Composite Uremic Load and Physical Performance in Hemodialysis Patients: A Cross-Sectional Study
Abstract
:1. Introduction
2. Results
2.1. Baseline Data and Demographics
2.2. Uremic Load and Physical Performance
2.3. Individual Uremic Toxins and Physical Performance
2.4. Uremic Load and Prognosis as Based on a Functional Parameter
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Participants and Study Design
5.2. Physical Performance
5.3. Uremic Toxins
5.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vanholder, R.; Van Biesen, W.; Lameire, N. A swan song for Kt/Vurea. Semin. Dial. 2019, 32, 424–437. [Google Scholar] [CrossRef] [PubMed]
- Eloot, S.; Van Biesen, W.; Roels, S.; Delrue, W.; Schepers, E.; Dhondt, A.; Vanholder, R.; Glorieux, G. Spontaneous variability of pre-dialysis concentrations of uremic toxins over time in stable hemodialysis patients. PLoS ONE 2017, 12, e0186010. [Google Scholar] [CrossRef] [PubMed]
- Eloot, S.; Torremans, A.; De Smet, R.; Marescau, B.; De Wachter, D.; De Deyn, P.P.; Lameire, N.; Verdonck, P.; Vanholder, R. Kinetic behavior of urea is different from that of other water-soluble compounds: The case of the guanidino compounds. Kidney Int. 2005, 67, 1566–1575. [Google Scholar] [CrossRef] [Green Version]
- Steyaert, S.; Holvoet, E.; Nagler, E.; Malfait, S.; Van Biesen, W. Reporting of “dialysis adequacy” as an outcome in randomised trials conducted in adults on haemodialysis. PLoS ONE 2019, 14, e0207045. [Google Scholar] [CrossRef] [PubMed]
- Tong, A.; Craig, J.C.; Nagler, E.V.; Biesen, W.V. Composing a new song for trials: The Standardized Outcomes in Nephrology (SONG) initiative. Nephrol. Dial. Transplant. 2017, 32, 1963–1966. [Google Scholar] [CrossRef]
- Torino, C.; Manfredini, F.; Bolignano, D.; Aucella, F.; Baggetta, R.; Barillà, A.; Battaglia, Y.; Bertoli, S.V.; Bonanno, G.; Castellino, P.; et al. Physical Performance and Clinical Outcomes in Dialysis Patients: A Secondary Analysis of the Excite Trial. Kidney Blood Press. Res. 2014, 39, 205–211. [Google Scholar] [CrossRef]
- Walker, H.K.; Hall, W.D.; Hurst, J.W. (Eds.) Clinical Methods: The History, Physical, and Laboratory Examinations; Butterworth: Boston, MA, USA, 1990. [Google Scholar]
- Vanholder, R.; Pletinck, A.; Schepers, E.; Glorieux, G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins 2018, 10, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajek, M.; Jerman, A.; Osredkar, J.; Ponikvar, J.B.; Pajek, J. Association of Uremic Toxins and Inflammatory Markers with Physical Performance in Dialysis Patients. Toxins 2018, 10, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meijers, B.; Bammens, B.; De Moor, B.; Verbeke, K.; Vanrenterghem, Y.; Evenepoel, P. Free p-cresol is associated with cardiovascular disease in hemodialysis patients. Kidney Int. 2008, 73, 1174–1180. [Google Scholar] [CrossRef] [Green Version]
- Schepers, E.; Meert, N.; Glorieux, G.; Goeman, J.; Van Der Eycken, J.; Vanholder, R. P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol. Dial. Transplant. 2006, 22, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-P.; Lu, L.-F.; Yu, T.-H.; Hung, W.-C.; Chiu, C.-A.; Chung, F.-M.; Yeh, L.-R.; Chen, H.-J.; Lee, Y.-J.; Houng, J.-Y. Serum levels of total p-cresylsulphate are associated with angiographic coronary atherosclerosis severity in stable angina patients with early stage of renal failure. Atherosclerosis 2010, 211, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Sallée, M.; Cerini, C.; Poitevin, S.; Gondouin, B.; Jourde-Chiche, N.; Fallague, K.; Brunet, P.; Calaf, R.; Dussol, B.; et al. The Cardiovascular Effect of the Uremic Solute Indole-3 Acetic Acid. J. Am. Soc. Nephrol. 