prospective single-armed cohort study. BJU Int. 2012, 110, E837–E844. [Google Scholar] [CrossRef] [Green Version]
- Hamidi Madani, A.; Enshaei, A.; Heidarzadeh, A.; Mokhtari, G.; Farzan, A.; Mohiti Asli, M.; Esmaeili, S. Transurethral intraprostatic botulinum toxin-A injection: A novel treatment for bph refractory to current medical therapy in poor surgical candidates. World J. Urol. 2013, 31, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Tyagi, P.; Chuang, Y.C. Promise and the pharmacological mechanism of botulinum toxin A in chronic prostatitis syndrome. Toxins 2019, 11, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-H.; Chiang, B.-J.; Liao, C.-H. Mechanism of Action of Botulinum Toxin A in Treatment of Functional Urological Disorders. Toxins 2020, 12, 129. https://doi.org/10.3390/toxins12020129
Lin Y-H, Chiang B-J, Liao C-H. Mechanism of Action of Botulinum Toxin A in Treatment of Functional Urological Disorders. Toxins. 2020; 12(2):129. https://doi.org/10.3390/toxins12020129
Chicago/Turabian StyleLin, Yu-Hua, Bing-Juin Chiang, and Chun-Hou Liao. 2020. "Mechanism of Action of Botulinum Toxin A in Treatment of Functional Urological Disorders" Toxins 12, no. 2: 129. https://doi.org/10.3390/toxins12020129
APA StyleLin, Y. -H., Chiang, B. -J., & Liao, C. -H. (2020). Mechanism of Action of Botulinum Toxin A in Treatment of Functional Urological Disorders. Toxins, 12(2), 129. https://doi.org/10.3390/toxins12020129