2014, 26, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Claro, L.M.; Moreno-Amaral, A.N.; Gadotti, A.C.; Dolenga, C.J.; Nakao, L.S.; Azevedo, M.L.; De Noronha, L.; Olandoski, M.; De Moraes, T.P.; Stinghen, A.E.; et al. The Impact of Uremic Toxicity Induced Inflammatory Response on the Cardiovascular Burden in Chronic Kidney Disease. Toxins 2018, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Fujii, H.; Goto, S.; Fukagawa, M. Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction. Toxins 2018, 10, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costigan, M.G.; A Callaghan, C.; E Lindup, W. Hypothesis: Is accumulation of a furan dicarboxylic acid (3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid) related to the neurological abnormalities in patients with renal failure? Nephron 1996, 73. [Google Scholar] [CrossRef]
- Luce, M.; Bouchara, A.; Pastural-Thaunat, M.; Granjon, S.; Szelag, J.C.; Laville, M.; Arkouche, W.; Fouque, D.; Soulage, C.O.; Laetitia, K. Is 3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) a Clinically Relevant Uremic Toxin in Haemodialysis Patients? Toxins 2018, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.-J.; Yoon, Y.; Lee, K.-Y.; Hien, T.T.; Kang, K.-W.; Kim, K.-C.; Lee, J.; Lee, M.-Y.; Lee, S.M.; Kang, D.-H.; et al. Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB J. 2014, 28, 3197–3204. [Google Scholar] [CrossRef]
- Glorieux, G.; Tattersall, J. Uraemic toxins and new methods to control their accumulation: Game changers for the concept of dialysis adequacy. Clin. Kidney J. 2015, 8, 353–362. [Google Scholar] [CrossRef]
- Brunelli, S.M.; Chertow, G.M.; Ankers, E.D.; Lowrie, E.G.; Thadhani, R. Shorter dialysis times are associated with higher mortality among incident hemodialysis patients. Kidney Int. 2010, 77, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, F.; Canaud, B. Dialysis adequacy today: A European perspective. Nephrol. Dial. Transplant. 2012, 27, 3043–3048. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, E.; Reboredo, M.; Gomes, E.; Teixeira, D.; Roberti, N.; Mendes, J.; Oliveira, J.; Sanders-Pinheiro, H.; Pinheiro, B. Physical Activity in Daily Life Assessed by an Accelerometer in Kidney Transplant Recipients and Hemodialysis Patients. Transplant. Proc. 2014, 46, 1713–1717. [Google Scholar] [CrossRef] [Green Version]
- Van Craenenbroeck, A.; Van Craenenbroeck, E.M.; Kouidi, E.; Vrints, C.J.; Couttenye, M.; Conraads, V.M. Vascular Effects of Exercise Training in CKD: Current Evidence and Pathophysiological Mechanisms. Clin. J. Am. Soc. Nephrol. 2014, 9, 1305–1318. [Google Scholar] [CrossRef] [Green Version]
- Zelle, D.M.; Corpeleijn, E.; Stolk, R.; De Greef, M.H.; Gans, R.O.; Van Der Heide, J.J.H.; Navis, G.; Bakker, S.J. Low physical activity and risk of cardiovascular and all-cause mortality in renal transplant recipients. Clin. J. Am. Soc. Nephrol. 2011, 6, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Arnett, N.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, N.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef] [PubMed]
- Health AgingBody Composition Study; Delmonico, M.J.; Harris, T.B.; Visser, M.; Park, S.W.; Conroy, M.B.; Velasquez-Mieyer, P.; Boudreau, R.; Manini, T.M.; Nevitt, M.; et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am. J. Clin. Nutr. 2009, 90, 1579–1585. [Google Scholar]
- Sato, E.; Mori, T.; Mishima, E.; Suzuki, A.; Sugawara, S.; Kurasawa, N.; Saigusa, D.; Miura, D.; Morikawa-Ichinose, T.; Saito, R.; et al. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sci. Rep. 2016, 6, 36618. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-Y.; Cheng, M.-L.; Pan, H.-C.; Lee, J.-H.; Lee, C.-C. Protein-bound uremic toxins impaired mitochondrial dynamics and functions. Oncotarget 2017, 8, 77722–77733. [Google Scholar] [CrossRef] [Green Version]
- Nixon, A.; Bampouras, T.M.; Pendleton, N.; Woywodt, A.; Mitra, S.; Dhaygude, A. Frailty and chronic kidney disease: Current evidence and continuing uncertainties. Clin. Kidney J. 2017, 11, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, V.R.; Mathiesen, E.R.; Watt, T.; Bjorner, J.B.; Andersen, M.V.N.; Feldt-Rasmussen, B. Diabetic patients treated with dialysis: Complications and quality of life. Diabetologia 2007, 50, 2254–2262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pop-Busui, R.; Roberts, L.; Pennathur, S.; Kretzler, M.; Brosius, F.C.; Feldman, E.L. The management of diabetic neuropathy in CKD. Am. J. Kidney Dis. 2009, 55, 365–385. [Google Scholar] [CrossRef] [Green Version]
- López-Soto, P.; De Giorgi, A.; Senno, E.; Tiseo, R.; Ferraresi, A.; Canella, C.; Rodríguez-Borrego, M.A.; Manfredini, R.; Fabbian, F. Renal disease and accidental falls: A review of published evidence. BMC Nephrol. 2015, 16, 176. [Google Scholar] [CrossRef] [Green Version]
- Bohannon, R.W. Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Arch. Phys. Med. Rehabil. 1997, 78, 26–32. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Kashman, N.; Volland, G.; Weber, K.; Dowe, M.; Rogers, S. Grip and pinch strength: Normative data for adults. Arch. Phys. Med. Rehabil. 1985, 66. [Google Scholar] [CrossRef]
- Duncan, M.J.; Mota, J.; Carvalho, J.; Nevill, A.M. An Evaluation of Prediction Equations for the 6 Minute Walk Test in Healthy European Adults Aged 50–85 Years. PLoS ONE 2015, 10, e0139629. [Google Scholar] [CrossRef]
- Duncan, R.P.; Leddy, A.L.; Earhart, G.M. Five times sit-to-stand test performance in Parkinson’s disease. Arch. Phys. Med. Rehabil. 2011, 92, 1431–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.; Lane, J.V. A Pilot Study to Explore the Predictive Validity of 4 Measures of Falls Risk in Frail Elderly Patients. Arch. Phys. Med. Rehabil. 2005, 86, 1636–1640. [Google Scholar] [CrossRef]
- Zielińska, D.; Bellwon, J.; Rynkiewicz, A.; Elkady, M.A. Prognostic Value of the Six-Minute Walk Test in Heart Failure Patients Undergoing Cardiac Surgery: A Literature Review. Rehabil. Res. Pract. 2013, 2013, 1–5. [Google Scholar] [CrossRef]
- Deltombe, O.; Dhondt, A.; Van Biesen, W.; Glorieux, G.; Eloot, S. Effect of sample temperature, pH, and matrix on the percentage protein binding of protein-bound uraemic toxins. Anal. Methods 2017, 9, 1935–1940. [Google Scholar] [CrossRef]
- Fagugli, R.M.; De Smet, R.; Buoncristiani, U.; Lameire, N.; Vanholder, R. Behavior of non-protein-bound and protein-bound uremic solutes during daily hemodialysis. Am. J. Kidney Dis. 2002, 40, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Meert, N.; Schepers, E.; Glorieux, G.; Van Landschoot, M.; Goeman, J.L.; Waterloos, M.-A.; Dhondt, A.; Van Der Eycken, J.; Vanholder, R. Novel method for simultaneous determination of p-cresylsulphate and p-cresylglucuronide: Clinical data and pathophysiological implications. Nephrol. Dial. Transplant. 2011, 27, 2388–2396. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, I.U.; Aslam, M.; Altaf, S. lmridge: A Comprehensive R Package for Ridge Regression. R J. 2019, 10, 326–346. [Google Scholar]
Variable | Total |
---|---|
(n = 75) | |
Age (years) | 68.0 ± 15.3 |
Male (n; %) | 43; 57.3 |
BMI (kg/m2) | 26.1 ± 5.1 |
Dialysis vintage (months) | 16.0 [9.0; 39.0] |
Type of dialysis | |
Hemodialysis (n; %) | 31; 41.3 |
Hemodiafiltration (n; %) | 44; 58.7 |
Medication taken on a daily basis (n) | 13.0 ± 3.9 |
Davies comorbidity score (0–7) | 2.0 ± 1.3 |
Comorbidities | |
Diabetes (n; %) | 35; 46.7 |
CVD (n; %) | 54; 72.0 |
Neuropathy (n; %) | 20; 26.7 |
Retinopathy (n; %) | 24; 32.0 |
Respiratory disorders (n; %) | 21; 28.0 |
Musculoskeletal disorders (n; %) | 28; 37.3 |
Etiology of chronic kidney disease | |
Glomerulonephritis (n; %) | 12; 16.0 |
Hematologic malignancies (n; %) | 2; 2.7 |
Interstitial nephropathy (n; %) | 7; 9.3 |
Diabetic nephropathy (n; %) | 19; 25.3 |
Hypertension, angiosclerosis or unknown (n; %) | 31; 41.4 |
ADPKD (n; %) | 4; 5.3 |
Hemoglobin (g/dL) | 11.1 ± 1.5 |
CRP (mg/L) | 3.6 [2.5; 10.0] |
Total serum protein (g/L) | 65.0 ± 6.2 |
Anion gap (mEq/L) | 12.0 [11.0; 19.1] |
Quadriceps force (N) | 186 ± 73 |
Patients with pathological quadriceps force (n; %) | 68; 90.7 |
Handgrip force (kg) | 30.0 ± 11.1 |
Patients with pathological handgrip force (n; %) | 20; 26.7 |
Tinetti (/12) | 11.0 [6.0; 12.0] |
Patients at increased risk of falls (n; %) | 35; 46.7 |
Sit-to-Stand (s) | 18.0 [12.0; 50.0] |
Patients at increased risk of falls (n; %) | 47; 62.7 |
FICSIT (/28) | 16.0 [10.0; 22.0] |
6MWT (meters) | 255 [110; 420] |
Patients with pathological 6MWT (n; %) | 65; 86.7 |
Patients scoring < 300 m on 6MWT (n; %) | 43; 57.3 |
Variable (mg/dL) | Total Levels (n = 75) | Free Levels (n = 75) |
---|---|---|
IS | 1.435 [0.844; 2.367] | 0.092 [0.031; 0.166] |
pCS | 3.478 [2.303; 4.518] | 0.212 [0.116; 0.369] |
pCG | 0.191 [0.066; 0.502] | 0.166 [0.062; 0.449] |
IAA | 0.119 [0.081; 0.188] | 0.037 [0.016; 0.059] |
HA | 1.820 [0.634; 3.521] | 0.993 [0.247; 1.707] |
CMPF | 0.411 [0.224; 0.886] | / |
UA | 6.106 [5.381; 7.016] | / |
Outcome | Model 1 (Composite Uremic Load) | Model 2 (Model 1 + Age + Gender) | Model 3 (Model 1 + Age + Gender + MNA) | Model 4 (Age + Gender + MNA) | ||||
---|---|---|---|---|---|---|---|---|
R2 | p-Value | R2 | p-Value | R2 | p-Value | R2 | p-Value | |
Quadriceps strength | 0.101 | 0.268 | 0.421 | <0.001 * | 0.493 | <0.001 * | 0.386 | <0.001 |
Handgrip strength | 0.220 | 0.046 * | 0.487 | <0.001 * | 0.650 | <0.001 * | 0.551 | <0.001 |
Sit-to-Stand | 0.163 | 0.119 | 0.331 | 0.002 * | 0.389 | 0.001 * | 0.211 | <0.001 |
6MWT | 0.142 | 0.280 | 0.333 | 0.002 | 0.401 | 0.002 | 0.282 | <0.001 |
Tinetti | 0.112 | 0.432 | 0.227 | 0.090 | 0.259 | 0.087 | 0.125 | 0.006 |
FICSIT | 0.127 | 0.381 | 0.357 | 0.002 | 0.393 | 0.003 | 0.284 | <0.001 |
Composite Uremic Load | Prognosis as Based on 6MWT (<300 m) | |
---|---|---|
R Squared | p-Value | |
Model Fit | 0.367 | 0.003 |
Detailed Analysis of Composite Uremic Load | Estimate (SE) | p-Value |
IS total | −0.38 (0.8) | 0.639 |
IS free | 0.27 (1.3) | 0.837 |
pCS total | −2.03 (0.8) | 0.017 |
pCS free | 1.75 (1.2) | 0.163 |
pCG total | 2.33 (1.2) | 0.048 |
pCG free | −1.21 (1.2) | 0.318 |
IAA total | −0.720 (1.3) | 0.571 |
IAA free | −0.61 (1.7) | 0.715 |
HA total | 1.03 (1.5) | 0.496 |
HA free | −0.79 (1.6) | 0.629 |
CMPF | −0.09 (0.5) | 0.834 |
UA | 0.05 (0.5) | 0.908 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanden Wyngaert, K.; Van Craenenbroeck, A.H.; Holvoet, E.; Calders, P.; Van Biesen, W.; Eloot, S. Composite Uremic Load and Physical Performance in Hemodialysis Patients: A Cross-Sectional Study. Toxins 2020, 12, 135. https://doi.org/10.3390/toxins12020135
Vanden Wyngaert K, Van Craenenbroeck AH, Holvoet E, Calders P, Van Biesen W, Eloot S. Composite Uremic Load and Physical Performance in Hemodialysis Patients: A Cross-Sectional Study. Toxins. 2020; 12(2):135. https://doi.org/10.3390/toxins12020135
Chicago/Turabian StyleVanden Wyngaert, Karsten, Amaryllis H. Van Craenenbroeck, Els Holvoet, Patrick Calders, Wim Van Biesen, and Sunny Eloot. 2020. "Composite Uremic Load and Physical Performance in Hemodialysis Patients: A Cross-Sectional Study" Toxins 12, no. 2: 135. https://doi.org/10.3390/toxins12020135
APA StyleVanden Wyngaert, K., Van Craenenbroeck, A. H., Holvoet, E., Calders, P., Van Biesen, W., & Eloot, S. (2020). Composite Uremic Load and Physical Performance in Hemodialysis Patients: A Cross-Sectional Study. Toxins, 12(2), 135. https://doi.org/10.3390/toxins12020135